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ABSTRACT

The challenge for system specification is how to visually
and precisely capture static, dynamic and real-time system
properties in a highly structured way. Timed Communicat-
ing Object-Z (TCOZ) is an integrated formal notation that
build on Object-Z’s strengths in modeling complex data and
state, and on Timed CSP’s strengths in modeling process
control and real-time interactions. In this paper, we demon-
strate approaches of using XML/XSL as a transformation
tool to visualize TCOZ models into various UML diagrams
and to animate TCOZ specifications with a multi-paradigm
programming language - Oz.
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1. INTRODUCTION

Requirements capture is a key activity in software and
system engineering. The challenge for complex system re-
quirement specification is how to precisely capture static
and dynamic system properties in a highly structured way.
RAISE[10] as a new language has been developed and it in-
tegrates various formalisms, such as VDM, CSP, ML with al-
gebraic modeling languages. This trend has been continued
but more conservative and focused. The recent research fo-
cus is on combining of Z with event-based formalisms (many
approaches reported at recent formal methods conferences,
ie. IFM’99 [1] and FM’99 [19]). Timed Communicating
Object Z (TCOZ) [9] is one of these combinations. TCOZ
builds on the strengths of Object-Z [2, 5] in modeling com-
plex data and state with the strengths of Timed CSP [12]
in modeling real-time concurrency.

In addition to the investigation of the integrated formal
methods, it is also important to develop transformation tools
(from those integrated formal models) to industry popular
graphical notations and animation tools for validating the
formal models. Unified Modeling Language (UML) [11] is
commonly regarded as one of the dominate graphical no-
tations for industrial software system modeling. It’s im-
portant to develop links and tools from formal models to
UML. Animation plays an important role of validating the
consistency between the formal model and the real world
requirements. If the formal specification does not reflect
the real requirements it is useless to further pursue verifi-
cation process. The purpose of animation is to exhibit the
dynamic properties of a specification, and to bridge the gap

between the real world problem and our interpretation of
the requirements. Many approaches have been explored on
animating Z using logic and functional programming lan-
guages, i.e., Prolog [18], Haskell [13] and so on. Obviously,
the best candidates for animating IFM such as TCOZ are
those multi-paradigm programming languages, such as Oz
[7].

In this paper, we plan firstly to develop a projection tool
for visualizing TCOZ specifications in UML diagrams. With
the emergence of XML Metadata Interchange (XMI) as a
standard, e.g. Rational Rose UML supports XMI input, it
is possible to build a transformation link from TCOZ spec-
ifications (in eXtensible Markup Language - XML [15]) to
UML (in XMI) via eXtensible Stylesheet Language (XSL)
[16] technology. Secondly, we will demonstrate the approach
of animating TCOZ models in a multi-paradigm program-
ming language - Oz. Oz is based on a concurrent con-
straint model and merges several directions of programming
language designs such as object-orientation, constraint and
logic programming, functional programming and concurrent
programming into a single coherent design. Integrated for-
mal notations such as TCOZ could find a majority of its
corresponding features in Oz. XSL is again used as a trans-
formation tool for the code generation from TCOZ (in XML)
to Oz.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly introduces the TCOZ notations. Section 3
presents the TCOZ to UML projection rules and the imple-
mentation of the transformation via XML/XSL. Section 4
presents the approach of animating TCOZ specification in
Oz. Section 5 concludes the paper.

2. TCOZ FEATURES

Timed Communicating Object Z (TCOZ) [9] is essentially
a blending of Object-Z [5] with Timed CSP [12], for the
most part preserving them as proper sub-languages of the
blended notation. The essence of this blending is the iden-
tification of Object-Z operation specification schemas with
terminating CSP processes. Thus operation schemas and
CSP processes occupy the same syntactic and semantic cat-
egory, operation schema expressions may appear wherever
processes may appear in CSP and CSP process definitions
may appear wherever operation definitions may appear in
Object-Z. The primary specification structuring device in
TCOZ is the Object-Z class mechanism.

In this section we briefly consider various aspects of TCOZ.
A detailed introduction to TCOZ and its Timed CSP and
Object-Z features may be found elsewhere [9]. The formal



semantics of TCOZ is also documented [8].

