
A Heap Model for Java Bytecode to Support Separation Logic ∗

Chenguang Luo Guanhua He Shengchao Qin
Department of Computer Science, Durham University
{chenguang.luo, guanhua.he, shengchao.qin}@durham.ac.uk

Abstract

Memory usage analysis is an important problem for
resource-constrained mobile devices, especially under
mission- or safety-critical circumstances. Program codes
running on or being downloaded into such devices are of-
ten available in low-level bytecode forms. We propose in
this paper a formal heap model for Java bytecode language,
on top of which we can then provide separation logic sup-
port for further memory usage verification. Our low-level
heap model for Java bytecode would allow us to reason
about the size and alignment properties of primitive val-
ues stored in the heap. To support type-related reasoning
such as guaranteeing type and alignment safety, this model
is also lifted with both base types and user-defined classes.
Based on such model, we have also defined a separation
logic proof system whose assertions are interpreted using
the lifted heap with types. We envision, with further exten-
sion, the system would provide good support for memory
usage analysis and verification for mobile devices.

1 Introduction

At present Java bytecode is widely applied in diverse ar-
eas. Its key features, including platform independence and
relative downloading security, agree with the need of the
market and lead to its success.

Currently tens of kinds of micro-devices are running
Java bytecode. Though with different shapes and func-
tions, these micro-devices share some similarities. Gener-
ally, such a device has a processor and some memory to run
a Java virtual machine for downloaded bytecode to execute.
The resource of these micro-devices for bytecode programs,
such as the memory space, is usually quite limited. A case
in point is that many brands of mobile phones provide a
memory not more than one megabyte, which is several hun-
dredth to one thousandth of that of modern personal com-
puters. Because of this resource restriction, it is preferable

∗This work is supported in part by the EPSRC project EP/E021948/1.

to ensure that a piece of downloaded bytecode will not re-
quire more memory resource than the micro-device can pro-
vide before we actually load the code and execute it, so as to
avoid a crash due to an OutOfMemoryError. However,
the static analysis and verification of a bytecode’s memory
usage is a challenging topic, not only because it is difficult
to infer accurately by a termination-guaranteed approxima-
tion, but also because the verifier does not have access to
the more structured and human-readable Java source codes
when working on the assembly-level bytecode.

Despite these difficulties, there are already a few ap-
proaches [2, 6, 8]1 for bytecode memory resource analy-
sis. Our aim in this paper is also to provide some the-
oretical support for a proposed framework for Java byte-
code memory resource analysis, which consists of a seman-
tic model, a separation logic built on it, and some verifi-
cation and analysis mechanisms on top of the logic. Until
now some progress has been achieved on the latter two as-
pects [4, 11, 3]. In those works, the traditional separation
logic’s semantic model and syntax were adapted in con-
structing a verification framework for heap-related proper-
ties. For more accuracy, we would like to reconstruct that
framework upon a better mimicry of the heap for Java byte-
code, and hence we set up this heap model. It simulates the
data in the memory cells (where a piece of data can take
up several memory cells and an object may contain many
pieces of data as its fields) and records the data’s types af-
ter a lifting. We anticipate that more precise result will be
gained with the extra expressiveness of the separation logic
founded on this model.

The main features of our proposed heap model are sum-
marized below:

• It introduces a low-level model of the memory into
separation logic to increase its expressiveness and to
support reasoning about both low-level and high-level
properties (such as values represented with bytes, their
types and their nesting objects). Compared with this
model, the one to support the traditional semantics of
separation logic does not care for most of these prop-

1More discussions on these works will be given in Section 5.

2008 15th Asia-Pacific Software Engineering Conference

1530-1362/08 $25.00 © 2008 IEEE
DOI 10.1109/APSEC.2008.72

127

erties like bytes in memory and variables’ types.

• It provides sufficient flexibility to cater for diverse Java
virtual machine implementations. To illustrate, the
length of a reference, or different alignments, can be
chosen for a specified virtual machine implementation.

• The model is loosely coupled with the axiomatic sys-
tem, in the sense that they are explicitly distinguished
in different levels in the whole system. Thus it is rel-
atively easy to extend the separation logic (in high-
level) to facilitate reasoning about various heap prop-
erties within the range of expressiveness of the model
(in low-level).

