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Abstract

Recent work in programming semantics has provided a relatively
simple probablistic extension to predicate transformers, making it pos-
sible to treat small imperative probabilistic programs containing both
demonic and angelic nondeterminism [11, 12, 20]. That work in turn
was extended to provide a probabilistic basis for the modal p-calculus
[13], and leads to a quantitative p-calculus [16, 18].

Standard (non-probabilistic) p-calculus can be interpreted either
‘normally’, over its semantic domain, or as a two-player game between
an ‘angel’ and a ‘demon’ representing the two forms of choice. It has
been argued [23] that the two interpretations correspond.

Quantitative p-calculus can be interpreted both ways as well, with
the novel interpretation being the second one: a probabilistic game
involving an angel and a demon. Each player seeks a strategy to max-
imise (resp. minimise) the game’s ‘outcome’, with the steps in the
game now being stochastic. That suggests a connection with Markov
decision processes, in which players compete for high (resp. low) ‘re-
wards’ over a Markov transition system.

In this paper we explore ‘the Markov connection’, showing for ex-
ample how discounted Markov decision processes (MDP’s) and termi-
nating MDP’s can be written as quantitative y-formulae. The ‘normal’
interpretation of those formulae (i.e. over the semantic domain) then
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gives a more direct access to existence theorems than the presentation
usually associated with MDP’s.

Our technical contribution is to explain the coding of MDP’s as
quantitative p formulae, to discuss the extension of the latter to incor-
porate ‘rewards’, and to illustrate the resulting reformulation of exis-
tence theorems. In doing so we use an existing (but unpublished) ex-
tension to our normal probabilistic semantics, the ‘Lamington Model’;
it is described in the appendix.

1 Introduction

The behaviour of programs or systems depends on the conditions under which
they operate. In many cases those conditions will be imprecisely specified
and, for the analysis of such systems to be useful at all, it is vital that as
much as possible of the available information is taken into account.

Whilst some uncertainty can never be factored out — examples include
cases where arbitrary behaviour can be traced to unpredictable system-level
decisions — there are many circumstances in which an environment’s be-
haviour can be partially (and usefully) described using probability. Exam-
ples include (hybrid) systems having hardware components with known fail-
ure rates, or protocols providing resource-access subject to users’ fluctuating
demands which, in turn, are perhaps related (although only statistically so)
to the time of day.

Thus we can distinguish between ‘quantifiable’ and ‘unquantifiable’ un-
certainty. In recent years much research effort has focussed on how to fuse
the two notions, so that valuable indications of behaviour can be deduced
taking both into account. Unquantifiable uncertainty is familiar in theories of
computing and is modelled by ‘demonic nondeterminism’, a term employed
to mean that a system cannot be relied upon to proceed in any single and
repeatable ‘determined’ way: the best that can be done in these situations
is to include all possibilities, both the ‘bad’ and the ‘good’. Quantifiable
uncertainty is less well known in the computing literature; but when it ap-
pears it is usually dealt with by incorporating standard probability theory
into existing mathematical models of programs.

Early mathematical treatments containing both probability and nonde-
terminism! sought to introduce probabilistic models of distributed systems,

"When we write “nondeterminism” on its own, we mean demonic rather than proba-



which went a long way towards clarifying the many issues related to how
probability and nondeterminism should interact. A major contribution of
the work was to provide specification languages and verification techniques
for probabilistic properties in general [22] and temporal properties in partic-
ular [24, 1, 7]. Examples of such properties include “a given set of system
states will be reached with probability 17 and “the probability that a given
property is invariant”. Later work extended the application areas to include
average expected times between events and shortest-path problems [3].

A key component of those treatments was to provide actual algorithms
for computing the properties specified, and many model-checking systems are
based on the ideas put forward in that early work. However reasoning (even
about small systems) within the given framework, being primarily model-
based, can be very intricate indeed.

There is a dual approach to this specification and analysis problem: its
motivation is to expose the properties of a probabilistic system using a quan-
titative logic of probabilistic programs, in which the expressions include real
values that reflect the probabilistic transitions in the underlying system. As
with program logic generally, it leads to simpler specification and analysis
techniques.

Nondeterminism proves to be a significant hurdle in the logical approach,
however — Harel’s [5] and Kozen’s [12] logics for example do not include it,
and though Kwiatkowska’s [9] and Bianco’s [2] logics have an interpretation
over models containing both probability and nondeterminism, they do not
investigate the foundations of the axiom system. As far as we are aware,
the probabilistic weakest preconditions, extended by Morgan et al. [20] from
Kozen’s original approach [11], was the first logic to characterise a model
containing both probability and demonic nondeterminism. From it, many
powerful analysis techniques have been derived.

From the mathematical standpoint, the models in all of the above share
many of the features found in Markov Decision Processes (MDP’s). That
comes as no surprise, since MDP’s were originally formulated to address re-
alistic problems related to resource contention within a probabilistic context.
A (non-competitive) MDP, in its most abstract form, describes the actions
of a solitary gambler and the consequences of his selected strategy in plac-
ing bets. Probabilistic programs can similarly be seen as such games: the
nondeterminism in the program represents a range of strategies a gambler
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might follow, whilst the probabilistic transitions correspond to the games’
underlying conditions of chance.

The use of MDP’s brings with it a long-established body of algorithmic
techniques, based on linear programming, for quantifying certain well-defined
properties; again however, even simple arguments can be intricate and diffi-
cult to follow — largely because of the need to include all the details of each
MDP. There is no built-in facility of abstraction.

Abstraction, however, is the essence of logic. In this paper we review
some properties of MDP’s from a logical perspective, and we find that there
are many advantages in doing so. First, we show that for the purposes of
assessing game strategies, it indeed suffices to encapculate the complexities
of the MDP’s’ infrastructure by concentrating on their logical properties. In
doing so we find an immediate benefit in the presentation, because the focus
shifts towards the properties required for games to be properly defined. The
more substantial benefit, however, is that the logic has a natural interpreta-
tion within a domain of probabilistic programs, and that allows us to give a
domain-theoretic ‘spin’ to the proofs — one effect of which is to simplify the
proofs of key existence theorems.

