
CIMO - Component Integration Model

Yan Xia, Anthony Tung Shuen Ho
School of Electrical and Electronic Engineering

Nanyang Technological University, Singapore 639798
Tel. (65)7905465, Fax: (65)7904161, E-mail address: evxia@,ntu.edu.sq

YuCheng Zhang
Beijing Conuco Electronics Co. Ltd

Abstract
Component Object Model (COM) represents a binary

interface standard that allows developers to build
specialized software component that interface in a
common way with other software components. After
compiled, these components are integrated into an
application and can interoperate with each other in a
reliable, controlled manner. Can the components be
integrated and operated into an application without re-
compiled? This article describes the Component
Integration Model (CIMO), a software platform that
allows the components written by different software
programmer to be integrated and operated into an
application without re-compiling. Firstly, the paper
concentrates on a general overview o f the CIMO and
describes the constitutions and functions of the CIMO
architecture. Secondly, the paper presents the definition
of CIMO component concept und addresses how CIMO
facilitates users to establish scalable component-based
applications, and how CIMO supports the synchronous
and asynchronous communication between components.
Thirdly, the paper explains how CIMO sets up the
deployment of components and processes after Users
develop components based on CIMO specification.

Keywords: CIMO, Component Technology,
Configuration, Integration

1. Introduction

Component technology is very popular in the
software world because COM represents a binary
interface standard that allows developers to build
specialized software component that interface in a
common way with other software components. The
components can be developed by separate project team
members using a wide variety of language - independent

tools, and can be used and reused in many applications if
these components have the COM interface [l]. This
technology provides tremendous design flexibility and
opens a new worlc&and challenge-to software
programmers, and demands new ways of thinking and
working. However, the component technology does not
pay more attention to the component integration problem.
These components are not late-bound freely; they cannot
be integrated or combined into a variety of applications
without re-compiling. OLE-related technologies can
integrate between functional components of all sorts,
allowing the features of those components to evolve over
time, wherever they may be - in the system or inside
applications, inside in-process DLLs or out -of-process
.EXE files [2]. But re-compiling for components is
needed at most situations in OLE.

To meet the customer’s requirements of adding or
modifying functionality, or inserting new components to
the existed application, we researched and developed the
Component Integration Model. CIMO is a software
platform that allows the components written by different
software programmer to be integrated and operated into
an application without re-compiling. Also, the CIMO can
support to extend the functionality to component and to
insert new components to the application. In this article,
the CIMO technique and framework will be presented.
Firstly, the paper gives a general overview of the CIMO
and describes the constitutions and functions of the CIMO
architecture. Secondly, the paper focuses on the definition
of CIMO component concept and addresses how CIMO
facilitates users to establish scalable component-based
applications, and how CIMO supports the synchronous
and asynchronous communication between components.
Thirdly, the paper explains how CIMO sets up the
deployment of components and processes, and how
ClMO manages the components running in the
application after Users develop components based on
CIMO specification.

1530-1362/00 $10.00 0 2000 EEE
344

I I

Figure 1 CIMO Architecture

2. Architecture of CIMO

How does CIMO facilitate customers to establish
scalable component -based on application without re-
compiling? What makes it such a useful and unifying
model? To examine these problems that CIMO is meant
to solve and how CIMO provides solutions for these
problems, it will be helpful to first see the architecture of
CIMO. CIMO has a layered structure: CIMO
Component Layer and CIMO Service Layer. Figure 1
shows the static structure and feature of CIMO having
objects at different levels and relationship between the
various objects.

CIMO Component Layer contains CIMO
components, which work together and make up a
CIMO application.
ClMO Service Layer consists of CIMO service
components -- CIMO Configurator, CIMO
Manager, CIMO Container, and CIMO System.
CIMO Service Layer is mainly intended for
supporting the management, communication and
configuration of CIMO components. A CIMO
System and a group of CIMO Containers make up a
platform for CIMO components - CIMO Platform.

CIMO will provide all the classes in CIMO Service
Layer and instructions for application composers to
establish the application components. Application
composers will write application components and scripts
for configuring the application system. Application users
will use the final application.

3. CIMO Component Layer

CIMO components are located in the CIMO
Component Layer. These components will be developed

CIMO
Component

Laver

CIMO
Service
Layer

I I
by application composers based on the component
specification, and be integrated, managed and supported
by CIMO Service Layer Components. CIMO components
may be distributed on network and assigned to different
processes.