The remainder of this paper is organized as follows. Sec-
tion 2 illustrates the low-level crude heap model only with
the bytes information. Then in Section 3 it will be lifted
with types added to each allocated heap cell and also to the
non-dangling references. Section 4 focuses on the separa-
tion logic system built on this model, which deals with as-
sertions and Hoare triples abstracted from the heap states,
and illustrates the application of the proof rules by an exam-
ple. The last two sections discuss related work and conclude
this paper.

2 Heap with Bytes

In this section, we propose a memory model for Java
bytecode. Such model will concentrate on the low-level
memory representation of variables and objects in Java. It
also acts as a foundation of our separation logic implemen-
tation. In what follows, we will define the model itself and
relative functions for the model to work.

2.1 Heap Definition

At a lower level, our heap model is a simulation
of the logical memory, which is a repository numbered
with addresses to store primitive values in the form of
bytes. Such primitive values can be of standard base
types in bytecode, which corresponds to the BaseType =
{B, C, D, F, I, J, S, Z, L, [} (which types represent byte,
char, double, float, int, long, short, boolean,
object reference and array reference, respectively) in the
Java virtual machine specification.

Based on the description above, our heap model is de-
fined to be a mapping from memory addresses to primitive
values in bytes. Hence the memory addresses and byte val-
ues should be formalized in advance:

max-addr = 232 − 1
max-byte = 28 − 1
Address = {r | r ∈ N ∧ r ≤ max-addr}
Byte = {b | b ∈ N ∧ b ≤ max-byte}

which represents 32-bits memory address and 8-bits byte
value, respectively. In the implementation of this model,
these parameters should be changed to cater for the real Java
virtual machine implementation, such as 32-bits or 64-bits
memory address.

Along with such foundations comes the definition for our
heap model:

heap :: Address ⇀ Byte

Note that we use ⇀ for partial mappings, compared with
the → for total ones. For this model, given an aforesaid
base type, two mappings are utilized to convert any value in
that type to its byte representation, and vice versa:

value-byte :: BaseType→ Value → [Byte]
byte-value :: BaseType→ [Byte] ⇀ Value

where BaseType is the set of all base types in bytecode,
Value is the set of all primitive values, and [T] is the set
of all lists over values in type T . Note that the second map-
ping is partial since not every byte list has a corresponding
value in any base type. To ensure the correct conversion,
the lifting of the heap will also carry the type information,
which is introduced in the next section.

Besides the relationship between primitive values and
their byte forms, the size consumption of an element of base
types, and the alignment of Java virtual machine, are de-
fined as follows:

size-of :: BaseType → N

alignment ∈ N

where the result is measured in bytes. For these two con-
cepts the following axioms hold that

0 < size-of t ≤ max-addr
alignment | (max-addr+1)

where | is the divisibility judgment operator. These axioms
are directly derived from the Java virtual machine specifi-
cation, and are subject to certain implementations. As an
example, for Sun’s 32-bits implementation of Java virtual
machine, we have size-of int = 4, and alignment = 8.

The reference type (including L and [) is the way for
Java to deal with heap memory. In our model, a reference
type has an Address typed value. For the operations over
the reference type, since Java does not allow direct address
arithmetic (thus a developer is not able, and also does not
need, to add an arbitrary address value to a reference), a
means to get an offset from a reference and another base
type is provided.

ref-plus :: Address → BaseType ⇀ Address
ref-plus r t = r + size-of t

128

-

-
10

10

21

190

188

254

202

-

-

-
10

10

21

190

188

254

202

-

heap-list-readheap-list-read

heap-list-writeheap-list-write

10

21

10

21

190

188

254

202

190

188

254

202

byte-value

5386

byte-value

5386

value-byte

– 889275714

value-byte

– 889275714

-

-
10

10

21

190

188

254

202

-

-

-
10

10

21

190

188

254

202

-

-

-
B

S

N

I

N

N

N

-

-

-
B

S

N

I

N

N

N

-

C

-

-

-

-

-

-

-

-

-

C

-

-

-

-

-

-

-

-

-

ref-alignedref-aligned

ref-alignedref-aligned

ref-alignedref-aligned

(a) heap with bytes (b) heap with types

Figure 1. An example of our model

which is lifted to function to deal with a list of types:

ref-plus-list :: Address → [BaseType] ⇀ Address
ref-plus-list r [] = r
ref-plus-list r (t : ts) = ref-plus-list (ref-plus r t) ts

This function will be useful in the field access in the follow-
ing sections.