2.1 Channels

CSP channels are given an independent, first class role
in TCOZ. In order to support the role of CSP channels,
the state schema convention is extended to allow the dec-
laration of communication channels. If ¢ is to be used as
a communication channel by any of the operations of a
class, then it must be declared in the state schema to be
of type chan. Channels are type heterogeneous and may
carry communications of any type. Contrary to the con-
ventions adopted for internal state attributes, channels are
viewed as shared (global) rather than as encapsulated enti-
ties. This is an essential consequence of their role as com-
munications interfaces between objects. The introduction
of channels to TCOZ reduces the need to reference other
classes in class definitions, thereby enhancing the modular-
ity of system specifications.

2.2 Active objects

Active objects have their own thread of control, while
passive objects are controlled by other objects in a system.
In TCOZ, an identifier MAIN (non-terminating process) is
used to determine the behaviour of active objects of a given
class [4]. The MAIN operation is optional in a class defini-
tion. It only appears in a class definition when the objects
of that class are active objects. Classes for defining passive
objects will not have the MAIN definition, but may contain
CSP process constructors. If ob; and ob, are active objects
of the class C, then the independent parallel composition be-
haviour of the two objects can be represented as ob; ||| obz,
which means o0b1. MAIN ||| 0b2. MAIN

2.3 Semantics of TCOZ

A separate paper details the blended state/event process
model which forms the basis for the TCOZ semantics [8]. In
brief, the semantic approach is to identify the notions of op-
eration and process by providing a process interpretation of
the Z operation schema construct. TCOZ differs from many
other approaches to blending Object-Z with a process alge-
bra in that it does not identify operations with events. In-
stead an unspecified, fine-grained, collection of state-update
events is hypothesised. Operation schemas are modelled
by the collection of those sequences of update events that
achieve the state change described by the schema. This
means that there is no semantic difference between a Z op-
eration schema and a CSP process. It therefore makes sense
to also identify their syntactic classes.

The process model used by TCOZ consists of sets of tu-
ples consisting of: an initial state; a trace (a sequence of
time stamped events, including update-events), a refusal (a
record what and when events are refused by the process),
and a divergence (a record of if and when the process di-
verged). The trace/refusal pair is called a failure and the
overall model the state/failures/divergences model. The
state of the process at any given time is the initial state
updated by all of the updates that have occurred up to that
time. If an event trace terminates (that is if a v/ event oc-
curs), then the state at the time of termination is called the
final state.

The process model of an operation schema consists of all
initial states and update traces (terminated with a v') such
that the initial state and the final state satisfy the relation

described by the schema. If no legal final state exists for a
given initial state, the operation diverges immediately. An
advantage of this semantics is that it allows CSP process
refinement to agree with Z operation refinement.

2.4 Network topologies

The syntactic structure of the CSP synchronisation oper-
ator is convenient only in the case of pipe-line like communi-
cation topologies. Expressing more complex communication
topologies generally results in unacceptably complicated ex-
pressions. In TCOZ, a graph-based approach is adopted to
represent the network topology. For example, consider that
processes A and B communicate privately through the inter-
face ab, processes A and C communicate privately through
the interface ac, and processes B and C' communicate pri-
vately through the interface bc. This network topology of
A, B and C may be described by

||(4 <2~ B; B 2w C; € <2 4).

2.5 Two Communicating Buffers example

Consider the TCOZ model of Buffer and TwoBuffers be-
low. Let the given type [MSG] represent a set of messages.

___ Buffer

items : seq MSG
left, right : chan

—_INIT
items = ()

—Add
A(items)
i?7: MSG

items' = (i?)"items

— Remove
A(items)

items = items’ 7 (last(items))

Join = [i : MSG | #items < maz] o left?i
— Add

Leave = [items # ( )] e right!last(items)
— Remove

MAIN = u B e Join O Leave; B

Two communicating buffers can be composed in TCOZ
respectively as:

TwoBuffers

! : Buffer[middle/right]
r : Buffer[middle/left]

MAIN = ||(l<—>middle T)

Note that the two buffers are communicating through the
middle channel, which is depicted by the TCOZ network
topology.