3.1. CTMO Component Definition

Generally, a CIMO component is a Microsoft COM
object. Each CIMO component is a discrete unit of code
built on Component technologies that delivers a well-
specified set ofservices through well-specified interfaces
[2][3]. Compared with other component (standard
Microsoft COM component), CIMO component has not
only common COM interface, but also special CIMO
Component Interface, as shown in figure 2 .

Each CIMO component may have a set of Source
Interfaces that implemented by the component and
have a set of Sink Interfaces that used by the
component. It consumes messages incoming
through its Source Interfaces and sends out
messages through its Sink Interfaces.
Each component has a group of services. These
services handle the incoming messages through
Source Interfaces, and the services may produce
messages and send out through its Sink Interface.

k s u r c e Interface

' / I T" I

4 Messazeflow
Sink Interface I

Figure 2 Structure of CIMO Component

345

A component is not a process. It may be a thread or
an object staying in the process of a container. It can send
and receive messages to other components via the CIMO
Container or even via the CIMO System. It knows
nothing about other components even if they are in the
same CIMO Container. Component creator can extend
functionality to components by adding more services in
addition to the basic ones. Only in this way, concrete
application can be realized.

3.2. CIMO Interface

The CIMO Interface is a group of semantically
related functions, or "methods". Taken together, the
methods in an interface define a logical group of services
that a ClMO component object can provide the expected
behavior and responsibilities. CIMO Source Interface:
the CIMO Interface implemented by a CIMO component
is a CIMO Source Interface, through which the
component receives incoming messages. CIMO Sink
Interface: the CIMO Interface used by a CIMO
component is a CIMO Sink Interface, through which the
component sends out-coming messages.

When a Sink Interface is coupled with a Source
Interface, which type is the same as the Sink Interface, a
client-server communication connection of two
components is established. Figure 3 depicts how the three
components are coupled together. Services existing in the
CIMO Platform support the communication between
components.

4. CIMO Service Layer

The CIMO software platform includes a CIMO
System and a number of CIMO Containers, a CIMO
Configurator, and a CIMO Manager. These
components are located in the CIMO Service layer, and
would guarantee safe operation in terms of process
management, component management, memory
management, and component communication.

A I M 0 Components

I ''1 CIMO

b CIMO sink ~nterface

h CIMO Source
+ A client-server connection

between two components

Figure 3 CIMO Component Integration

4.1. CIMO Platform

The CIMO platform provides a platform for CIMO
components running on it. It supports the setup,
integration, communication and management of the
components in the CIMO application. A CIMO platform
has one CIMO system to coordinate the whole system and
has a number of CIMO containers, which directly
contains CIMO components.

CIMO System
The ClMO system may contain a number of CIMO

containers and coordinate them to provide a system-level
management for the CIMO application. CIMO System is
a process that is responsible for communication between
Containers. And it also plays a partial role in
communication between Components in different
Containers. It is started by the end user; it gets the
application topology information from application
configuration and does work accordingly. For example, it
constructs and starts all the containers, establishes
communication channel to these containers, and requests
them to construct components by sending messages to
them according the configuration information.
Additionally, the CIMO System knows only its children,
which containers are in it, oblivious of its grand children,
which components it has. The CIMO System talks to
containers but not to components directly. It can send and
receive messages, and communicates with Configurator
and Component Manager directly, as shown in figure 4.

CIMO Container
High performance is an important requirement for

component software architecture. While cross -process and
cross-network transparency is a laudable goal, high
performance is critical for software structure. So, a CIMO
Container is used to organize the components that will
interact within the same address space to utilize each
other's services without any undue "system" overhead. A
ClMO container contains a number of CIMO components
and has its own process. It can also setup, integrate,
manage components and provide communication
management for these components. The CIMO Container
communicates only with the System directly instead of
other containers. If it wants to communicate with other
containers, it has to perform via the CIMO System. It can
send and receive messages, and play a role in
communication between components in different
containers.

CIMO Platform's Communication Mechanism

messages, know nothing about other components, and
The CIMO components can only process and send the

346

I I -.-.-.-.-.-.-.-.-.-._._. : I .-.-.-. -.-
Virtual Route

-
Actual Route

Figure 4 Communication Routes

additionally, may be distributed on network and assigned
to different processes. So, communication plays an very
important role in CIMO. The messages need to be
exchanged smoothly and accurately between layer and
layer, and among layer, and need also to run in one
process, in different processes, and even at different
computers. Fortunately, Microsoft COM technology has
provided the communication mechanism for components;
MS COM object can transfer any messages even over
LANs. Additionally, in order to realize asynchronous
transportation, asynchronous OLE automation and
multithread technology are employed.