2.2 Heap Access

Before we introduce the heap access mechanism, we
need a function to construct a list from a series of specified
addresses:

heap-list-read :: Heap → Address → N → [Byte]
heap-list-read h r 0 = []
heap-list-read h r n = if r+n > 1+max-addr then []

else heap-list-read h r (n−1) ++ [h (r+n−1)]
heap-list-write :: Heap → [Byte]→ Address → Heap
heap-list-write h [] r = h
heap-list-write h (v : vs) r = if r+length(v : vs) > 1+

max-addr then h else heap-list-write (h(r �→ v)) vs r+1

where Heap is the set of all possible heaps, ++ means list
concatenation, and h(r �→ v) stands for the same heap as
h except that r is mapped to v. Then the operations to
read/write data from/to any heap are defined as:

heap-read :: Heap → Address → BaseType ⇀ Value
heap-read h r t = byte-value t

(heap-list-read h r (size-of t))
heap-write :: Heap → Value → Address → BaseType

→ Heap
heap-write h v r t = heap-list-write h (value-byte t v) r

The composition and application of the functions are illus-
trated in Figure 1 (a).

Note that in our low-level representation of the heap
model, the access to the heap needs explicit specification
of data types, since the heap itself contains no such infor-
mation. This is an ideal simulation of the memory storage
during bytecode execution and useful for inferring its fea-
tures such as size of data structures; however, as a strongly
typed language, Java calls for a lifting from this crude heap
to a typed one, which is introduced in the next section.

3 Heap with Types

Unlike C or C++, Java virtual machine has a special re-
quirement for its heap space. That is, no primitive value
(such as an integer or a character) can appear solely in
the heap; it must be encapsulated as a field in an ob-
ject. To illustrate, a Java programmer cannot apply for
some space in the heap directly to fit in an integer using
some syntax like int i = new int();. (While in C
or C++ a programmer is allowed to allocate any size of
heap in any primitive type, such as int * i = (int

*) malloc(sizeof(int)).) However, a Java user is
able to write Integer i = new Integer(); to as-
sign some heap space for an object of Integerwhich con-
tains a primitive integer.

To simulate Java heap space, our type of heap data has
two levels of meaning. First, each allocated heap cell must
be assigned a base type for the primitive value stored in that
cell. Moreover, since such values should be encapsulated as
objects’ fields, a reference, whose value corresponds to an
object in the heap, is linked to a series of contiguous heap
cells holding the fields of that object.2

As a result, our lifting of the heap model with types com-
prises two main issues accordingly. The first is to assign a
base type for each primitive value located in any allocated
heap space. The second is to assign a class type for each
object allocated in the heap to enclose the primitive values
as the fields of the object.

First the types for primitive values are added to the heap
as follows:

heap-type :: Address ⇀ BaseType ∪ {N,⊥}

heap-type r =

⎧⎪⎪⎨
⎪⎪⎩

⊥, if heap r = ⊥;
t ∈ BaseType, if heap r is the first byte

of a value typed t;
N, otherwise.

Thus for any allocated heap portion corresponding to a
primitive value, the type of its first byte will be stamped
as its base type, while the rest bytes are marked N.

For the analysis of a particular bytecode program, the
type of any primitive value on the heap can be inferred from

2Note that the Java virtual machine requires the continuity of an ob-
ject’s heap space.

129

the field descriptors of a class (since this value itself must be
a field defined in some class). Therefore, during the process
of analysis, when an instance of such class is created on
the heap, the location and size information of all its fields
can be deducted from both the instance’s descriptors and
the reference to it. For this purpose, a mapping from heap
address to the type of the object located in that address is
maintained statically:

ref-type :: Address ⇀ Type

where Type is the set of all classes used in a program. If
the reference has multiple types which consist of one class
C and all its inherited classes (but no classes extending C),
then ref -type will map it to its exactly defined type in the
program, say, a reference defined as java.util.List
l; will have the type Ljava/util/List, even it is instantiated
as a linked list. Figure 1 (b) exemplifies this typed heap.