3. TCOZ UML PROJECTION

As requirement specifications of software systems, formal
models can be precise and elegant but difficult to read and
interpret by software engineers without relative mathemati-
cal background. In comparison, the most popular graphical
notation — UML is much easier to understand and widely
accepted by the industry, but it lacks precise semantics. It’s
important to develop a transformation link/tool from the
formal model to various UML diagrams. The key technique
ideas in our approach are:

e Syntactically, UML (OCL) is extended with TCOZ
communication interface type — chan. Upon that,
TCOZ sub-expressions can be used (as the same role
as OCL) in the statechart diagrams and collaboration
diagrams.

e Semantically, UML class diagrams are identified with
the signatures of the TCOZ classes. The states of the
UML statechart diagram are identified with the TCOZ
processes (operations) and the state transition links
are identified with TCOZ events/guards. The classifier
roles and communications are identified with TCOZ
classes and their interactions respectively.

o Effectively, UML diagrams can be seen as the view-
point visual projections from a unified formal TCOZ
model.

In this section, we will define a set of translation rules
between TCOZ and UML and develop a transformation tool
via XML/XSL. The Buffer example will be used to illustrate
the approach.

3.1 Translation Rules

A TCOZ model and a UML model are translated to each
other from three views: static view, interaction view and
state machine view. Class diagrams are used to present the
static view; collaboration diagrams are used to present the
interaction view; statechart diagrams are used to present
the behaviour view.

3.1.1 Static View

UML class diagrams are used to illustrate the static struc-
ture of a TCOZ model. Guidelines are defined as:

e Class FEach class in TCOZ is translated to a class
in UML class diagrams and vice versa. In TCOZ, at-
tributes and operations are encapsulated and private
to classes. Therefore they are set to be private in UML
class diagrams.

e Active class In UML, an active class is a class whose
instances are active objects, which have their own thread
of control. Classes for defining active objects in TCOZ
will have the MAIN operation.

e Inheritance The inheritance relationship between two
classes in TCOZ is directly translated into the inheri-
tance relationship in UML.

e Aggregation If in a class there are one or more objects
of another class as attributes, the relationship of the
two classes projected to UML is aggregation, which
means the second class is a constituent part of the
first class.

o Cardinality In the aggregation relationship, the cardi-
nality of variables of a certain type will be illustrated
in UML class diagram as the multiplicity of the two
roles in an aggregation. We can either use the cardi-
nality number as the multiplicity of the corresponding
role, or map it to UML default set 1..x.

3.1.2 Interaction View

In a system, objects of different classes interact with each
other. The general arrangement of these interactions are
captured with network topology in TCOZ. In UML, collab-
oration diagrams are used to illustrate the system from this
interaction view. A collaboration has a static part and a
dynamic part. Objects/Classes in TCOZ are exactly the
counterpart of static part—classifier roles in UML collabo-
ration diagrams as the instantiation of the collaboration.
They interact through communication interface (chan for
synchronized communications). The dynamic interactions
of classifier roles in UML are illustrated as messages between
them, and their property can be set as synchronized com-
munications, which happen to match well with the network
topology in TCOZ.

Based on such analysis, the rules are given as:

e Classes in TCOZ are projected to classifier roles in
UML collaboration diagrams while their communica-
tions depicted by network topology are projected to
the messages between associated classifiers. The com-
munications are indicated by the associated arrow’s
direction (indicating the data flow direction).

e If two classes in TCOZ model communicate through
synchronous interface — chan, the corresponding data
flow direction is set according to the event definitions
(from ! to ?).

3.1.3 Behavior View

In TCOZ, operations of a class specify its computation
behaviors and interaction behaviors. The guidelines for the
projection from TCOZ model to UML statechart diagram
are:

e Consider each operation in TCOZ model as a state or
substate, which may has its own actions or fix some
values for a certain time span. Nested operations are
translated into substates of the state representing the
operation which calls them.

e Events and guards in TCOZ model are viewed as trig-
gers which cause transition of states in the statechart.
They match the definition of trigger and guard in UML
statechart diagram.

e MAIN in TCOZ is modeled as the state in UML stat-
echart diagrams that the startstate leads to, that is,
the first state that the object lies in after the transition
starts.

e In the case of one operation consists of only one other
operation and events/guards leading to it, instead of
using the substate technique, the two operations are
modeled as two separate states with events/guards (if
any) as the triggers between them.



e If a transition is triggered by multi-events, such as
el — e2 — P, we define a pseudostate as the junction
state between events (as in Figure 1). The stereotype
{junction} is introduced into this psuedo-state, which
does not have any value changes or operations inside.
It is just a temporary state during the transitions.

e In the case that an operations calls other operations,
the called operations serve as the substates of the call-
ing one, and they together compose a composite state
in the statechart.

