A Lightweight Integration of Theorem Proving and Model Checking
for System Verification

Weigiang Kong, Kazuhiro Ogath?, Takahiro Seinf and Kokichi Futatsugdi

1 Japan Advanced Institute of Science and Technology (JAIST)
1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan
{weigiang, t-seino, kokichi@jaist.ac.jp, Phone: +81(90)3763-9683

2 NEC Software Hokuriku, Ltd.
1 Anyoji, Tsurugi, Ishikawa 920-2141, Japan
ogatak@acm.org

Abstract discussed in the above mentioned works, we consider in
this paper a lightweight integration of the two formal ver-
Theorem proving and model checking are known as twao ification techniques by a translation from theorem proving
formal verification techniques that have complementary formalism to model checking formalism, and then treating
features. In this paper, we describe a lightweight integra- model checking as part of the decision procedure. The main
tion of the two techniques by a translation from theorem aim of this integration is to provide the theorem prover with
proving formalism to model checking formalism, and then automatic counter-example generating capability, thus to be
treating model checking as part of the decision procedure. able to find “bugs” in the early stage of theorem proving and
In the translation, system and property specifications de- ease the hard-work of doing theorem proving.
fined for a theorem prover can be automatically translated  Theorem proving is a general formal verification tech-
to specifications feedable to a model checker after a sim-nique that can be used to verify complex and infinite-state
ple data abstraction. The main aim of this integration is to systems; furthermore, doing theorem proving may help
provide the theorem prover with automatic counter-example users have more insight and understanding of the system
generating capability, thus to be able to find “bugs” in the to be verified. However, if a property fails to hold, it is
early stage of theorem proving and ease the hard-work of difficult for unexperienced users to extract enough valuable
doing theorem proving. A case study is used to demonstraténformation from the verification result returned by a theo-
how this translation works and what the verification flow is rem prover. Therefore users must try to determine whether
when using this integration to do system verification. the fault lies with the system and property specifications
or with the failed proof [12]. Besides, as discussed in [2]
which gives an in-depth comparison of the two techniques
1. Introduction in the hands of experienced users, considerable time is used
during theorem proving to “discover, formalize and prove
Theorem proving and model checking are known as auxiliary sys_tem invariants, vyhich are _required to prove the
two formal verification techniques that have complemen- Property of interest”. We believe that if a counter-example
tary features. The main aspects considered in the compar@n be generated automatically, which shows a sequence of
isons of these two techniques include: (1) State space carf'® SyStém's behaviors that violates the property: (1) on one
be handled (infinite vs. finite), (2) Automation of verifica- Nand, by analyzing the counter-example, it will become eas-
tion procedure (limited automation vs. fully automation) €' to find out the reason for the failure, there_fore pinpoint
and (3) Counter-example generating capability (no auto- €70rs: and (2) on the other hand, before putting efforts try-
matic counter-example vs. automatic counter-example). To!Nd 10 prove the newly founded invariant that is possibly cor-
take advantages of each of the two verification techniques,”éct/incorrect, we can benefit from firstly model checking
a number of researches have been reported, proposing githe invariant and see whether a counter-example arises. In
ferent kinds of integration, such as [1, 3, 10, 11, 12]. 1This is also the reason that we use theorem proving to do the main ver-
In contrast to proposing a general-purpose integration asification work rather than directly using abstraction and model checking.




case that a counter-example arises, this will serve as an inthat can be straightforwardly written in terms of equations;
dication of discarding the invariant and switching to finding and OTS is written in CafeOBJ5], an algebraic specifica-
alternative ones. As to the case that the verification resulttion language. Desired properties of the OTS can then be
is true, this result can serve as a weak justification showing verified by writing proofs (called proof scores) in CafeOBJ
that there might exist a possible proof of this invariant. and executing the proof scores with the CafeOBJ system.

In our specific lightweight integration, system spec-  Assume that there exists a universal state space célled
ification and property specification defined using the We also assume that data types used, including the equiva-
OTS/CafeOBJ method [9] are automatically translated to lence relation (denoted by =) for each data type, have been
corresponding parts in the OTS/Maude method [7] after a defined in advance. An OTSconsists of O, Z, 7 ) where:
simple data abstraction. And then, the translated proper-
ties can be checked against the translated model using the
Maude LTL model checker [4, 6]. The integration is con-
sidered_to be “Iightweight” because of the fo_llowing rea- and two states,, v, € T, the equivalence (denoted
sons: Firstly (for something good), the formall_sms of both by v; —s wvs) between them wriS is defined as
the OTS/CafeOBJ method (for theorem proving) and the Yo € O, 0(v1) = o(vs).