As a semantic support of the later separation logic pred-
icate “pointing-to”, we will introduce the field offsets of a
class. By scanning a bytecode program, we may achieve a
mapping from classes in that program to their fields and the
types of their fields:

fields-of :: Type → [Field× BaseType]

where Field is the set of possible field names, and all the ref-
erences (regardless of objects of other classes or arrays) are
treated as of base types. We also make an assumption that
the fields are in the order which is maintained in the mem-
ory by the Java virtual machine, for example, some Java
virtual machine will keep an ascending sequence of an ob-
ject’s fields in memory by the sizes of the fields. As an illus-
tration, a class definition class C {int x; byte y;
long z;} will be mapped to a list [(y, B), (x, I), (z, J)].

With the fields-of mapping, the reference to a field of an
object on the heap (referred to by r) can be computed using
the functions below:

offset :: [Field×BaseType]→ Field → Address ⇀ Address
offset [] f n = ⊥
offset ((f, t) : fs) f n = 0
offset ((f ′, t) : fs) f n = if size-of t ≤ n then

size-of t + offset fs f (n− size-of t)
else n + offset ((f ′, t) : fs) f alignment

field-ref :: RefType → Address → Field ⇀ Address
field-ref rt r f = r + reserved

+ offset (fields-of(rt r)) f alignment

where the RefType is the set of all reference type map-
pings, and reserved is the size for an object of the type
Ljava/lang/Object, whose value is often alignment in im-
plementation.

In a similar way as above, the size of an object during

runtime can be calculated as:

list-size :: [Field× BaseType]→ N

list-size [] n = 0
list-size ((f, t) : fs) n = if size-of t ≤ n then

size-of t + list-size fs (n− size-of t)
else n + list-size ((f, t) : fs) alignment

ref-size :: Type → N

ref-size t = let s = list-size (fields-of t) in
if alignment | s then reserved + s
else reserved + s + alignment

− s mod alignment end

When a program allocates new heap space, or all the ref-
erences to an address are eliminated (so it should be col-
lected as garbage), the mappings mentioned above are to be
modified with the following process:

heap-type-list-clear :: HeapType → [Address]→ HeapType
heap-type-list-clear ht [] = ht
heap-type-list-clear ht (r : rs) = heap-type-list-clear

ht(r �→ N) rs
heap-type-write :: HeapType → Address → BaseType

→ HeapType
heap-type-write ht r t = heap-type-list-clear ht(r �→ t)

[r + 1, . . . , r−1+size-of(ht r)]

where the HeapType contains all possible heap type map-
pings. The functions first “clear” the type mapping to N,
and then write the first byte’s mapping as t. Compared with
this, the function to change the reference’s type mapping is
simpler, which only needs to modify the only byte’s map-
ping:

ref-type-write :: RefType → Address → Type → RefType
ref-type-write rt r t = rt(r �→ t)

However, when reasoning about the allocating or reclaiming
an object, both functions must be utilized.

The type information allows us to define type-related
guards on heaps. A type-safe guard on a field reference
guarantees that each byte of the value pointed to by this ref-
erence has the correct mapping of heap-type:

heap-safe ht r = ∃t ∈ BaseType . ht r = t ∧
∀s ∈ {r+1, . . . , r−1+size-of t} . ht s = N

which can still be lifted to another guard, saying that all of
an object’s fields are correctly mapped:

heap-list-safe ht rt r [] = true
heap-list-safe ht rt r (f : fs) = heap-safe ht

(field-ref rt r f) ∧ heap-list-safe ht rt r fs
ref-safe ht rt r = heap-list-safe ht rt r (fields-of(rt r))

Moreover, the Java virtual machine requires certain
alignment of the memory addresses referred to by the ref-
erences, which results in that each object’s size must be a

130

multiple of the alignment. A guard can be defined to guar-
antee this as

ref-aligned r = alignment | r
and it should be ensured that this guard holds for the cre-
ation of a new object.

With the information of both base and object types
added, we have founded a typed heap model lifted from the
byte-based low-level heap. This model guarantees the type-
safety and the alignment properties for bytecode execution,
and is ready to serve as the semantics of our separation logic
system.