{junction} ]

P1 el
e2
"
Figure 1: State transition

3.2 Implementation and Examples

XML Metadata Interchange (XMI) is an industry stan-
dard for storing and sharing object programming and design
information. Unisys Corporation has implemented the XMI
for the UML tool Rational Rose 2000. Rose can generate
UML diagrams from imported XMI documents, and export
XMI documents for any existing UML diagrams. Our im-
plementation is based on first defining a customized XML
syntax for TCOZ; then via XSL Transformations (XSLT)
[14] technology, define an XSL file to capture all translation
rules from TCOZ (in XML) to UML (in XMI). XT [3] is
chosen as the XSLT processor and Rational Rose 2000 is
used as the UML tool. By now we have fully implemented
the visualization of UML class diagrams (including reverse
transformation) and are looking into other dynamic UML
diagrams, i.e. statecharts. In our approach, all elements
from the static view, such as attributes, operations, classes
and their relationships (inheritance and aggregation) can be
successfully captured through the transformation process.
The main process and techniques for visualizing TCOZ are
depicted by the upper part of Figure 2. In the following
sections, the TwoBuffers example will be used to facilitate
the detailed discussion of the XML/XSL implementation ap-
proaches.

3.2.1 TCOZ in XML and transformation via XSL

Firstly, a customized XML document for TCOZ is defined
according to the TCOZ syntax definitions. We use the rec-
ommendation from World Wide Web Consortium (W3C) -
XML Schema [17] to define a structure syntax for the TCOZ
notations. Part of the XML Schema (for defining a class and
its operation schema) is as follows:

<?xml version="1.0" encoding="UTF-8"7>
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType
name="op" content="eltOnly" order="seq">
<element type="name" minOccurs="1"
max0Occurs="1"/>
<element type="delta" minOccurs="0"
maxOccurs="1"/>
<element type="decl" minOccurs="0"
maxOccurs="*"/>
<element type="st" minOccurs="0"
maxOccurs="1"/>
<element type="predicate" minOccurs="0"
maxOccurs="*"/>

</ElementType>
<ElementType name="classdef" content="eltOnly">
<element type="name" minOccurs="1"
max0Occurs="1" />

<element type="inherit" minOccurs="0"
maxOccurs="*" />

<element type="state" minOccurs="0"
max0Occurs="1" />

<element type="init" minOccurs="0"
maxOccurs="1" />

<element type="op" minOccurs="0"
maxOccurs="*" />

</ElementType>
</Schema>

It states that the op tag is an element of classdef and
consists of one name, a delta list, a number of declarations
decl and some predicate definitions. Similarly, a classdef
is mainly composed of an inheritance list inherit, a state
schema state, an initializing schema init and a number of
operation schemas op according to the TCOZ syntax.

The syntax definition of XMI for UML is specified as XMI
1.1 RTF UML DTD [6]. This DTD file defines all entities
and XMI syntax signatures for UML. The XMI file for UML

diagrams and the XML file for TCOZ have similar struc-
tures. An XMI file has the structure as follows:

<XMI xmi.version="1.0">
<XMI.header>
<XMI.content>
<XMI.extensions>
</XMI>

The XMI.header section includes some optional informa-
tion about UML model. Elements in UML diagrams, such
as classes in class diagrams and states in the statecharts,
are specified in the XMI.content section, while their layout,
colors and other displaying properties are specified in the
XMI .extensions section.

The template technology plays a key role in implement-
ing the translation rules. Let’s consider the projection from
TCOZ to the static view in UML, the class diagrams for
instance. Classes and their relationships in TCOZ specifi-
cations (basically inheritance and aggregation) are captured
according to the translation rules defined previously, which
are more specified in detail for the implementation purpose
as following:
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Figure 2: TCOZ - UML/Oz projection

e If a type value in the Inherit part of a class matches the
name of any other class in current XML file, we regard
that former class inherits the second one and illustrate
the inheritance relationship between these two classes
in our class diagram.

e If a type value in the state/decl part, that is , the
type of an attribute, matches the name of any class
in current XML file, this is regarded as aggregation
relationship between these two classes. The cardinality
of the aggregation will be calculated and classified into
UML aggregation ranges.

The Aggregation and Inheritance relationships are speci-
fied as definition part and reference part in the XSL file. The
difficult step here is how to sort out their IDs and locate the
references with definitions.

For aggregation references, we should differ the aggre-
gated class(whole) from a constituent part. The following is
a simplified structure of the XSL code for it.