In Sections 2 and 3 we review some basic theory of MDP’s and proba-
bilistic programs. In Sec. 4 we concentrate on their similarities; and finally in
Sec. 5 we exploit the similarities to apply domain-theoretic techniques from
program logic to the proof of a basic theorem of MDP’s, the existence of
optimal memoryless strategies. Sec. 6 concludes.

We use left-associating dot ‘.” for functional application, and write quan-
tifications in the order bound variable then constraint then term, with scoping
always explicit, given either by parentheses (- - -) or set-comprehension braces
{---}: thus the set of positive cubes is {i:Z |7 > 0 - i*}.

2 Non-competitive MDP’s: the basics

2.1 Markov Decision Processes

In this section we set out the basic theory of MDP’s, following closely the
approach taken by Filar and Vrieze [6]. Let S be a finite state space, L a
finite set of labels, and let S be the set of discrete probability distributions



over S.2

Definition 2.1 A finite-state Markov Decision Process over S is a pair
(p,w), where p is a transition system of type S x L — S and w is a reward
function of type S x L — R. The transition system p maps every (initial)
state s in S and label [ in L to a probability distribution p.s.l over final
states, whilst w specifies an immediate reward w.s.l following the selection of
[ in initial state s. U

The game metaphor, which complements the above definition, provides a
useful intuition based on a gambler’s playing a game of chance:

e From his initial position s he may choose from a selection of S-labelled
dice; each die is distinguished by a label [ and is biased according to
the distribution p.s.l.

e Each choice incurs an immediate cost or reward of w.s.l.

e His total expected winnings are determined by his immediate reward
and the final state s’ he reaches after rolling his chosen die: if there is
a payoff function ¢: S — R, then he wins ¢.s" plus the reward.

Thus if the gambler plays from initial state s, and chooses to roll the die
labelled [, then his total expected payoff is given by

wsl+ [o
p.s.l
where in general we write [ 4 @ for the expectation of random variable ¢ over
distribution d.® It is simply the immediate payoff added to his expected
reward due to the payoff function ¢.
Typically, in the context of MDP-cost problems, the gambler plays either
to win, or to lose:*

2Later we will extend S to include sub-distributions, those that sum to no more than
1 (rather than exactly to 1).
3In the finite case, as here, it is simply

Z(p.s.l.s’ X ¢.s') .

s’

4At this point the metaphor wears a bit thin: gamblers who don’t want to win are few
and far between. Nevertheless the idea is still useful in computing applications, where the
role of the gambler is taken by a demon who acts as a crook trying to lose someone else’s
money.
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action 1 (0.9,0,0.1) (0,1,0)
10 0 20
action 2 (0,1,0) (0.8,0.2,0) (0.9,0.1,0)
state 1 state 2 state &

In this representation a box portrays an action in a state and its re-
ward /transition (upper-left/lower-right) consequences. For example,
in the above the choice of action 1 in state 1 results in a cost (nega-
tive reward) of w.1.1 = —5 and transition probabilities p.1.1.1 = 0.9,
p.1.1.2 =0 and p.1.1.3 =0.1.

Figure 1: A summable Markov Decision Process [6, Example 2.1.1 p10]

Definition 2.2 Given the MDP (p,w) and payoff function ¢, a gambler’s
least expected reward from initial state s is given by the function wval:

valpw.g.s = MLL-wsl+ [¢ ).

p.s.l
O

Similarly, a gambler’s greatest expected reward from initial state s is given
by the function val:

Definition 2.3

valpw.g.s = (ULL-wsl+ [¢ ).
p.s.l

O

We illustrate the above definitions using an example due to Filar, repro-
duced here in Fig. 1.
Assume the payoff function is given by

¢.51 : =10, ¢.s9:= —20, ¢.s3:=30.

The gambler’s least expected winnings from (initial) s; are:

6



val.p.w.¢.s1
= (=54 0.9x10 +0.1x30) M (10 + 1x(—20))
7M1 —-10
= —10 .

And a gambler’s greatest expected winnings from (initial) sy are:

val.p.w.d.so
= (5+1x(—20)) U (0+0.8x10+ (0.2x(—20))
—151U4
4 .

2.2 Accumulation and discounted-cost games

Suppose now that the gambler plays repeatedly, accumulating his reward as
he goes. At each time ¢ (discrete, say in N) he chooses a label determining
his next move; let his strateqgy be 0: N x S — L representing ‘in advance’ the
choice of label he would make from s if he were there at time t. The gambler’s
problem now is to evaluate the effectiveness of his strategy, were he to follow
it, in terms of his expected payoffs. A strategy o, transition system p and
an initial state s together determine a well-defined probability distribution
over sequences of states in S that will be observed by the gambler as he
plays the game. From that distribution the expected accumulated payoff
can be computed, although in general it might be undefined in some cases.
Here, however, the only games that we consider are those where the expected
accumulated payoff does converge to a limit.

One such game that guarantees convergence is the discounted-cost game,
which we describe as follows.

Definition 2.4 A discounted MDP is a tuple (p,w,3) where (p,w) is an
MDP and the extra component 3:R with 0 < § < 1 is the discount factor.
Play is according to a strategy o as before, but the rewards are ‘discounted’
by the time at which they occur: a reward at time ¢ is worth only 3¢ of its
nominal value as given by w. g

The discount has the effect that the later a reward is received the less it
is worth: its value declines at a fixed percentage. Suppose the gambler starts



playing in state s at time 0: the discount is ineffective for his first move (it
is 3°), so that his immediate reward is w.s".(0.0.s°) as before.

For his second move, from some state s! chosen probabilistically from the
distribution p.s%.(0.0.s%), he will receive (only) 3 x w.s'.(c.1.s'); therefore
his expected reward at step 1 is®

B x /w.sl.(a.l.sl) ds* .
0.89.(0.0.50)

Similar — but increasingly complex — expressions give the expected re-
ward for later steps.