4 Separation Logic

Separation logic [7, 12] is now prevalent in reason-
ing about programs mainly concerned with reference-based
heap models. It enhances the original Hoare logic with
the new logical operator, separation conjunction, to express
heap-related program states. The separation conjunction
follows the idea that the heap can be divided into disjoint
parts, and each part can be described by an assertion. If
so, then the conjunction of such assertions is a “separation
conjunction” of them since the domains of the assertions
are separated. In this way pointer aliases can be speci-
fied explicitly with ease, and program reasoning can also
be restricted to a minimum heap part without interference
of other parts.

Since separation logic is a powerful contender for for-
mal reasoning of heap-manipulating imperative programs,
we have utilized it in our former works to construct our ver-
ification framework for heap properties. The original in-
tention of this work is to provide a semantic model for our
separation logic system to be built on and to verify and in-
fer heap-related properties, such as size of data structures
which is closely linked to program memory consumption.

In this section, an embedding of separation logic over
this memory model will be introduced. To begin with, the
assertion language for our separation logic is as follows:

P =df true | false | ¬P | P∧P | P∨P | P⇒P | r = r′ |
P∗P | P−∗P | emp | r :: C | r.f �→ r′ | r.f ↪→ r′

Generally, for Java bytecode verification, the assertions
should describe three aspects of program runtime status: the
operand stack, the variable stack and the heap. To focus on
our real interest, we will pay less attention to the first part
(which is well investigated by other works [4, 3]), and hence
the assertions used in our system are interpreted as functions
on Heap, HeapType and RefType to return a boolean value,
which mainly concern the heap status of the program.

emp states that no part of the heap is allocated and thus
all the mappings are undefined:

emp = λ h ht rt . ∀ r . h r=⊥ ∧ ht r=⊥ ∧ rt r=⊥

r :: C is a novel assertion to specify that an object of
class C resides at r. Traditional separation logic does not
have this since its model has no type information. It is de-
fined as

r::C = λ h ht rt . rt r=C

Or we can still require that such assertion be safer with the
following restricted definition

r::C = λ h ht rt . rt r=C ∧ ref-safe ht rt r ∧ ref-aligned r

which depends on user demand.
According to the definition in separation logic, the se-

mantics of the singleton heap assertion r.f �→ r′ is that the
heap contains exactly one cell located at r′:

r.f �→ r′ = λ h ht rt . heap-read h
(field-ref rt r f) (ht r) = r′ ∧

dom rt = {r} ∧ dom h = domht =
{r + reserved, . . . , r − 1 + ref-size (rt r′)}

For the separation conjunction and implication, their se-
mantics are direct translations from the classical ones to a
version in this model. First comes the definition of two op-
erations over the three mappings for our model.

h1⊥h2 = domh1 ∩ domh2 = ∅
h1 � h2 = {r �→ a | r∈ domh1∪ domh2 ∧ (r∈ domh1

⇒ a=h1 r ∧ r/∈ dom h1 ⇒ a=h2 r)}
where the first one describes that the two heaps (modeled
as mappings) are disjoint, and the second is a union of two
(disjoint) heaps. Note that these operations are polymor-
phic and thus are applicable for all three mappings (bytes
and types). They assist in the expression of the separation
connectives semantics:

P ∗Q = λ h ht rt . ∃ h1 h2 ht1 ht2 rt1 rt2 . h1⊥h2∧
h=h1�h2 ∧ ht1⊥ht2 ∧ ht=ht1�ht2 ∧ rt1⊥rt2
∧rt=rt1�rt2 ∧ P h1 ht1 rt1 ∧Q h2 ht2 rt2

P−∗Q = λ h ht rt . ∀ h′ ht′ rt′ . h⊥h′ ∧ ht⊥ht′ ∧ rt⊥rt′

∧P h′ ht′ rt′ ⇒ Q (h�h′) (ht�ht′) (rt�rt′)