<xsl:variable name="AggregationNo" select=
‘position()’/>
<xsl:choose>
<xsl:when test = "//classdef[$classNol/
name =./type">
<![CDATA[ <Foundation.Core.AssociationEnd
xmi.idref=‘ ]11>
<xsl:value-of select="concat(‘G.’,1 +
$AggregationNo*3)"/><! [CDATAL */> 11>
</xsl:when>
<xsl:when test = "//classdef[$classNol/
state/decl/dtype/type = ./type">
<! [CDATA[ <Foundation.Core.AssociationEnd
xmi.idref=¢ 11>

<xsl:value-of select="concat(‘G.’,
$AggregationNo*3)"/><! [CDATA[ */> 11>
</xsl:when>
</xsl:choose>

In the definitions of aggregation relationship, two most
important things are to give the multiplicity of aggregation
roles and to match the roles with classes. The concept of
multiplicity in UML matches that of cardinality in TCOZ
in a sense, so we specify it by calculating the cardinality of
aggregate attributes, that is, the objects of the constituent
class. Differing the role of aggregate class from the role of
the constituent class takes the similar approach as we do in
specifying the references above.

The approach to deal with the inheritance relationship
is quite similar to how we deal with the aggregation rela-
tionship. The difference lies in the two aspects: first, there
is only one entity of Generalization but no ‘roles’, though
we should differ supertype from subtype for the two related
classes; second, the matching pattern is different as:

<xsl:for-each select="//inherit/type[node()=
//classdef/name]">

3.2.2 Projection Case study — Two Communicating
Buffers example

The following is part of the XML format for the TwoBuffers
example in the previous section.

<classdef layout="simpl" align="left">
<name>Buffer</name>
<state>
<decl>
<name>items</name>
<dtype>&seq; <type>MSG</type></dtype>
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Figure 3: Projection to UML collaboration and statechart diagrams

</decl>
</state>
<init>
<predicate>items=&emptyseq;</predicate>
</init>
<op layout="simpl">
<name>Add</name>
</op>
</classdef>
<classdef layout="simpl" align="left">
<name>TwoBuffers</name>
<state>
<decl>
<name>1</name>
<dtype>
<type>Buffer</type>[middle/right]

</dtype>
</decl>

</state>
</classdef>

As in Figure 4, the UML class diagram depicts the static
view of the two classes constructed from the TwoBuffers ex-
ample. Note that this diagram was generated automatically
from the XML specification via our XSL transformation.

Buffer

#yitems : MSG
~Ieft,righl :Chan

anit)
ahrdd0
#PRemove() 1. 1.1 | gMAIN()

Join()
Leave()
MAIN ()

Figure 4: Generated UML class diagram

TwoBuffers

The relationship between TwoBuffers and Buffer is aggre-
gation. The generated aggregation relationship is illustrated
in the following XMI segment(simplified):

<Association xmi.id=‘G.2’>

<name />
<connection>
<AssociationEnd xmi.id=‘G.3’>
<name />
<multiplicity>1</multiplicity>
<type>
<xmi.idref=‘S.10010°/>
<!-- TwoBuffers -—>
</type>
</AssociationEnd>
<AssociationEnd xmi.id=‘G.4’>
<name />
<multiplicity>1..*</multiplicity>
<type>
<xmi.idref=‘S.10001° />
<!-- Buffer -—>
</type>
</AssociationEnd>
</connection>
</Association>

From above, we demonstrated a XML/XSL approach for
visualizing TCOZ models in UML diagrams. For the expla-
nation purpose we mainly focused the process on UML class
diagrams. The projections to other UML diagrams such as
collaboration and statechart diagrams can be achieved in a
similar manner (see Figure 3) according to the translation
rules defined earlier.

The documentation about TCOZ to UML transformation
and downloadable codes are available at:

http://nt-appn.comp.nus.edu.sg/fm/zml/xmi-uml
/xmi.htm

4. ANIMATING TCOZ IN OZ

4.1 Specification validation

Animation plays an important role of validating the con-
sistency between the formal model and the real world infor-
mal requirements. Besides the correctness of formal specifi-
cation itself there still lie a gap between the formal model
and the real world informal requirements. If the formal
model does not truly reflect the real world requirements it



is useless to further verify its correctness. The process of
verifying the consistency between the formal model and real
world model could never be formalized. Animation is an
engineering process that brings one step closer to this goal.
It allows the system analysts to explore the behavior of the
formal model thus helps to clarify their interpretation and
track down the misunderstandings with the clients since re-
quirements at this stage may have not been fully developed
and clearly understood. Animation acts a vital part in the
early stage of formal modeling.