In general we write val f’ﬁ for the expected (discounted) winnings at time
t, with strategy o and discount factor 3. (In the presence of a strategy, the
question of maximum or minimum does not arise.) The gambler’s overall
expected winnings, were he to play according to strategy o, is thus the sum
of the individual winnings. For that we omit the ¢ subscript:

val P = Z val 77
o<t

By abstracting from the strategy, we reintroduce the issue of playing to
win, or to lose:

Definition 2.5 Given the discounted MDP set out in Def. 2.4, a gambler’s
least expected reward is

val® = (Mo - wval “P) .
O
Definition 2.6 A gambler’s greatest expected reward is
val” = (Uo - val ©7) .
O

The above ‘ambitious’ quantifications, over all possible strategies, suggest
however that difficulties may await anyone wishing to compute the maxi-
mum/minimum reward in specific cases. It turns out that those difficulties
can be overcome relatively easily in the special case that a gambler can
achieve his optimal reward by following a memoryless strategy.

1»

°In the usual way, we read “ds!” as functional abstraction of the expression w.s'.(0.1.s%)

over its parameter s'.



Definition 2.7 A strategy o is said to be memoryless if it is time-independent,
i.e. if o can be written as a function of s alone. a

The significance of memoryless strategies is that time can be factored out
of the calculation, to a large extent, thus placing the problem back in the
context of finite state spaces. And it means that gamblers who can achieve
their optimal reward by playing such strategies can evaluate their optimal
expected payoffs using linear-programming techniques.

It turns out that for discounted-cost games, memoryless strategies are
always applicable, and a crucial step is to prove it. The next theorem sketches
the details of the traditional proof.

Theorem 2.8 A gambler playing the discounted game set out in Def. 2.4
can achieve his least (greatest) expected reward by following a memoryless
strategy.

Proof: The standard proof uses linear programming techniques, and pro-
ceeds in two stages. For full details refer to Filar [6].

1. In the class of memoryless strategies, there one that is optimal (Corol-
lary 2.3.2, page 28).

2. The solution (1) is in fact optimal in the class of all strategies (Theorem
2.7.2, page 58).

Note that Filar deals with maximum rewards; but minimal rewards can be
treated similarly. O

In the remainder of this paper we re-evaluate the above basic material
from a programming point of view. We illustrate the new methods by giving
a shorter proof, in Sec. 6, of Thm. 2.8 above.

3 Probabilistic programs: the basics

Probabilistic programs can be both nondeterministic and probabilistic, so
that a model must account for both kinds of behaviour. In its simplest form
8, 20] a probabilistic program can be thought of as an unlabelled transition
system.



Definition 3.1 The space (RS,C) of probabilistic programs is an ordered
set of functions from (initial) states S to sets of distributions over (final)
states S; thus RS is S — PS. The refinement order C between programs is
defined
rCr iff (Vs:S-rs2r's).
O

The operational interpretation of a probabilistic program is as a state-
updating mechanism that operates in two distinct stages. In the first stage
a “demon” selects a probability distribution from the set given by r.s; and
in the second a probabilistic choice of final state is made according to that
distribution. Thus the demon’s choice represents demonic nondeterminism
— arbitrary, unpredictable behaviour. Program refinement serves to reduce
the demon’s choice — if r C 7’ then the range of demonic choices available
in 7’ is only a subset of those available in r.

There is a semantics dual to RS which generalises the Hoare/Dijkstra
program logic well-known in formal program development. Recall the ‘weak-
est pre-condition semantics’ for programs: for program prog and pre- and
post conditions respectively pre and post,

pre = wWp.prog.post

holds iff for any intial state satisfying pre, the program prog is guaranteed
to terminate in a state satisfying post. That wp-semantics is equivalent to
(actually, generalises) the relational model of programs, but is more effective
in practice for analysing correctness of actual programs.

We extend wp-semantics to probabilistic programs by replacing ‘is guar-
anteed to terminate’ by ‘terminates with probability at least p’. To make this
generalisation effective, it turns out that we need to cast the observations in
terms of random variables, or expectations.

Let £S — for expectations over S — be the set of real-valued functions
over §S.

Definition 3.2 Given a program r in RS and ¢ in £S5, we define the prob-
abilistic least pre-expectation plp.r.¢ in £S as follows:

plpr.g.s = (Nd:r.s- /dqb)

6In fact the use of expectations is precisely the notion that allows us to have a simple
joint logic for nondeterminism and probability at all. Interested readers are referred to
[20] for details.

10



O

The real-valued quantities associated with Def. 3.2 are interpreted as the
least expected values with respect to a program r and a ‘payoft’ function ¢.

In this scheme predicates are embedded by their characteristic functions:
given a predicate b over S, the characteristic function b is defined to be 1
exactly at those states satisfying b, and 0 otherwise. With that convention
probabilistic observations may be recovered due to the fact (from standard
probability theory) that the expected value of the characteristic function is
the same as the probability assigned to the corresponding predicate. For
example, if prog is a probabilistic program and p < plp.prog.b.s, then we
know that the final state satisfies b with probability at least p whenever prog
executes from s.

The maximum expected value can be defined similarly.

Definition 3.3 Given a program r in RS and ¢ in £S5, we define the prob-
abilistic greatest pre-expectation pgp.r.¢ in £S as follows:

pgp.r.¢.s = (Ud:ir.s- /gzﬁ) :
d
O
In fact plp and pgp determine each other via the equivalence
—plp.r.(—e) = pgp.r.e, (1)

provided we allow negative expectations.

Given a program r, both plp.r and pgp.r are examples of functions which
transform expectations. We call such funtions expectation transformers and,
as a generalisation of Dijkstra’s predicate transformers [4], they are similarly
effective for specifying and proving properties about probabilistic programs.