In the CIMO Platform, whenever a node, maybe a
system object, a container object, or a component object,
receives a message, i t puts the message into its messages
queue and this message is then waiting for processing.
This node will check its message queue regularly and
process the messages in it according to their priority, as
shown as figure 5. When a node processes a message, it
checks if the destination is itself. If so, the corresponding
service will be invoked. If not, i t checks whether the
destination is one of its children, if so, the messages will
be sent out again to this child. Otherwise the messages
will be sent to its parent for further dispatching.

Message

+
Message

Figure 5 Message Processing

4.2. CIMO Component Manager

To guarantee the uniqueness of the components
within the application’s memory, each instantiated
components must be registered into a centralized r egistry.
The CIMO Component Manager is a centralized registry
and manages the components running in the application. It
belongs to the CIMO Service Component, intended for
the registry and management of the CIMO Components
and CIMO Interface, even the CIMO Messages. It records
a reference to the running system. After a system starts
up, only an object of the CIMO Component Manager can
be created and then starts to store the reference of whole
application’s system. The CIMO components in the
application’s system are usually identified in the CIMO
Component Manager using their unique identifiers. The
ClMO Components Manager connects to an existing
application system, acts just like a database manager to
manipulate components, and exists until the system object
terminates.

347

4.3. CIMO Configurator

The CIMO Configurator is a very important CIMO
Service Component because it implements from basic
software components to a running application system. It
coordinates with the CIMO platform to configure
applications, that is, reads configuration information to
construct and start the application system, tells the
application to create all the nodes (including a CIMO
System, many CIMO Containers and Components) in the
application, sets up message-service mapping within one
node, and sets up links between components. It controls
which components and services are loaded during the
initialization process. After the Configurator has finished
its task, it can exit without any effect to the platform. The
tasks are as follow:

Configure CIMO applications, such as process
topology, component topology, message route within
a component, link between components

0 Terminate after an application system has been
established. Also it can connect to and delete an
existing application system
Send messages to the application system in the debug
mode.
Show the application system structure and detailed
information within each node, such as message route
within a component and links of components.

0

Now, we support scripts as messages to construct the
application system. Script file is a plain text file in a
database. Each line is a message in the file. The
configurator reads and runs the script files in a sequential
order, and performs tasks taccordingly, either to create a
system or to send messages to this system, Fig.6.

Configuration

Figure 6 Concept of Configuration

5. Conclusion

We have successfully used the CIMO for control
software for a new generation machine of Multi-Factor
for MIKRON AG, a world-leading company of industrial
automated machine in Switzerland. Although it is a
simple software platform, it integrates and operates the
CIMO components into an application without re-
compiling.

CIMO has a layered structure. CIMO Component
Layer contains CIMO components, which work
together and make up a CIMO application. The
CIMO Service Layer objects intend for supporting
the management, communication and configuration
of CIMO components. Wlsiness logic deployed on
centralized services rather than scattered user service
makes CIMO to be changed easier so that it
consistently gears to the customer’s requirements.
CIMO supports COM technology. ‘Ihe CIMO
component has both COM Interface and CIMO
Interface. They can be written by different software
engineers based on the CIMO specification and can
be integrated and operated into an application without
re-compiling.
CIMO is a hlly configurable application system; the
CIMO Configurator configures both the application
and application messages, such as process topology,
component topology, message route within a
component, links between components, and so on.
The CIMO components only process and send the
messages. The CIMO provides the communication
mechanism for messages exchanged, and supports
synchronous and Asynchronous communication
between components, distribution of components.
Manageability. While cross-process and cross-
network transparency is a goal, CIMO container is
used to organize group components that will interact
within the same address space, which helps in
addressing high performance requirements.

Reference
[l] Sara Willliams and Charlie Kindel, “The Component Object
Model: A Technical Overview”, Dr. Dobb’s Joumal, the
newsstand special edition, December 1994.
[2] Kraig Brockschmidt, “OLE Integration Technologies: A
Technical Overview”, Dr. Dobb’s Joumal, the newsstand special
edition, December 1994.
[3] Paul Stafford and Joel Powell, “COM: A Model Problem
Solver”, March IO, 1995

348