4.2 Nature of animation

Animation is focused on the abstraction of logic relation-
ships within the required system. Programs are collections
of detailed instructions to a computer. Implementation is
a transformation of taking a specification to produce a pro-
gram (perhaps using refinement techniques). The product
is a realistic computer system that meets the desired re-
quirements. Prototyping is a rough and cheap version of
implementation itself, perhaps with non-functional require-
ment eased. Animation is a mapping version of the speci-
fication that concerned with an abstraction of the required
system. It is not a real computer system that provides the
detailed functionalities, but rather a system that apparent
to the specification. The key difference between animation
and implementation lies in two aspects as below.

e Data types — Data type provides information about
the possible values that a variable could take. Vari-
able declaration such as ‘var z : N’ is in equivalence
to ‘var ¢ A x € N’. Thus type information is really a
membership relation between the variable and its type
set. Data types inside an animation need not to be
actual data sets that same as those within an imple-
mentation since the primary purpose of an animation
is to explore the consequences of a specification, rather
than produce a final implementation of the system or
even a full scale prototype that is capable of handling
realistically-sized data sets. It could be a virtual data
set or even a subset as long as the type information
would be demonstrated. In this way the focus is con-
centrated on the logic relationships and the behaviors
of the specification.

e Logical equivalence — Animation should ensure that
each animated operation is equivalent to its correspond-
ing specification, rather than a refinement. The un-
derlying strategy of refinement is via weakening the
precondition and strengthening the postcondition of a
particular specification. These refinement steps would
certainly make acceptable changes to the input and
output domains of the system, which is keen to the
implementation process but not adoptable in the ani-
mation stage. The translation from formal model into
animation language should be kept as equivalent as
possible to its original specification.

4.3 Animation language - Oz a candidate for
TCOZ

Generally speaking, any programming language could be
used for animation. However, every programming language
has its own specialized features which are most suitable for
coding particular types of problems. For example, Java is
good at web programming, Prolog is good at Al program-

ming (search strategies), PowerBuilder is good at database
applications and so on. An animation system consists of a
translator that translates original specifications into an an-
imation language, and an evaluator that validates the cor-
responding executable specifications in the animation lan-
guage. Thus the logic abstract level and degree of similarity
in syntax and semantic with the formal notation should be
the first criteria of selection, i.e., animating Z using Pro-
log [18]. Since most animation languages have differences
to the formal specification notations. One solution is to
provide an equivalent library which handle all those speci-
fication constructs. The completeness of the exiting library
compare to the formal notation could be the second mea-
sure for the selection. The running properties of the eval-
uator such as efficiency, termination and so on would be
another criterion of choosing a desired animation language.
Thus select a programming language that has a high logic
abstraction level, contains most of the features that com-
mon to the specification notation, and along with the help
of properly designed library functions animation could be
fulfilled more easily and directly.

The programming language Oz [7] is a multi-paradigm
language based on the concurrent constraint model. It merges
several directions of programming language designs such
as Object Orientation, constraint and logic programming,
functional programming and concurrent programming into
a single coherent design. Oz provides the programmers
and system developers with a wide range of programming
abstractions to enable them to develop complex applica-
tions quickly and without the confinements of the under-
lying paradigm. Object orientation in Object-Z, currency
in CSP and the mixture of the two in TCOZ all could find a
majority of their corresponding features in Oz. With a help
of proper library functions and logic programming figures in
Oz, integrated formal notations such as TCOZ could be well
animated in this kind of multi-paradigm language.