The following predicates do not increase the expressive-
ness of the logic, but are present for convenience or histori-
cal reasons. The first is the intuitive “pointing-to” r.f ↪→ r′,
which is equivalent as

r.f ↪→ r′ = r.f �→ r′ ∗ true

where true has its meaning based on the heap. And the
following existential “pointing-to”’s (the pointing-to asser-
tions with the heap value pointed to being existentially
quantified) are also useful:

r.f �→ − = λ h ht rt . ∃r′ . (r.f �→ r′) h ht rt
r.f ↪→ − = λ h ht rt . ∃r′ . (r.f ↪→ r′) h ht rt

131

In such separation logic, the Hoare triples are in the form

{P h ht rt} S {Q h ht rt}
which has a canonical semantics based on our storage
model. We may omit the parameters to abbreviate them as
{P} S {Q} for convenience if no confusion is caused.

For the verification of Java bytecode, the separation logic
rules are presented according to bytecode instructions. Here
we still concentrate on the heap-related rules. First is the
new rule to allocate a new object on the heap:

{emp} new C {∃ r . r :: C} (new)

This is a local rule which only considers the newly allo-
cated part of the heap. Later we will see that it can be ex-
tended to the global heap using the frame rule. Mean-
while, since Java virtual machine specification does not
specify any memory management strategy, the newly allo-
cated r is existentially quantified instead of calculated as a
concrete value.

The assignment rule (of object fields) in this separation
logic system is:

{r.f �→ −} putfield r.f {r.f �→ e} (assign-1)

under the assumption that r.f and e are loaded onto the
operand stack. Since the operation does not change any
other part of the heap except for the f of r, this local version
of assignment can be extended to a global one as

{r.f �→ − ∗R} putfield r.f {r.f �→ e ∗R} (assign-2)

where R cannot mention r.f for the assertion to hold.
Meanwhile, like the classical Hoare logic, we provide yet
another backward assignment rule:

{r.f �→ − ∗(r.f �→e−∗P)} putfield r.f {P} (assign-3)

The global assignment rule is an instantiation of the
local assignment and another rule of particular significance,
viz. the frame rule, which is the bridge over local and
global reasonings. It is in the following form

{P} S {Q}
{P ∗R} S {Q ∗R} (frame)

where mods(S) ∩ dom(R) = ∅
and deps(S) ∩ dom(R) = ∅.

Here mods(S) and deps(S) represent the very part
of heap, heap type and reference type mappings that S
modifies and depends on, respectively. This rule guaran-
tees that S never modifies the (part of) heap mapping or
heap/reference type mappings referred to freely by R, and it

class Node { int value; Node next; ... }
class List {

private Node head;
public void add(int i) {
Node n = new Node(i, head);
this.head = n;

}
public void addTwo(int i) {
add(i);
add(i);

}
}

Figure 2. Java source code example

never depends on the two type mappings inside the domain
of R in any of its expression. With this rule, when we rea-
son about a triple, we can safely ignore the parts of the pre-
and postconditions irrelative to S to focus on the minimum
heap part that S modifies and/or depends on. For example,
when verifying a specification of a method which invokes
other methods, if we know that these method calls refer to
disjoint parts of the heap, then we can verify those method
specifications separately and conjoin them afterwards.

For modular reasoning, we also need a rule to ver-
ify method invocations initiated by bytecode instruction
invokevirtual. Supposing that we have already ver-
ified the specification of the method to be invoked, we can
use it to verify the invocation, with some simple variable
substitutions:

{P} C.m : (x) {Q}
{θ(P)} invokevirtual y.m {θ(Q)} (inv-v)

where θ = [e, y / x,this] and e
should be loaded onto operand stack.

And the class constructor’s invocation is a special case
of virtual method invocation, where the θ and e are still the
same as above:

{P} C."<init>" : (x) {Q}
{θ(P)} invokespecial y."<init>" {θ(Q)} (inv-s)

Here is an example to illustrate the verification per-
formed by our system. Consider the Java source code in
Figure 2 where List.add will add one node to the head
of the list, and List.addTwo will add two nodes to the
list’s head at once. Figure 3 shows its compiled bytecode.