OTS/Maude method (for model checking) are quite sim- i ’ I
ilar (both based on equations). We think, on one hand, ° Z: The set Of'n't'?! states suc.h thatc 1. ]
equations are easy to understand and use for unexperienced ® 7 : A set of conditional transitions. Eache 7 is a

e O: A set of observers. Each € O is a func-
tiono : T — D, whereD is a data type and may
differ from observer to observer. Given an OTS

users; and on the other hand, similar formalisms will allevi- function : T — 7, provided thatr(v1) =s 7(v2)
ate the burden for users to learn two different formalisms as ~ for achfv] € T/ =s and each;, v; € [v]. 7(v) is
discussed in some other integrations. Secondly (for some-  called the successor statewi T wrt 7. The condi-
thing bad), the data abstraction method we used to link tion ¢, of 7 is called the effective condition. For each
an infinite system with its model checkable finite version v € T such thatrc, (v), v =5 7(v).

may not preserve soundness [10] (the abstracted version Observers and transitions may be parameterized. Gen-
may have some property that does not hold in the original erally, observers and transitions are denotedoRy. ;..
version). Instead of some non-trivial abstraction methodsand r;, ;. , respectively, provided that,,n» > 0 and
which are property-preserving, we employed a simple datathere exist data types), such thatk € Dy (k =
abstraction by means of reducing the infinite domains of j,, ... i, 51,...,7.).
variables to some concrete values. For example, the num- |n the OTS/CafeOBJ method, an OTS is described in
ber of processes in a mutual exclusion algorithm is reducedCafeOBJ which can be used to specify abstract machines
from infinite to 2. As discussed in [10], such simple data as well as abstract data types. A visible sort denotes an
abstraction is effective when we aims to exposing bugs.  abstract data type, and a hidden sort denotes the state space
Here we use a mutual exclusion algorithm using a queueof an abstract machine. There are two kinds of operators
to demonstrate how the translation is done by a translator —4n hidden sorts: action and observation operators. An
Cafe2Maude. We also present what the verification flow is action operator can change a state of an abstract machine;
when using our integration to do system verification. only observation operators can be used to observe the
Organization Section 2 describes the OTS/CafeOBJ inside of an abstract machine. Declarations of observation
method, focusing on how to write OTS in CafeOBJ for and action operators start witop or bops, and those of
system specification and how to write invariants for prop- other operators witlop or ops. Operators are defined in
erty specification. Section 3 describes how the translatorequations. Declarations of equations start wit) and
— Cafe2Maude works. In this section, system specifica- those of conditional equations witbeq. The CafeOBJ
tion translation, and property translation together with the system rewrites a given term by regarding equations as
data abstraction are mainly introduced. Section 4 describegeft-to-right rewrite rules.
the case study to demonstrate how Cafe2Maude works and The universal state spac€ is denoted by a hidden
what the verification flow is. Section 5 concludes the paper. sort, sayH. An observero;, ;€ O is denoted by
a CafeOBJ observation operator. We assume that there
2. The OTS/CafeOBJ Method exist visible sortsV,, and V denoting D;, and D, where
k = i1,...,i,. The CafeOBJ observation operator is
. declared asopo: HV;, ...V, > V.
We have been successfully applying the OTS/CafeOBJ A transition7;, ;. € T is denoted by a CafeOBJ

method [9] to modeling, specification and verification of . ; -
distributed systems such as security protocols [8]. In the action op_erator. We assume that there exists a visible sort
) V. denoting Dy, wherek = ji,...,j,. The CafeOBJ

OTS/CafeOBJ method, a system is modeled as an observa-
tional transition system (OTS), which is a transition system  2See www.Idl jaist.ac.jp/cafeobj/.




action operator is declaredasp 7 : H V}, ...V}, -> H.
Tji....5» May change the value returned by, ; . ifitis

written generally as follows:

ceq O(T(S,le,. .o 7Xjn)7Xi1a oo ,Xim)

= e—T(S,le,..,7Xjn,X¢1,...,X¢m)

if C—’7'(S7 Xj17 e >Xjn) .

S is a CafeOBJ variable forH and X; is a
CafeOBJ variable ofVy, where & = j1,...,jn-
7(S,Xj,,...,X;,) denotes the successor state 6f
wrt L TIRI G-T(S, le, . 7Xjn»Xi17 . 7X7;m) denotes
the value returned by;, ., in the successor state.
c7(S,Xj,,...,X;,) denotes the effective condition
Criyoine Tinnin Changes nothing if itis applied in a state

vsuchthatc,, —  (v).
The properties considered in this paper are invariants.