4.4 Translation rules — An executable inter-
pretation for TCOZ in Oz

To provide a translation guideline from TCOZ to Oz is
the same as offering a runnable semantics of TCOZ in Oz.
Some rules are defined as follow.

e Data types are referred to given sets (‘List’) since Oz is
a dynamic typed language. This is because each data
type is basically a set of possible values the variable can
have, for the purpose of animation these sets could be
much smaller;

e Sequence is referred to ‘List’ data type in Oz, set and
its corresponding functions are referred to the library
functions;

e TCOZ class is referred to Oz class with inheritance
expanded since TCOZ class has different inheritance
rules;

e Type and function definitions local to a class is referred
to local declarations to an Oz class;

e The type declaration of the state schema in TCOZ
class is referred to as membership relations adding to
the precondition of the state invariant or methods in
Oz;



e Object reference in a class definition is regarded as a
feature type in Oz, which later can be linked to a con-
crete class object. If the object reference is common to
all the instance of the class, declaration in the feature
via an anonymous variable ‘_’, which all instances of
the class will share the same variable, in our case the
common referred object;

e Operations that are not in the visible list of the TCOZ
class are referred to methods labelled by variables in-
stead of literals in Oz class, which are private to the
class;

e Generic class definition is referred to function defini-
tion with type information as its parameter and re-
turns a Oz class declaration;

e Channel is treated as features of cell type in Oz class,
which later can be assigned in the system specification
according to the network topology;

e Active object class is referred to an Oz class that in-
herit the Oz ‘Time.repeat’ class, which is capable of
setting up an action method (main) for repeatedly run-
ning.

4.5 Implementation and case study
45.1 TCOZ Oz library

As we discussed earlier, an equivalent library for handling
specification constructs can greatly benefit the translation
process from FM specifications into the animation language.
Part of Oz library to manipulate TCOZ constructs, i.e., set
operations and channel declaration, is defined as follow.

% set
fun {SubSet A B}
case A
of nil then true
[ HIT then {And {Member H B} {SubSet T B}}
end
end
fun {PowerSet A}
case A
of nil then [nil]
[1 HIT then
{Union {PowerSet T} {Map {PowerSet T}
fun {$ X} {Append [H] X} end}}
end
end
%Channel
class Channel from Base(bject
attr buffer signal
meth init
buffer <- {New 0zChannel init}
signal <- {New OzEvent init}
end
meth put(I)
{@signal wait}
{ebuffer put(I)}
end
meth get(?I)
{@signal notify}
{ebuffer get(I)}

end
end

Firstly, a number of set functions such as subset, power
set, union, intersection and so on are defined for matching
the TCOZ set constructs. Note that these functions are
implemented using the logic programming aspects in Oz,
which will preserve the same abstraction level with the spec-
ification notation. We have completed the entire TCOZ set
operations in Oz, and only a few was demonstrated in the
paper due to the space limitation.

Secondly, TCOZ communication constructs such as chan-
nel are implemented using the concurrent programming as-
pects in Oz. The last example shows a TCOZ channel, which
is shared among an arbitrary number of threads. Here we
programmed a signaling mechanism for producers and con-
sumers. This program relies on the use of logical variables
to achieve the desired synchronization. A consuming thread
has to wait until information exists in the channel. The
get method notifies one producer at a time by setting the
empty flag and notifying one producer. This is done as an
atomic step. Any producing thread may put information in
the channel synchronously. The put method does the recip-
rocal action. Most execution is done in an exclusive region.
Multiple consuming threads will reserve their place in the
channel, thereby achieving fairness.

452 TCOZ Oz projection

To animate TCOZ specifications in Oz, we first use XSL
Transformation to project TCOZ model into Oz code frames,
together with test cases and auxiliary library to perform
the validation. Note that customized codes segments are
needed during the process. The main procedure for animat-
ing TCOZ are depicted by the lower part of Figure 2. The
following is part of the XSL stylesheet for Oz projection.

<xsl:stylesheet version="1.0"

xmlns:xsl="http://wuw.w3.0rg/1999/XSL/Transform">

<xsl:output

method="text"/>

<xsl:template match="/">
<xsl:apply-templates select="//classdef"/>

</xsl:template>

<xsl:template match="classdef">
<xsl:text>class </xsl:text>
<xsl:value-of select="name"/>
<xsl:text> from </xsl:text>
<xsl:apply-templates select="inherit"/>
<xsl:if test="op/name[.=’MAIN’]">

<xsl:text> Time.repeat </xsl:text>

</xsl:if>
<xsl:text>
</xsl:text>
<xsl:apply-templates select="state"/>
<xsl:apply-templates select="init"/>
<xsl:apply-templates select="op"/>
<xsl:text>

end </xsl:text>

</xsl:template>

From the above, it states that a projection will be made
on each defined TCOZ class in XML to construct their cor-
responding Oz classes, i.e., the inheritance relationships are
captured through the inherit tags, the active objects are
identified by their MAIN operations and so on.
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Figure 5: Animation of the Two Communicating Buffers example

4.5.3 Two Communicating Buffers example

Consider the Buffer example in the previous section, its
translated specifications in Oz is as follow.