Definition 3.4 The space (7 5,C) of expectation transformers is the set of
monotone functions 7.5 defined £S5 — £S and ordered as follows:

tCt aff (Vp:ES-tp=t.0),

where we write = between expectations for “is everywhere no more than”.
As such, it generalises implication = between characteristic functions; and
relations < and = between expectations are defined similarly. O

11



For all transformers ¢ in 7.5, expectations ¢, ¢’ in £S and reals ¢ > 0 we have
1. Monotonicity: if ¢ = ¢’ then t.¢ = t.¢'.
2. Feasibility: t.¢p = Uo.
3. Scaling: ¢ xt.¢p = t.(c xt.0).
4. p@-subdistribution: t.¢ ,@& t.¢/ = t.(¢,DP).

5. ©-subdistribution: t.¢p © ¢ = t.(¢ S c).

Figure 2: The sublinearity conditions [20, Fig.4 p.342]. (See also Def. A.1.)

But only a subset of the expectation transformers correspond to images of
RS in plp; the properties characterising those images are known collectively
as sublinearity, and are shown in Fig. 2.7 The following theorem formally
sets out the position.

Theorem 3.5 Any transformer ¢ in 7S is sublinear if and only if it is the
image of some program r in R.S.
Proof:  See Morgan et al. [20] O

Thm. 3.5 forms the basis for a logic of probabilistic programs, in that
facts about programs can be proved using these axioms.

To illustrate the logic, we consider the following program, which is based
on the MDP example from Fig. 1:

Let prog be the program if
s1 — (51 00® s3) M 59
Sy — Sy [ (51 08P S3)
s3 — S1 09D S2
fi

)

where for brevity we omit s = and s: = in the program text.
Given post-expectation ¢ defined by

¢.81 = 2, d).SQ = —3, ¢.S3 =1 )

we can calculate, for initial state si:

"The corresponding notion for standard programs is that only conjunctive transformers
correspond to relations.

12



plp.prog .¢.s1
(09%x2+01x1) M —3
= 3.

Similar calculations reveal the other values of the pre-expectation:

plp.prog .¢.s5 = —3, plp.prog .¢.s3 = 1.5 ,

giving overall that the expected reward is —3 if prog executes from either
state s; or sy and is 1.5 if it executes from ss.

We can now investigate the similarities between probabilistic programs
and MDP’s.

4 Programs and MDP’s

From the last section, it is clear that MDP’s’ transition systems have much in
common with programs in R.S: in fact the main differences lie in the labelling
of the transitions in the MDP’s and in the inclusion of the refinement order
in RS. We show firstly that in many situations the labelling is an unneces-
sary notational encumbrance; and secondly that exposing the fundamental
order existing between transition systems makes available some nice proof
techniques present in elementary domain theory, but absent in traditional
presentations of MDP’s. We begin by investigating how far MDP’s and the
program model RS are similar.

To start, we define a function m7or, which takes a relation p to a program
by simply forgetting the labels.

Definition 4.1 Let (p,w) be an MDP. We define m7or.p in RS as follows:®
mToRr.p.s = {l:L-p.s.l}.
O

Note that m1or ‘forgets’ the reward; much of our work to come will be in
order to reinstate it.

It is easy to see that the MDP’s labels are important only if the payoff
function varies between transitions. We say that an MDP (p,w) is w-constant
if its payoff function doesn’t depend on the label chosen.

8Strictly speaking we should impose closure conditions on the result space of mToR, but
for convenience here we omit them. Their details are available elsewhere [20].

13



Lemma 4.2 If (p,w) is an w-constant MDP then

valpw.¢ = w+ plp.(mTor.p).0 ,

and o
valpw.¢p = w+ pgp.(mToRr.p).¢ .
O

The trick here is simply to add the cost function explicitly, as an expectation
depending only on the state. Unfortunately however, that will not work for
MDP’s with cost functions that depend on the transition as well as the state,
since the transition taken is ‘hidden’ inside the transformer plp or pgp.

In spite of the limitations of Lem. 4.2, the expressions there tell us what
we should be looking for: a more general form of expectation transformer,
made by extending our existing model [20] with an explicit additive expecta-
tion. The challenge would then be to give a complete algebraic characterisa-
tion for those extended transformers, by analogy with the sublinearity that
characterises our existing model.

In the next section we show that an existing extension, the ‘Lamington
model’, has many of the characteristics we need. With it, we propose a richer
model and logic for programs, one which is closer to MDP’s in that we are
able to attach different costs to different transitions, whilst still avoiding the
details of labelling.

5 The Lamington logic for MDP’s

The Lamington model for probabilistic programs, described in the appendix,
was developed for a different purpose; nevertheless it turns out that is has the
additive features we need for our application to MDP’s, and — as a bonus
— we have already characterised its algebra.

Recall first that RS naturally accommodates varying probabilistic transi-
tions. We extend this feature to varying cost-per-transition simply by adding
a distinguished exit-branch to every state: like the others, it is weighted prob-
abilistically; but, unlike the others, the contribution it makes to the overall
reward is independent of the following ‘reward function’. We instead intro-
duce a unique state T, so that the distinguished transitions are just the ones
that terminate there.

14



Definition 5.1 The Lamington relations (following Def. A.15) Extend the
state space S to St by adding an extra distinguished state T. The Lamington
relations are those relations r in R(St) — over St rather than S — that
satisfy the extra condition

r T = {T}

Thus we introduce an extra state T; and we insist that a program, once in
that state, remain there.”

We write LS for the Lamington relations over S.

The corresponding (minimising) Lamington transformer for a Lamington
relation r is written llp.r, and they act over £S (rather than £S57). a

With the Lamington model, we can now treat a larger class of MDP’s,
although (unfortunately) there are still restrictions. We say that an MDP
(p,w) is 1-bounded if w is everywhere non-negative and if

w.s.l + Zp.s.l.s’ <1
s':S

for all states s and labels [.

To make that condition feasible, we relax the type of p from distributions
to sub-distributions, thus leaving the necessary space for the added w.s.l to
‘fit in” beneath 1. Our relational spaces RS and RS+ are similarly extended.