Since how to prove these properties in the OTS/CafeOBJ

method is not related to the translation for our integration,
we only describe here how to specify an invariantSf
denoted by a predicatg in the OTS/CafeOBJ method.
Let x4, ...,x,, Whose types ard, ..., D,, be all free
variables inp except forv whose type iSC. The operator
denotingp and its defining equation in a modulgV (INV
imports the module wheré& is written, and the module
writing S is called OTS module) are generally as follows:

opinv: HVy...Vy -> Bool

eqinv(S, X1,...,Xm) =p(S, X1,..., Xm) .

where V;, (k 1,...,m) is a visible sort denoting
D;, and X, is a CafeOBJ variable whose sort 15..
p(S, X1,...,X,,) is a CafeOBJ term denoting

3. Translation

We have designed and implemented a translator —

Cafe2Maude, which can automatically translate the for-
malism of the OTS/CafeOBJ method to the formalism of
the OTS/Maude method. Maude [4, 6] is a specifica-
tion language which has model checking facilities whose
performance is comparable to SPIN. The translation from
OTS/CafeOBJ to OTS/Maude is mainly based on [7], in
which we described the OTS/Maude method of specifying
and model checking OTS using Maude.

Basic units of CafeOBJ (Maude) specifications are mod-
ules. An OTS/CafeOBJ (OTS/Maude) specification con-

ListOf Mmod be the types of lists of CafeOBJ modules and
Maude modules, respectively. The translator can be formal-
ized by the functiorf’, such that:

T: ListOf Cmod —> ListOf Mmod,
T(nil) = nil;
T(M L) = if M : Cdmod
then Ty(M) T(L)
else if M : Comod then T,(M) T(L)
else T;(M) T(L);

where functionT, takes a CafeOBJ data type module and
generates a corresponding Maude functional module that
specifies the data type; functidh, takes a CafeOBJ OTS
module and generates a corresponding Maude system mod-
ule that specifies the OTS (therefore also called Maude OTS
module); and functiof; takes a CafeOBJ invariant defin-
ing module and generates one Maude state predicate defin-
ing module and one Maude linear temporal logic (LTL)
property defining modulesnil denotes an empty list of
modules. Next, we introduce the three functions in turn.

3.1 Translation of CafeOBJ Data Type Modules

The translation from CafeOBJ data type modules to
Maude functional modules is very straightforward, which
involves only changes of the manner of expression. An
example of such translation is given as follows, which
translates thenodule declaratiometween two notations:

mod module_name “{” fmod module_name is
—>Ty

“r endfm

Other elements of CafeOBJ data type modules such
as operator declarations are translated with syntactic

changes in a similar way.
3.2 Translation of CafeOBJ OTS Module

Generally, a CafeOBJ OTS module consists of two
parts: a signature and a set of equations. A signature
consists of declarations of a hidden sort, observation
and action operators. Equations can be classified into
equations defining initial values of observation operators
and equations defining action operators. Next, we describe
the translations of these basic elements by the fundtion

Signature: Declaration of a Hidden Sort

sists of a list of modules such that one module specifies ana hidden sort, saySys, in the CafeOBJ OTS module de-
OTS, some specify data types used in the OTS module, anchotes the universal state spatewhich in practice denotes

one (several in OTS/Maude) specifies the properties.

Let M be a CafeOBJ module and be a list of
CafeOBJ modulegydmod, Comod andCinv be the types
of CafeOBJ modules that specify data types, OTS and
invariant properties, respectively; ardstOfCmod and

the state space of the system under consideration. The
hidden sortSys is considered as a normal sort of Maude
OTS module (we us&ys to denote this sort). Besides,
two additional sort®©OValue andTRule are declared as
subsorts 0Sys, which denote the sorts of observation and



action operators, respectively. By doing this, we can defineare o’ 0 a ,...,0 , . The CafeOBJ equations
that a snapshot (state) of an O53s a multi-set, or a bag d Y —
ef|n|n the action operators areq,... , where
of observers and transitions. The declaration of a hidden,., (ti 1. )i gerrt)erally i the ?éljlowiyncg%rm'
sort can be translated by functi@p as follows: t T '
ceqo’ (T (Sys’XjU""Xﬂ'n)’Xii""’Xiint) =X,