Y%Buffer
class Buffer from Time.repeat
feat
left
right
attr
items
meth Invariants($)
{A11l @items fun {$ X} {Member X MSG} end}
end
meth init
items <- nil
end
meth Add(I)
cond
({Member I MSG} andthen
{self Invariants($)}) = true
then
items <- {Append Qitems [I]}
else skip
end
end

meth main
end
end

Note that the preconditions in the TCOZ schema is treated
as logical conditional statements cond in Oz. The ‘else skip’
statement is introduced for the executing purpose only. With-
out the statement, the process will hang when the precondi-
tions are not satisfied. A cond statement has the following
semantics. Assume a thread is executing the statement in
space SP.

o The thread is blocked.

e A space SP; is created, with a single thread executing
the guard cond X1 ... XN in S0.

e Execution of the father thread remains blocked until
SP; is either entailed or disentailed. Notice that these
conditions may never occur, e.g. when some thread is
suspending or running forever in SP;.

e If SP; is disentailed, the father thread continues with
S2.

e If SP, is entailed, assume it has been reduced to the
store § and the set of local variables SX. In this case,
the space is merged with the parent space. 6 and SX
added to the parent store, and the father thread con-
tinues with the execution of S1.

The TwoBuffers example depicted by TCOZ network topol-
ogy can be translated into the follow Oz segment.

%network topology

L = {New Buffer init}

R = {New Buffer init}

Left = {New Channel init}
Middle = {New Channel init}
Right = {New Channel init}
L.left = {NewCell Left}
L.right = {NewCell Middle}
R.left = {NewCell Middle}
R.right = {NewCell Right}
%active objects

{L setRepAll(action: main)}
{R setRepAll(action: main)}

From the translation rules defined in the previous section,
we first create the instances of the left, middle and right
channels; then associate these channels to its corresponding
feature variables in the Buffer definition according to the



network topology of the TCOZ specification. The function
setRepAll is to set up a repeat action for the TCOZ active
objects.

After fulfilled the translation from TCOZ specification
into Oz, it’s time to build up test cases and carry out the val-
idating process. As see from Figure 5, we firstly invoked the
two active objects and let them running concurrently in their
own threads. Then, five inputs along the left channel of the
TwoBuffers was put into the system. Note that one of them
msgl2 is outside of the MSG type range. When obtain-
ing three outputs through the right channel the results are
msgl, msg2 and msg3. Note that msgl12 was checked by the
state invariants and ignored effectively. Furthermore, the
desired output is the consequence of the TwoBuffers com-
municating through its internal middle channel performed
by two active Buffers, which match perfectly with the cor-
responding TCOZ specification and as well as the user re-
quirements.

5. CONCLUSION

The first contribution of this paper is the investigation
of the semantic links between TCOZ (in XML) with UML
diagrams (in XMI). In our approach, UML diagrams are vi-
sual projections from a formal TCOZ model, therefore they
are consistent with the formal model. Although we have
some guidelines on TCOZ behaviour projections to state-
charts, the development of the environment for systematic
transformation from TCOZ to statechart diagrams remains
a challenge. The engineering work for developing further
techniques and putting these techniques into commercial
case tools perhaps requires involvement from industry part-
ners. We are currently in contact with various UML tools
vendors.

The second contribution of this paper is the demonstra-
tion of an approach to animate TCOZ specifications in a
multi-paradigm language - Oz. With the availability of
all kinds of programming concepts in Oz, i.e., OO, logic
and concurrency, we defined TCOZ constructs library so
that animating TCOZ model in Oz can be easily and effec-
tively achieved. We also constructed a XSLT stylesheet for
the automatic transformation from TCOZ specification into
Oz code frames. However, our translating and validating
processes still need human interaction at the moment. A
more sophisticated translation tool can be built based on
the TCOZ XML format to Oz syntax. This will be part of
our future works.

Although our project is in the initial stage, the essential
ideas and techniques for visualizing and animating TCOZ
models through XML as a common medium have been demon-
strated in this paper. We also plan to build ‘heave’ tools
support such as model checker (perhaps to build projection
tools to FDR and Alloy) and reason tools (perhaps to encode
TCOZ semantics into Isabel and PVS).
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