It turns out that Lamington programs are equivalent to 1 —bounded MDP’s.

Definition 5.2 We define a function m7or which takes a MDP given by (p,w)
to a Lamington relation:

mToL.pw.s = StN{l:L-psl+wsIxT}U{T}.

We take the final-state distribution (over S) given by the transition function
p, and we add to it a transition to T, weighted by the reward as given by
w; the result overall is a distribution over St. As technicalities we exclude
with St N any putative distributions that in fact sum to more than 1, and
to forestall possible emptiness we add the ‘all to top’ result distribution
explicitly.'0 a

9As with our earlier definitions, there are further ‘closure’ conditions which we supress
for simplicity. Def. A.15 includes them.

10Adding {T} is justified by the fact it would be added anyway by the closure conditions,
which we have here elided. See Def. A.15.
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Observe that mroL is well-defined even for non-1-bounded MDP’s, although
in some cases the range may only contain T.

Theorem 5.3 If (0,w) is a 1-bounded MDP, then the least expected payoff
satisfies
val.pw = lp.(mroL.p.w) .

Proof:  The hypotheses imply that p.s.l + w.s.IxT € St, and hence in
this case m7oL.p.w merely forgets the labels. The result then follows from
simple arithmetic. O

Because 1-bounded MDP’s correspond to Lamington programs, they share
all of the pleasant properties of programs in general, including the fact that
accumulation games always have a defined limit, and that the limit is achiev-
able via a memoryless strategy.

We now set out both accumulation games and memoryless strategies in
the program model.

Definition 5.4 Accumulation games Let r be in LS. The least expected
payoff in the accumulation game r is defined to be the least fixed-point of
the corresponding expectation transformer, that is

w.(lp.r) .
O

Since the transformer space is ordered, with a top- and a bottom state, least-
and greatest fixed-points of monotone functions are always well-defined.

Memoryless strategies in MDP’s correspond to programs in which any
demonic nondeterminism at any state is resolved in the same way every time
that state is encountered; such programs are called ‘pre-deterministic’. Their
only source of demonic nondeterminism is that they might fail to terminate at
all (they might ‘abort’, in the language of Dijkstra’s weakest preconditions).
The next definition gives the characteristic logical property of deterministic
programs.

Definition 5.5 A program r in LS is said to be pre-deterministic if r.s is a
singleton set of distributions.!!

At the level of transformers, the corresponding algebraic property is that
llp.r — llp.r.0 distributes addition [15, Thm. 3.5]. O

1We exclude any multiplicity in the set that is due only to closure conditions.
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We can now prove that all 1-bounded MDP’s have memoryless strategies.

Theorem 5.6 The least expected reward for a 1-bounded MDP-accumulation
game can be realised by a memoryless strategy.

Proof:  From Thm. 5.3 and Def. 5.4 we can identify the least expected
rewards in the two models:

Zv_alt.p.w = p(llp.(mror.p.w)) .
&N

We have m7oL.p.w.1 < 1 since, by assumption, (p,w) is 1-bounded, and so
the least fixed-point exists: let that fixed point — an expectation — be ¢.
Now we take a pre-deterministic refinement " of m7oL.p.w such that

llpr'.¢ = llpmroL.p.w.g,

something that is always possible if the state space is finite [19]. Next we
show that p(llp.r') = p(llp.mror.p.w), reasoning as follows.

From monotonicity we have immediately that p(llp.r’) < ¢. Conversely,
since e = llp.r'.¢, we must have (by the least fixed-point property) that
wu(llp.r') = ¢, and the result follows. O

Notice how the least fixed-point property allows us to deduce the result
immediately, without having to consider first the set of memoryless strategies.

Finally we show that Thm. 5.3 applies to discounted cost problems. We
consider only the case where the costs are non-negative.

Definition 5.7 A non-negative discounted MDP (o,w, [3) is one for which
w < 0. O

Any non-negative discounted MDP is equivalent to a 1-bounded (un-
discounted) MDP, for calculation of least expected reward.

Lemma 5.8 Let (p,w, 3) be a non-negative discounted MDP with least ex-
pected reward ¢; then there is a 1-bounded (un-discounted) MDP with least
expected reward ¢’ such that ¢ = ¢’ x Lw x (1-0).
Proof:  We construct the 1-bounded MDP (p',w’) with equivalent reward
simply by ‘taking up’ the discount factor 3 in the transition probabilities
(which accounts for the discounting), and by scaling the reward w as neces-
sary to achieve 1-boundedness.

In detail, we define p’ to be Gxp, and &’ is defined w/(Lwx (1 — 3)). The
rest is arithmetic. O
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That gives us our correspondence between discounted MDP’s and the
Lamington model.

Corollary 5.9 Any non-negative discounted MDP game has a memoryless
strategy.
Proof: Follows from Lem. 5.8 and Thm. 5.6. a

6 Conclusions; further work

The direct connection between Markov processes and probabilistic-program
semantics is only to be expected: both model a stochastic activity evolving in
a series of discrete steps. Going ‘forwards’, the Markov approach multiplies
distributions by matrices, while the program-semantics approach (Kleisli-)
composes state-to-distribution functions; going ‘backwards’, the former mul-
tiplies expectations by matrices, and the latter (functionally-) composes ex-
pectation transformers.

In fact these four approaches correspond so well that there might not
be much to choose for simplicity between them. When nondeterminism is
introduced, however, the last — expectation transformers — is singled out
because it does not need to be extended.

Markov processes must be extended to Markov decision processes, with
their labels and strategies; and state-to-distribution functions become state-
to-distribution relations. But expectation transformers retain their ‘shape’,
merely broadening the class transformers that are considered well-formed;*?thus
many of the simpler notions applicable to the deterministic case can be car-
ried over unchanged.

An example of that — but not our topic here — is stationarity: it is
well know that a long-term ‘stationary’ distribution exists for any Markov
process whose transition matrix satisfies certain conditions; but if those con-
ditions are not met, the stationary distribution does not exist. Mclver shows
[14] that when recast as an expectation transformer the process has a sta-
tionary distribution in all cases, and considerable simplification results: the
traditional conditions merely ensure that the distribution is ‘deterministic’.