To(+[Sys]+) = if c-7 (Sys, Xjyy -+, X5 ) -

subsort OValue TRule < Sys . c-7(Sys, Xj,, - - - ]n) denotes the effectlve condition of

op none : -> Sys . . transmonrj1 _____ X (k= Jioee oy dnatlse oo yity,,t) IS

op -- :Sys Sys ->Sys[assoc comm id: none] . a variable or a term for the intended sort. The set of equa-
tionsceqy, . .., ceq is translated to a Maude rewrite rule by

wherex[Sys]* is the declaration ofys. The translation  function7, as follows:
result is the actual Maude specification, and the last two
formulas are declarations of constructors of bags. The three
key flagsassoc, comm andid denote the equational at-  crifrule- 7] :

o C€q17 e 7ceql) =

tributes of associativity, commutativity and identity. Gener- T( Xy Xin)
ally, a snapshot (state) ¢fis in the following form: (Ol[Xip--in}nl] . X1)'--(01[X1-z17m Xzinl] .0
ovaluel ... ovalue-M trulel ... trule-N =

(X5 X50)
where ovalue-i (i = 1,...,M) is a term denoting an (0" X1,y X1 ] LX) (0 X X ] XD
observer, andrule-j (=1,...,N) is a term denoting a _ " ! it
transition. if C-’T‘(le, o, Xy X, 1 X,L-}nl , X1, .. ,AX,L.I,17

JXa X1 .

Signature: Declarations of Observation and Action m
Operators rule- 7 is the label of the rewrite rule. In the transla-
We assume that all required data types are predefined andion, the name of the action operatoris used to denote
there exist sorts corresponding to these data types. Thehis label. X};(k = 1,...,1) denotes the value returned

declaration of a CafeOBJ observation operator can bepy observerok

. In the successor state with respect
translated by functioff;, to Maude one as follows: i

to 7, - Note that for the situation that the value re-

T(bopo: Sys Vi, ... Vi, > V) = turned byoz’{‘,.--,‘ﬁtk is not affected by transitiom;, . ;. ,
if m >0 then X, equalsXy,.

op (o ey i ) Vi Vi, V -> OValue . )

else 3.3 Translation of CafeOBJ Property Module

op (0: ) : V -> OValue .

To make the description of the property translation by
The declaration of a CafeOBJ action operator can befunctionT; more clear, we firstly introduce how to model
translated by functioff,, to Maude one as follows: check OTS using Maude [7], by which we set up the context

of the property translation.
To(bop 7: SysVj, ...V}, -> Sys) =

op 7 : Vj .. V;, -> TRule . 3.3.1 How to Model Check OTS using Maude

. . - . We assume that an OTS is written in Maude as a sys-
Et%l#gtlons Defining Initial Values of Observation Oper- tem module whose name &YSTEMWe first define state

i L predicates with which propositional LTL formulas denoting
Actually, the equations defining initial values of observa- properties are described. Such state predicates are declared

tion operators, together with the declarations of transitions jy 3 module, saYSTEM-PREDSwhich looks like:
and data abstraction, are used to define the initial state of

an OTSS in another Maude module instead of the Maude Med SYSTEM-PREDS is
system (OTS) module. So we suspend the descriptidh of protecting SYSTEM .
for initial state translation until subsection 3.3.2. including SATISFACTION .
subsort Sys < State .
Equations Defining Action Operators
endm

Equations defining action operators describe the state
changes of an OTS. We assume that observers needed where the dots- - indicate the part in which the syntax and
and affected by the execution of the transitiop semantics of state predicates are specified.

,,,,,



In the Maude moduleSATISFACTION (included in 3.3.2 Invariant Property Translation

a Maude file model-checker.maude ), the module i ,
LTL (also included in the filenodel-checker.maude ) We are now ready to describe property translation based

which describes propositional linear temporal lodid () on previous preliminary knowledge. Given a CafeOBJ in-
is imported, the sorBtate that denotes states of a system variant defining module, what we need to do is to firstly
under consideration is declared and the following satisfac- construct a Maude module that defines state predicates,
tion operator is declared: and secondly construct another Maude module that defines
op _|=_ : State Formula “> Bool . propositional LTL formulas denoting properties using these
state predicates. Note that a CafeOBJ invariant for property

propositional LTL formulas. The operator is used to define consists of a set of predicates and logical connectives, and

state predicates. A state predicate denoted by a peeah each predicate of the set can be represented as a state pred-

holds in a state denoted Isyateis defined as follows: icate of the system. So our strategy to property translation
is: (1) classify predicates in a given invariant; (2) declare

state predicate for each of the predicates according to its
Generally, state is in the following form: kind; (3) replace the predicates in the invariant with corre-
sponding declared state predicates, and also replace logical
) connectives with corresponding Maude ones; (4) to simu-
whereovalue-i (i = 1,..., M) is a term forOValue and  |a¢e the semantics of the invariant that a property holds in
Sis a variable foiSys . any reachable state, we add a temporal operator “Always”