Given that class Node’s constructor initializes its two
fields value and next with the values from parameters,
the methods List.add and List.addTwo in the byte-
code may have the following triples as their specifications,
respectively:

{this.head �→ r}
List.add(int i)

{∃ r1 . this.head �→ r1 ∗ r1.next �→ r}

132

public void add(int);
Code:

1 new Node;
2 dup
3 iload_1
4 aload_0
5 getfield head:LNode;
6 invokespecial Node."<init>":(ILNode;)V;
7 astore_2
8 aload_0
9 aload_2

10 putfield head:LNode;
11 return

public void addTwo(int);
Code:

1 aload_0
2 iload_1
3 invokevirtual add:(I)V;
4 aload_0
5 iload_1
6 invokevirtual add:(I)V;
7 return

Figure 3. Corresponding bytecode example

{this.head �→ r}
List.addTwo(int i)
{∃ r1, r2 . this.head �→ r1

∗ r1.next �→ r2 ∗ r2.next �→ r}
Here we present a sketch of forward verification of these
specifications. First, for the verification of List.add, us-
ing new rule for Line 1, we have

{emp} new Node {∃ r1 . r1 :: Node}

With the preparation from Line 2 to Line 5 (which has little
direct relevance with the heap) and the inv-s rule to link the
specification of Node."<init>"with the call site, we get
for Line 6 its postcondition as

∃ r1 . r1.next �→ r

Again, Lines 7 to 9 are not related to the heap, but their ef-
fects on the operand stack can be verified by other rules out
of the scope of this paper. Following these lines, Line 10
can be verified using the assignment rule, with the post-
condition

∃ r1 . this.head �→ r1 ∗ r1.next �→ r

to complete the verification for List.add.
Verification for method List.addTwo mainly utilizes

the inv-v rule to discharge the two subgoals concerning the
two invokevirtual’s. The postcondition of the first fol-
lows directly the specification of List.add as above. The

second invokevirtual can also be verified in a simi-
lar manner, except that, to change global reasoning to local
reasoning, the frame rule should be used as

{this.head �→ r2} invokevirtual
{∃ r1 . this.head �→ r1 ∗ r1.next �→ r2}
{∃ r2 . this.head �→ r2 ∗ r2.next �→ r}

invokevirtual
{∃ r1, r2 . this.head �→ r1

∗ r1.next �→ r2 ∗ r2.next �→ r}

to gain the postcondition of Line 6:

∃ r1, r2 . this.head �→ r1

∗ r1.next �→ r2 ∗ r2.next �→ r

which is also the postcondition of the method specification.
Since our semantic model is loosely coupled with the

axiomatic verification system, the latter is still extensible
by adding new assertion constructs, as long as the new con-
struct does not exceed the expressiveness of the lower levels
of the model. For example, we may define used-heap-size s
to specify the heap size that is consumed by the program as

ref-size ⊥ = 0
size-count :: RefType → Address → N

size-count rt r = if r < max-addr then ref-size (rt r)+
size-count rt (r+1)

else ref-size (rt r)
used-heap-size s = λ h ht rt . ref-size rt 0 = s

where we first redefine that for ref-size, the “undefined” ref-
erence types have size zero, to avoid the judgment whether
an address has a reference type defined on it. Then the
function size-count should be incorporated in the lower
model (typed heap) to support our newly added assertion
used-heap-size. With this assertion, another version of
method specification for List.addTwo can be written as

{used-heap-size s}
List.addTwo(int i)

{used-heap-size (s + 2× ref-size Node)}

which may be verified in an analogous way to the one
above, with an extra effort for the theorem prover to infer
that the size-count of the heap has its value changed by the
two add’s in the method body.

5 Related Work

As is aforementioned, this work is part of an extension
for our former works [4, 11, 3]. Our direct motivation to
build a low-level model for Java bytecode comes from Tuch
et al. [14], which has a similar idea of such a model for

133

the C language. Compared with their work, our model de-
picts not only the base types of the heap, but also the refer-
ence types due to the object-oriented essence of Java. Also
our verification rules are based on bytecode instructions but
not source code. The original storage model for separation
logic, proposed in Reynolds [12], could be substituted with
ours in order to simulate the memory usage of bytecode ex-
ecution to get more precise bounds of heap consumption.