12Tn standard programming the transformers drop their ‘disjunctivity’ when nondeter-
minism is introduced, retaining conjunctivity; and deterministic expectation transformers
are linear, becoming (only) sublinear when nondeterminism is introduced.
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Our topic here has been the more general simplification that might result
from treating the nondeterminism of MDP’s in the transformer style. In
particular, the whole apparatus of state sequences, strategies and labels is
‘sucked up’ into the provisions that transformers make automatically for
nondeterminism. Rather than seek extremal strategies — which of necessity
requires that strategies themselves be modelled explicitly — we look instead
at extremal fixed-points of functions. The price we pay for that is the explit
modelling of the program lattice.

Whether this program-semantics approach is simpler we have yet to see.
And the Lamington model, fortuitously available to accommodate additive
rewards, is still limited by its being able to handle only 1-bounded processes.

Our future work is to build a model free of that restriction, using the
Lamington as a guide (rather than taking it as-is), and then to elucidate
its characteristic healthiness conditions. We hope that the result will be a
simpler presentation of further aspects of Markov Decision Processes.
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A The Lamington models

The Lamington models extend the ordinary models of probabilistic computa-
tion by placing an extra program magic at the top of the program-refinement
lattice. Unlike the oco-based magic program that can easily be added to our
earlier probabilistic models [20, 8], the magic program in the Lamington
models does not act as a zero for probablistic choice ,®.

We begin by reviewing the earlier models, considering both unbounded
and 1-bounded formulations; we use ® for typical unbounded expectations
and ¢ for typical 1-bounded expectations.

We then introduce the Lamington models and explain the way in which
they relate to each other and to the earlier models.

A.1 1-bounded and ‘separated’ sublinearity conditions

We propose a set of sublinearity conditions that characterise transformers
when restricted to 1-bounded expectations.

We know that (unbounded) transformers are characterised by'® the ‘sub-
linearity condition’ [20, Def. 7.1].

Definition A.1 A transformer j is sublinear provided that for all unbounded
expectations @1, ®, and real constants c, c¢i, co > 0 we have

j.(Clx(I)1+C2X(I)2 S Q) & 01Xj.q)1+02><j.(1)2 o c.
O

One of the consequences of sublinearity is ‘feasibility’ (see Def. A.2 (2) be-
low), in particular that the 1-bounded subset of all expectations is closed un-
der sublinear transformers; so it is easy to restrict our attention to 1-bounded
expectations when working with sublinear transformers. The sublinearity
condition itself, however, is not very convenient for the 1-bounded case, be-
cause it contains potentially non-1-bounded subexpressions (like ¢; x®; +
caX Py for arbitrary ¢y, co > 0). Our first step is to rewrite Def. A.1 into an
equivalent form more suitable for 1-bounded expectations.

Easy consequences of sublinearity are the following five conditions, in
which only 1-bounded expectations occur:

13¢Characterised by’ means that the set of transformers satisfying that condition can be
placed in one-to-one correspondence with the relational probabilistic programs.
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Definition A.2 Separated sublinear conditions, for the 1-bounded model For
all transformers 7 and 1-bounded expectations ¢, ¢ we have

1. Monotonicity: if ¢ = ¢’ then j.¢ = j.¢'.

2. Feasibility: j.¢0 = Uao.

3. Scaling: ¢ x j.¢p = j.(cxj.p)for0<c<1.

4. ,@-subdistribution: j.¢ ,& j.¢' = j.(¢, B ).

5. ©-subdistribution: ¢xj.¢p & ¢ = jexop © d) for 0 < ¢,
satisfying c—¢ < 1.

O

It is not difficult to show the converse: the separated and restricted condi-
tions applied to unbounded expectations imply the single Def. A.1'4; further-
more (by scaling), a sublinear transformer’s general behaviour is determined
by its behaviour on 1-bounded expectations.

Note also that conditions (1,2) can be derived from the other three.

A.2 The 1-bounded Lamington transformers

We now introduce a transformer ‘magic’, intended to be the ‘top’ of the
program-refinement lattice for the 1-bounded transformers; we will see that
it does not satisfy sublinearity, and so the space of transformers will have
to be adjusted to accommodate it. The resulting space will be called the
‘1-bounded Lamington transformers’.

Definition A.3 The magic transformer For all 1-bounded expectations
¢ we define magic.¢ : =1 . a

Note that magic does not satisfy scaling (for example).

A similar top-of-the-lattice transformer m in the unbounded model would
need to satisfy m.® := oo, requiring therefore the (not difficult) extension
of that model to include infinite values [17]. That m however then acts as
a zero for ,@® (since oo ,® & = oo for all z > 0 and p > 0), which in some

1Use (3) to write j.(c1 x®1 + cax Py © ¢) as 1/e x j.(ed x (P1/k1 p@® P2 /k2) © ec) for
suitable d, e, k1, ko that make everything 1-bounded and ensure ed—ec < 1; then use (4,5).
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applications we do not want. Note however that m would satisfy sublinearity
(extended with infinite arithmetic): it is thus a less ambitious extension.
But transformer magic does not satisfy sublinearity: take ¢; = ¢ = 1,
¢ =0and &; = &3 = 0 in Def. A.1, whence 1 & 2 would result. In the
‘separated’ form Def. A.2, however, only Conditions (2,3) fail — thus we
define the Lamington conditions to be the remaining three. We call the
transformers satisfying them the ‘1-bounded Lamington transformers’

Definition A.4 The 1-bounded Lamington transformers The 1-bounded
Lamington transformers j take 1-bounded expectations to 1-bounded expec-
tations, and satisfy these conditions: for all 1-bounded expectations ¢, ¢’ we
have

1. Monotonicity: if ¢ = ¢’ then j.¢p = j.¢'.
4. ,@-subdistribution: j.¢ ,®& j.¢' = (0 ,D¢).

5. ©-subdistribution: c¢xj.¢p © ¢ = j.(cx¢O ) for 0 < ¢, ¢ satisfies
c—c < 1.