We next define propositional LTL formulas denoting [l infront of the replaced invariant. Thus we get a Maude

properties to be checked for the OTS and also initial states . !
of the OTS. Such formulas and initial states are described.prODOSItlonal LTL formula denoting property correspond-

in a module, saYSTEM-CHECKwhich looks like: ing to the invariant. _ , o
_ In the following, we classify the predicates in a given in-
mod SYSTEM-CHECK is

, , variant into several kinds, and for each kind of predicates

:2333:29 '\SA\(()SJ;L&%REEC?(?ER we declare corresponding state predicates in the Maude
g SYSTEM-PREDSnodule (suppose the name of the Maude

module that specifies the OTS &'STENL The classifi-

o ) ] cation method is based on an assumption: each predicate

where the dots- - indicate the part in which operators de- a5 at most one observation operator, while predicates with

noting propositional LTL formulas to be checked for the 5 or more observation operators should be written sepa-
OTS and initial states of the OTS, and the corresponding rately. Such as; (S, ...) = 05(S, ...) should be written as

The sortFormula is declared in the moduleTL, denoting

eq state |= pred = true .

ovaluel ... ovalueM S

endm

equations are declared. . _ 01(S, ...) = value andoy(S, . . .) = value separately.

In the moduleMODEL-CHECKERNcluded in the file The first kind of predicates are thoséthout observation
model-checker.maude ), the operatomodelCheck gherator  Such predicates can be generally formalized
is declared, which takes two arguments denoting an initial 54 bool(Vi,..., Vi), where Vi,...,V,, are variables
state and a proposiFionaI LTL formula, and returns the resu“occurring in this predicate. The functi@ for this kind of
of the model checking. predicates is shown as follows:

Propositional LTL formulas are constructed of state
predicates declared BYSTEM-PREDSBoolean connec-  1i(bool(Vi, ... Vin)) =
tives and temporal operators declared.ii.. Among tem- S| =prop(Vi,...,Vin) = trueif bool(Va,..., V).
poral operators are “Eventually” denoted &y , “Hence-

forth” (or “Always”) denoted by] and “Leads-to” denoted the generated formula says that: the state predicate

prop(Vi,...,V,,) holds at arbitrary stat§ as long as the

by |-> L . L
The term denoting an initial state is generally in the fol- condmonboql(Vh o Vin) IS squsﬁed.
lowing form: The predicatesvith observation operatocan be further
9 ' classified into two kinds: (1) predicates that are in the form
ovaluel ... ovalueM trule-1 ... trule-N of normal observation equations, which can be generally
whereovalue-i (i = 1,..., M) is aterm forOValue ,and ~ formalized aso(S, V1, ..., Vi) = term; and (2) other
trule-i (i=1,...,N)is aterm forTRule . non-normal ones, which can be generally formalized as

Letinit be a term denoting an initial state apebperty ~ Pred(...,0(5,Vi,...,Vin),...).  The function T; for
be a term denoting a propositional LTL formula. We model ‘Normal form” predicates is shown as follows:
check, in the Maude environment, thapifoperty holds at  7,(o(5,V4,...,V;) = term) =

stateinit as follows:
(o[Vi,..., V] : term) S| =

red modelChedknit, property) . prop(Vi,...,Vm, X1,..., Xn) = true.



where X;,..., X, are variables possibly contained by qpservers ang transitions, the equations in the CafeOBJ
term. The generated formula says that: the state predicatepTs module defining initial state, sayit, are as follows:
prop(Vi,...,Vp,, X1,...,X,) holds at arbitrary state as

long as this state contair(®[V1,...,V,] : term)asa  eqo: (init, Xie, ..., X ) =X, .
fragment of it. The functiorl; for “non-normal form”