There are many approaches for the verification of byte-
code and for its memory consumption. Due to Leroy [9], the
dataflow analysis is a significant means utilizing the type
algebra to construct an order over the subtyping relation-
ship, which is a bit complicated and calls for too much re-
source for memory requirement analysis, however. There-
fore, as a substitute, Klohs and Kastens [8] attempts to use
the proof carrying code technique to embed proof of safety
rules and properties into the compiled bytecode and pro-
vides an mechanism to check the proof on-card. Giambi-
agi and Schneider [6] provides a slightly different solution
with a model of constraints on bytecode instructions and an
algorithm to operate on that model, which is similar as a
CSP model on bytecode to some extent. Albert has two pa-
pers [1, 2] concentrating on the heap space consumption of
a bytecode program by constructing the control flow graph
of that program and changing it to some equations and rela-
tions to solve. Compared with their works, ours also focuses
on the heap memory and is adept at reasoning about the ref-
erence relationship of objects and their fields, and heap size
consumption of the program. With the help of the frame-
work built up by Nguyen et al. [11], our system will be ca-
pable to deal with recursively defined data structures and
their related algorithms.

6 Conclusion

In this paper we have proposed a low-level heap model
as the storage semantics for Java bytecode, which allows us
to reason about the size and alignment properties of primi-
tive values. Then this model is lifted with both base types
and user-defined classes to support type-related reasoning,
such as type and alignment safety. We have also described a
verification system upon separation logic whose assertions
are interpreted with such heap model with types, to verify
the heap-related properties of bytecode programs.

This paper is part (and the semantic foundation) of our
main work at present, which consists of an integrated frame-
work to analyze and verify the memory consumptions of
Java bytecode. As we have already completed some work
to verify programs’ shape and size properties based on the
traditional heap model of separation logic [4, 11, 3], the next
step is to extend such work with the model presented in this
paper to improve its expressiveness and precision.

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanar-
dini. Cost analysis of Java bytecode. In Proceedings of 16th
European Symposium on Programming (ESOP’07). LNCS
4421, Springer, March 2007.

[2] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap space
analysis for Java bytecode. In Proceedings of the 6th Inter-
national Symposium on Memory Management (ISMM’07),
pages 105–116, Montréal, Québec, Canada, October 2007.

[3] W.-N. Chin, H. Nguyen, C. Popeea, and S. Qin. Analysing
memory resource bounds for low-level programs. In Pro-
ceedings of the 7th International Symposium on Mem-
ory Management (ISMM’08), Tucson, Arizona, USA, June
2008.

[4] W.-N. Chin, H. Nguyen, S. Qin, and M. Rinard. Memory us-
age verification for OO programs. In Proceedings of the 12th
International Static Analysis Symposium (SAS’05), London,
UK, 2005.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java(tm)
language specification. Addison Wesley, third edition, 2005.

[6] P. Giambiagi, and G. Schneider. Memory consumption
analysis of Java smart cards. In Proceedings of the XXXI
Latin American Informatics Conference (CLEI’05), pages
12–23, Cali, Colombia, October 2005.

[7] S. Isthiaq and P. O’Hearn. BI as an assertion language for
mutable data structures. In Proceedings of the 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’01), London, UK, January 2001.

[8] K. Klohs, and U. Kastens. Memory requirements of Java
bytecode verification on limited devices. Electronic Notes in
Theoretical Computer Science, 132 (2005): 95–111.

[9] X. Leroy. Java bytecode verification: an overview. In Pro-
ceedings of the 13th International Conference on Computer
Aided Verification (CAV’01). LNCS 2102, Springer, 2001.

[10] T. Lindholm and F. Yellin. The Java(tm) virtual machine
specification. Addison Wesley, second edition, 1999.

[11] H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated
verification of shape and size properties via separation logic.
In Proceedings of the 8th International Conference on Veri-
fication, Model Checking and Abstract Interpretation (VM-
CAI’07), Nice, France, January 2007.

[12] J. Reynolds. Separation logic: a logic for shared mutable
data structures. In Proceedings of 17th Annual IEEE Sympo-
sium on Logic in Computer Science. Springer-Verlag, 2002.

[13] R. Stärk, J. Schmid, and E. Börger. Java and the Java vir-
tual machine — definition, verification, validation. Springer-
Verlag, 2001.

[14] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and sep-
aration logic. In Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL’07), Nice, France, January 2007.

134