O

We now look at two other Lamington models, induced from this one:
an extended transformer model with explicit ‘top’ state T, and a similarly
extended relational model. All three are placed in 1-1 correspondence.

A.3 The other Lamington models

A relational model corresponding to the 1-bounded Lamington transformers
must be one in which there is a place for an explicit magic (relational)
program whose corresponding transformer has the defining property Def. A.3
above. (There can be no such program in the usual relational model [20, 8],
since all transformers generated from it satisfy sublinearity.)

We construct the model going via an extended transformer space in which
sublinearity has been restored: that allows us to use the fundamental theorem
[20, Thm. 8.7] that puts sublinear transformer spaces in 1-1 correspondence
with relational models. The state space S is extended with a special ‘top’
element T, which in the end will be the state to which the relational magic
program ‘takes the computation’:
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Definition A.5 FEaxtended state space

Let St :=SU{T} extend the original state space S.

For 1-bounded ¢ acting over S define its extension ¢t over St by letting
¢7.T := 1. For unbounded ® acting over St define ®_ to be its restriction
to S. a

Our plan is now as follows. First we show that a map ()T between 1-
bounded and unbounded Lamington transformers is an injection, and that
the resulting unbounded Lamington transformers are exactly those that sat-
isfy sublinearity (over St) together with two additional conditions.

We then show that those transformers correspond 1-1 with a subset of the
probabilistic relational model [20, 8], and giving the characteristic properties
of that.

Overall the result is thus a 1-1 correspondence between the three models.

A.3.1 The unbounded Lamington transformers

We begin by mapping the 1-bounded transformers into the extended space.

Definition A.6 Unbounded Lamington transformers 'The unbounded Lam-
ington transformers are those transformers j+ constructed from 1-bounded
Lamington transformers as follows: for 1-bounded Lamington transformer j
over S, define its extension jt acting over St as follows: if ®.T = 0 then
Jj7-® = 0; otherwise

JT7.@.T = &.T ;and

fors#T, jr.®s = I.T x j.(s—} Ml).s.

O

We show first that the unbounded Lamington transformers satisfy sub-
linearity, by proving the properties of Def. A.2 for transformer jt over St;
we assume throughout all properties Def. A.4 for j over S. For brevity we
may write “c¢” for “c X ¢” etc. In most lemmas the only non-trivial case is
when the transformer(s) are not zero at T and the state is not T; only where
that is not so do we give the extra reasoning explicitly for s = T or ®.T = 0.

Lemma A.7 Monotonicity Assume ®; = ®,; then we have
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jT.(I).S
= O T X j(Py_/P1.T)M1).s definition jt
= q)QT X (q)lT/(I)QT) X j(q)l,/fl)l—l—) |_|l)8

= j scaling; ®1.T/®2. T <1
(I)Q.T X ](((I)lT/(I)QT) X (<I>1_/<I>1T) I—ll))s

Do T X j(Po_ /Do T)M1).s j monotonic
= Jr-(P2).s . definition jT
O

Lemma A.8 Feasibility This follows from scaling and &-subdistribution
(below) [20, Lem. 7.4]. (It does not hold in the Lamington model because
Def. A.4 does not include scaling.) O

Lemma A.9 Scaling

jT.(C(I)).S

(c®).T x j(ii; M1).s definition jt
= qu).—l—xj.(i—; Ml).s

c X j1.9.5 . definition jT
Note we do not require ¢ < 1. O

Lemma A.10 ,®-subdistribution

jT'(q)l p@ CI)Q).S
= Jr-(e X (D1/P1.T @ Py /D3.T)).s for some 0 <cand 0 <r <1
= X jr(P1/P1. T & Oy /Py T).s jT scaling

= definition j7; (®1/P1.T & Po/P2.T). T =1
c X j((fbl/@l—l' +D @2/¢2T) |_|l)8

Vv

¢ X j.((21/@1.T ML) @ (Po/Po. TM1)).s

v

J is p@®-subdistributive
c X (j(q)l/q)lT ( l)S +D j((I)Q/(I)QT 1 l)S)
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= c X (jT.CI)l.S/(I)l.T »D jT(I)QS/(I)gT)) definition jT
= JT-®1.5 @ J7. P25 . choice of ¢, r

If wlog ®1.T # 0 but 5. T = 0, we reason

jT-(q>1 p® @2).8

> Jr-(pP1).s jT monotonic
= p X jr.P1.8 jT scaling
= jT.q)l.Sp@ jT.CI)Q.S . @2.—|— =0

O

Lemma A.11 S-subdistribution
Jjr(c® © d).s

= definition j1; define d : = (ex® & ). T; see below for d = 0
dxj.((c®_/dod/d)T1).5

= define e : = ®.T; see below for e = 0

d x j.(((ce/d)D_fecd/d)M1).s

v

j monotonic; arithmetic and ce/d — ¢’ /d < 1 (see below)

dx j.((ce/d)(®_/enl)oc/d).s

Vv

j subdistributes &; ce/d — ¢'/d < 1
dx ((ce/d)j.(®_/enl)oc/d).s

= (ce)j.(P_/eMl).sod
= c(jr.®.s)od . definition jT,e

Note that from the definitions we have d = ce—c U 0; that gives ce/d —
' /d < 1 immediately, and when e = 0 it gives d = 0, leaving that last as the
only special case.

When d = 0 the lhs is 0 by definition of j1; the rhs is 0 also since, directly
from the definition of jt+ we have j+.®.s < ®.T =e. O

That shows that the extended transformer jt satisfies sublinearity. We
now mention the two extra properties explicitly.
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Lemma A.12 FExtra unbounded Lamington properties For any jt and &
we have

1. T-preserving j7+.©.T =&.T ; and
2. T-capped jT.® =j7.(PMNP.T) .
Proof: Immediate from the definition of j+. O

To complete the correspondence we construct an inverse (-)_ to (), going
from the unbounded back to the 1-bounded model.