) . ! wheret = 1,...,2. Also assume that the transitions
predicates is shown as follows: in the CafeOBJ OTS module are in the form of
Ti(pred(...,o(S,Vi,...,Vim),...)) = 7e(S, Xje, ..., Xje ), wheree = 1,...,y. The ini-

tial state generatécd in the Maude mod8MSTEM-CHECK

Vi,...,Vm] : VAR) S| = . .
(o[V2 ] )5 by functionT; is shown as follows:

prop(Vi, ..., Vi, X1,..., X5n) = true
if pred(...,VAR,...). T1(Xj%,...,Xj7111) Ty(Xjf,...7ngu)

where Xy, ..., X,, are variables possibly contained by the (o1 [Xi%"'”Xi%xl] PX) e (00 [Xag, e X ] X

omitted part of this predicate, att R is a newly generated  where the firsty terms denote all possible transitions that
variable denoting the return value of the observation for- may change the state 6f and the last: terms denote the
mulao(S, Vi, ..., V;). As in the condition, we just rewrite  jnitial values ofS returned by all observers.

the original predicate but replace the observation formula  To instantiate the variables occurring in the formula for
with the variableVAR. The generated formula says that: ijnijtial state, we employ the same data abstraction method as
if the Conditionpred(. .., VAR, .. ) is satisfied, the state used in generating LTL formula denoting property. Thus,

predicateprop(Va, . .., Vin, X1,..., X,,) holds at arbitrary e can get the instantiated version of the initial state.
state as long as this state containd, ..., Vin] : VAR) As a summary, the translator Cafe2Maude is imple-
as a fragment of it. mented in Java using Java DOM API for XML tybeCur-

After constructing the modul&YSTEM-PREDShat rent version of the translator consists of about 3000 lines.
defines state predicates, we can now construct the module

SYSTEM-CHECKhat defines LTL formulas and initial 4. Case StUdy a Mutual Exclusion Algorlthm
state. A CafeOBJ invariant for property can be generally '

formalized as a tuplénv = (PRED, o), wherePRED is In this section, we describe a case study on a mutual ex-

a set of predicates, andis a set of logical connectives. . sjon algorithm using a queue. The pseudo-code executed

Assume that the set of state predicaféBOP, each ele-  py aach processrepeatedly can be described as follows:
ment of which corresponds to a predicate in thel3RED,

has been declared in tf®YSTEM-PREDSnodule. The 12 put(queue, )

functionT; for the invariant translation is shown as follows: 12: repeat until top(queue) = 4
Critical Section

T;(inv) =[] (PRORP,e). cs: get(queue)

where the mapping between logical connectivesde is, ~ qucuc is the queue of process IDs shared by all pro-
for examp|eland to/\ ,or toV andimp”es to ->. Cesses.put(queue,z) pUtS a process 1D into queueat

[l isthe Maude notation for LTL operator “Always”. the end,get(queue) deletes the top element frogueue,

To make the generated LTL formula model checkable, @Ndtop(queue) retums the top element gficue. They are
we need to instantiate the variables occurring in the LTL for- &tomically processed. Moreover, each iteration of the loop
mula. We use a simple data abstraction method by means oft label 12 is s.upposed to be atomlcglly processed. Initially
reducing the infinite domain of each sort to some concrete 8aCh processis at label I1 andjucue is empty.
values, where the sort is the sort (or constructive sort) of the o ]
variable occurs in the formula. For example, assume that a#-1. OTS/CafeOBJ Specification of the Algorithm
variablesX is contained by a LTL formula, whose sortlis
and the sortD is not constructed by other sorts. We make  The algorithm is modeled as an OTS with two observers
the infinite domain ofD finite by selecting some concrete and three transitions. Observgreue returns the queue of
values, such adl andd2 from D. And then we instan-  Process IDs shared by all processes. It initially returns the
tiate the variable using these values. Although such simple€MPpty queue; observei;(i € Pid) returns the label of
data abstraction might not preserve soundness, it is effectivéd command that processwill execute next, whereid is
when we aims to finding bugs [10] as in our integration. the sort of process IDs. Eagla; initially returns labell1.

The last work left for us is to define initial state in the Transitionwait;(i € Pid) denotes that procesexecutes
Maude moduleSYSTEM-CHECKRecall that an initial ~ the command at labél; transitiontry;(i € Pid) denotes
state of systens is represented as a bag of observers and  sacally the OTS/CafeOBJ specification is firstly represented as a
transitions. Given a CafeOBJ OTS module that has XML version of it for the purpose to parse the specification.




that process executes one iteration of the loop at laligl
transitionezit; (i € Pid) denotes that procesexecutes the
command at labels Besides the observers and transitions

of the OTS, some data types used in the OTS, such as label

of commands, process IDs and queues, are also defined.

The OTS/CafeOBJ specification of the mutual exclusion
algorithm consists of three data type modules (with the
named ABEL, PID andQUEUE one OTS module (with
the nameQLOCKand one invariant property defining mod-
ule (with the namdNV). The three data type modules de-
fine sortsLabel , Pid andQueue, respectively. We show
the data type moduleABEL as an example, and the other
two data type modules are defined similarly.

The data type module defining stuidbel is written in
CafeOBJ as follows:

mod! LABEL {

[Label]

ops 11 12 cs : -> Label

op _=_ : Label Label -> Bool comm
var L : Label

eq (L = L) = true .

eq (11 = 12) = false .

eq (I1 = cs) = false .

eq (I2 = cs) = false . }

The OTS module specifies behaviors (state transitions)

of the algorithm. The hidden sort denoting the states of the
OTS is declared aSys. The operators denoting the ob-
servers and transitions are declared as follows (wheré *
marks the rest of the line as a comment):

-- observers

bop pc . Sys Pid -> Label
bop queue : Sys -> Queue

-- transitions

bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

In the following, letl , J be CafeOBJ variables fd?id ,
andS be a CafeOBJ variable for the hidden sByts of the
OTS. Operatowant is defined with these equations:

op c-want : Sys Pid -> Bool

eq c-want(S,I) = (pc(S,l) = 11) .

ceq pc(want(S,l),J) =
(if 1 = J then 12 else pc(S,J) fi)
if c-want(S,l) .

ceq queue(want(S,l)) = put(queue(S),l)
if c-want(S,l) .

ceq want(S,I) = S if not c-want(S,l) .

The other two operatotsy andexit are defined with
CafeOBJ equations in a similar way, which are omitted here
due to space limitation.

The specification for a desired property — mutual exclu-
sion property, is shown as follows as an example, which is
defined in the CafeOBJ invariant defining modLNg/ :

eq inv(S,1,.J) = (pc(S,l)=cs and pc(S,J)=cs
implies 1=J) .

he formula says that if two procesdesandJ are both in
the critical sectiorts, then the two processes are same.

4.2. Verification of the Algorithm

Let us firstly see the verification flow of our integra-
tion using Cafe2Maude. Before proving the desired prop-
erty by writing proof scores in CafeOBJ, we would like
to firstly check whether there exists a possible proof for
this property using model checking technique. This can
be done by translating the OTS/CafeOBJ specification to
the OTS/Maude specification, which can then be model
checked. If a counter-example arises, we should analyze
the counter-example, and pinpoint the errors and revise the
system (or property) specification; otherwise, if the verifi-
cation result igrue, we make a weak justification that there
might exist a possible proof for this property. We can then
start writing proof scores to give a full-scale proof on infi-
nite state space. Also, during writing proof scores of the de-
sired property, we may need to discover auxiliary invariants
to support the main proof. During this course, the “transla-
tion/model checking” process is employed iteratively.

Back to the case study. Firstly the data type modules
are translated by the functidh; with only changes of the
manner of expression. The data type moduABEL as an
example is translated as follows, where the CafeOBJ decla-
ration of equivalence relation for data type and the equations
defining such equivalence relation are ignored because they
are not necessary in Maude functional module:

fmod LABEL is
sort Label .
ops I1 12 cs :
endfm

-> Label .

The hidden sorBys is translated by functiofd, exactly
as described in subsection 3.2.

The operator declarations of observers and transitions
are translated as follows (wherg* ' marks the rest of the
line as a comment) :

*** Observers

op pc[] : _ : Pid Label -> OValue .
op queue : _ : Queue -> OValue .
*** transitions

op want : Pid -> TRule .

op try : Pid -> TRule .

op exit : Pid -> TRule .

Transitionwant as an example is translated as follows,
whereLABEL andQUEUEre variables of sorisabel and
Queue, respectively, which are generated by the translator
denoting the values returned by observation operators be-
fore the transitiowant happens.



crijwant] :

want(J)(pc[J] : LABEL)(queue : QUEUE)
=>
want(J)(pc[J] : 12)(queue : put(QUEUE,J))

if LABEL == I1 .