Definition A.13 For unbounded Lamington transformer k over St, define
1-bounded Lamington transformer over S by

ke = (kor)_ .

We conclude by showing that the two maps are inverses:

Lemma A.14 1-1 correspondence between 1-bounded and unbounded Lam-
ington models

1. For 1-bounded Lamington j we have (jr)_ =7 .
2. For unbounded Lamington k we have (k_)t =k .

Proof:  The proof of (1) is immediate from the definitions. For (2) we
reason for cases ®.T #0 and s # T

(k_)T.(I) S

Q. T xk_.(3=M1) Definition ()T
= T xk((z=N1)7) Definition (-)—
= T xk((¢NP.T)/P.T) arithmetic
= E(PN®.T) k scaling
= k.® . k is T-capped, Lem. A.12(2)
The other cases are straightforward. a
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A.3.2 The Lamington relations

Because the unbounded Lamington transformers are sublinear, we have a
relational representation for them: the relational representation guaranteed
by [20, Lem. 8.6] is a function from states (S extended with T, in this case) to
sets of sub-distributions!® over states; since we are working with a finite S the
distributions are discrete. The conditions imposed on that relational model
are that the sets of distributions are non-empty, up-closed, convex-closed and
Cauchy-closed.'¢

The specific origin of our transformers here — as extensions of Lamington
transformers over the (non-extended) S — results in two further properties
of their corresponding relations: they are ‘T-preserving’ and ‘ T-up-closed’.

A relation 7 is T-preserving if r.{T} = {T}, where for state s the distri-
bution s is the point distribution over s. Thus a T-preserving relation takes
T only to T: put operationally, it means that ‘once the program reaches the
T state, it stays there’.

Our relations are T-preserving because of the T-preserving condition on
the transformers, which in particular gives jr.[s = T|.T = 1, where in general
the function [b] maps Boolean b to the expectation 1 if b else 0 — thus we
have that the probability that jr takes T to T is 1.

The other condition extends ordinary up-closure: for sub-distributions
d,d" we say that d C d’ whenever d.s < d'.s for all states (including T in
this case). (Note that proper- rather than sub-distributions are therefore C-
maximal.) Informally, to move C-upwards one is allowed to ‘steal’ probability
from the implicit non-termination case and ‘give it’ to any proper state; and
that (smaller chance of non-termination) is considered to be ‘better’ in the
usual sense of refinement.

Informally, T-up-closure allows one as well to steal probability from any

15 A sub-distribution sums to no more than 1; the deficit if any is the probability of
non-termination.
6The representing relation is given by [20, Def. 8.1]

rpjr.s 1= {d| (VO [,® > jT.D.5)}

= whens#T
{d| (V¢ -d.T+ [, ¢=j¢.s)},

where d_ is the distribution d restricted to S and expectations ¢ as usual are 1-bounded
and ranging over S.
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state and give it to T. Thus we say that d C+ d’ whenever for all subsets S’
of proper states we have d.S'+d. T < d'.S'+d'. T, and a set of distributions
is T-up-closed if it is up-closed under C+. Again the notion of refinement
suggests that a higher probability of reaching T is an improvement.

Our relations are T-up-closed because of the T-clipping property of the
transformers, giving ®. T > &.s for all ® that we are actually interested in.
So to steal from s and give to T in a distribution d can only increase the
expectation f 4 @, which results in the closure of the relational model.

We note that these conditions follow naturally from the general construc-
tions of Clare Jones [10] if we work over the base domain 1. T S C T rather
than just our usual L C S.

Thus we define

Definition A.15 The Lamington relations The Lamington relations are
those relations r in the probabilistic relational model [20, 8] over St that
satisfy the two extra conditions

1. T-preserving r{T}={T} ;and

2. T-up-closed 1If d € r.s and d C+ d’' then d’ € r.s also.
O

To place the unbounded Lamington transformers in 1-1 correspondence
with the Lamington relations we rely mainly on the 1-1 correspondence guar-
anteed by sublinearity; in addition we need only show that the conditions of
Lem. A.12 and Def. A.15 map to each other in that correspondence. The
implication from Lem. A.12 to Def. A.15 has been discussed above; and that
a T-preserving relation yields a T-preserving transformer is straightforward.

Thus we are left only with the fact that a T-up-closed relation yields a
T-capped transformer; we sketch the proof of that here. Fix initial state s
and suppose T-up-closed relation r yields transformer k; we consider k.®.s
for some expectation ® where wlog we let ®.s' > &.T at some (final) state s'.
Let d be any of the distributions on the boundary of r.s that determine the
value k.®.s: if d.s’ > 0 then we can construct a d’, by moving all probability
in d from §' to T, so that d'.s',d". T = 0,d.T+d.s' and [, ® < [ & — which
means that d’ is also a determining distribution for k.®.s.

Thus the determining distributions of unbounded expectations can be
taken to be O-valued at all states in which the expectation is at least its
value at T; and that means the effect of the transformer cannot be sensitive
to the uncapped values of that expectation.
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A.4 Summary

In this appendix we have considered six models of probabilistic computation.

The first three are the ‘ordinary’ models, without magic: the unbounded
transformer model, the 1-bounded transformer model and the relational
model. The first and third have been much discussed, and shown to cor-
respond, elsewhere [20]; our contribution here was to set out the 1-bounded
model, to show it 1-1 corresponds with the other two, and to rewrite the
sublinearity condition in a form convenient for it.

The other three models are the Lamington models, extending the ordinary
models with magic. The first was 1-bounded transformers, derived from the
ordinary 1-bounded transformers by relaxing their characteristic conditions
so that magic could be accommodated. We then showed 1-1 correspondence
of that model with an unbounded transformer model and with a relational
model, both of those acting over a state space extended with an extra ‘top’
element T and being restrictions of the ordinary (but T-extended) models
there.
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