The translation of the desired property involves the
construction of two modules -QLOCK-PREDSand
QLOCK-CHECK The module QLOCK-PREDSIs con-
structed as follows, where state predicapepl(l)

prop2(J) and prop3(l,J) correspond to the pred-
icates pc(S,)=CS , pc(S,J)=CS and I=J in the
CafeOBJ invariant, respectively.
mod QLOCK-PREDS is

op propl prop2 prop3 : Pid -> Prop .

vars | J : Pid .

var S : Sys .

eq (pc[l] : cs) S |= propl(l) = true .

eq (pc[J] : cs) S |= prop2(Jd) = true .

eq S |= prop3(l,d) = true if (I = J) .

endm

To make the infinite domain of the variables finite, we
assign the sorPid with two concrete valuepl andp2,
for simplicity. And then we use these two values to instan-
tiate the variables andJ. The moduleQLOCK-CHECHKs
constructed as follows:

mod QLOCK-CHECK is

ops pl p2 :

-=> Pid .
op init : Sys .
op inv : -> formula .

eq init = want(pl)try(pl)exit(pl)
want(p2)try(p2)exit(p2)
(pefpl] = 11)(pc[p2] : 11)
(queue : empty) .
= [((prop1(p1) A prop2(p2))
-> prop3(pl1,p2)) .

eq inv

endm

By model checking the property in Maude environment,
we get the verification resuttue, which convinces us to
start writing proof scores of the property in CafeOBJ.

Let us consider now another example where there ex-
ist errors in the definition of initial state. We name this
initial state asdadinit , which is got by partly changing
init  from (pc[p2] : 1) to (pc[p2] : cs) . We

get a counter-example by checking the same mutual exclu-

sion property in Maude environment, which can be repre-
sented as shown in Figure 1 (whefedenotes theempty
element of a queue).

5. Conclusion and Future Work

We described a lightweight integration of theorem prov-
ing and model checking by a translation of the formalisms

pc[pl]: cs . pclpl]: 11 pc[pl]: 12 . pclpl]: 12
pc[p2]: cs exit(pL) pc[p2]: cs want(p] )pc[pz]: cs eXlt(pg)pc[pz]: 11
queue: pE queueE queue: pE queueE

Y

try(pl) exit(p2) want(p2)

badinit y

pclpl]: 12 pclpl]: 11 pclpl]: 12 pclpl]: 12
pc[p2]: cs wt(pl pc[p2]: cs pc[p2]: cs M pc[p2]: 12
queue: pE queueE queue: pE queue: pE

Figure 1. Counter-example

from the former to the latter, which is done by the translator
Cafe2Maude. In the future, we plan to introduce other ab-
straction methods, such g@sedicate abstractionnto our
translator, which can provide usersstrong justification
when model checking the abstracted model returuas.
Besides, although we have successfully employed our inte-
gration on several case studies, such as formal verification
of secure workflow system, a formal correctness proof of
the translation is needed and will be more convincing.

References

[1] H. Amjad. Combining model checking and theorem prov-
ing. Technical Report, Number 601, University of Cam-
bridge, 2004.

D. Basin, H. Kuruma, K. Takaragi, and B. Wolff. Verifi-
cation of a signature architecture with HOL-Z. RMO05,
LNCS, pages 269-285, 2005.

S. Berezin. Model checking and theorem proving: a unified
framework. PhD thesis, Carnegie Mellon University, 2002.
M. Clavel, F. Duéan, S. Eker, P. Lincoln, N. M&rDliet,

J. Meseguer, and C. Talcoilaude 2.0 manual: Version 2.1
http://maude.cs.uiuc.edu/maude2-manual/, March 2004.
R. Diaconescu and K. Futatsu@afeOBJ reportNumber 6

in AMAST Series in Computing. World Scientific, 1998.

S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude
LTL model checker. I'WWRLA 2002volume 71 ofENTCS
Elsevier Science Publishers, 2002.

[7] W. Kong, K. Ogata, and K. Futatsugi. Model-checking ob-
servational transition system with maude. ITFRC-CSCC
2005 pages 5-6, 2005.

K. Ogata and K. Futatsugi. Rewriting-based verification
of authentication protocols. IWRLA 2002 volume 71 of
ENTCS Elsevier Science Publisher, 2002.

K. Ogata and K. Futatsugi. Proof scores in the
OTS/CafeOBJ method. IRMOODS '03 volume 2884 of
LNCS pages 170-184. Springer, 2003.

J. Rushby. Integrated formal verification: Using model
checking with automated abstraction, invariant generation
and theorem proving. IBPIN 1999volume 1680 of NCS
pages 1-11. Springer, 1999.

N. Shankar. Combining theorem proving and model check-
ing through symbolic analysis. IBONCUR 2000volume
1877 ofLNCS pages 1-16. Springer, 2000.

T. E. Uribe. Combinations of model checking and theorem
proving. InFroCoS 2000 volume 1794 ofLNCS pages
151-170. Springer, 2000.

(2]

(3]
(4]

(5]
(6]

(8]

(9]

(10]

(11]

(12]



