
Test Coverage Metric for Two-staged Language with Abstract Interpretation

Taeksu Kim, Chunwoo Lee, Kiljoo Lee, Soohyun Baik, Chisu Wu
Software Engineering Laboratory

Seoul National University
Seoul, Korea

{dolicoli,oniguni,laazycat,shbaik82,wuchisu}@selab.snu.ac.kr

Kwangkeun Yi
Programming Research Laboratory

Seoul National University
Seoul, Korea

kwang@ropas.snu.ac.kr

Abstract—As a program written in multi-staged language
can generate and execute code fragments in excution time, it is
hard to predict how many code fragments will be generated in
execution time. Therefore, current test coverages are not likely
to give right answers when they are apply to a program written
in multi-staged language because the program size could not
be estimated easily.

In this paper, we present static analysis which detects
code fragments generated in execution time using abstract
interpretation and prove the correctness of analyzer. Moreover
we propose new test coverage for multi-staged language using
the result of analysis.

Keywords-software testing; test coverage; multi-staged lan-
guage; abstract interpretation;

I. INTRODUCTION

Multi-staged language is a programming language which
can generate and execute new program codes in execution
time[1]. Recently, multi-staged language is used widely
because it can make software development faster and easier.
Many Web programming languages and script languages(e.g.
Ruby, Python, PHP, Lisp, JavaScript, etc.) adopt multi-staged
features in their specification so that they support rapid
development.

Test coverage is a measure to evaluate the quality of a test
suite. It is defined as a ratio of size of executed programs
with test suite to size of program that should be tested.
For example, statement coverage uses SLOC as the criteria
for measuring program size and decision coverage uses the
number of branches[2].

It seems unsuitable for applying current test coverages
to multi-staged language. Because it is hard to estimate
what code fragments would be generated and executed
in multi-staged language. Figure 1(a) shows an example
source code written in JavaScript. A test suite {(0, 0), (0, 1)}
can acquire 100% decision coverage. However the correct
decision coverage value should be 67% because the example
code in figure 1(a) will run actually like a code in figure 1(b).

It is needed to analyze what code fragments would be
generated in execution time to guarantee the correctness of
a test coverage. In this paper, we designed static analysis
which detects code fragments generated in execution time
using abstract interpretation[3] and proved the correctness

function foo(a, b) {
var x = "if ("+ a +" > 0) return 3;" +

"else return 4;";
if (b > 0) return eval(x);
else return 0;
}

(a) Original code

function foo(a, b) {
if (b > 0 && a > 0) return 3;
else if (b > 0) return 4;
else return 0;
}

(b) Real runnig code

Figure 1. Example JavaScript code

of analyzer. We also proposed new test coverage for multi-
staged language using the result.

The rest of this paper is organized as follows. The next
chapter defines syntax and semantics of simple two-staged
language. Chapter III presents an analyzer using abstract
interpretation and proof of the correctness of the analyzer. In
chapter IV, we propose new test coverage using the analyzer.
Related work are introduced in chapter V. Finally, coclusions
and the idea for the future work are presented.

II. TWO-STAGED LANGUAGE

A. Syntax and Assumptions

Figure 2 shows a syntax definition of a simplified two-
staged language. In the language, a program consists of
expressions. Functions and code fragments are the first-class
objects. This language uses quasi-quotations[4] to generate
and execute code fragments in the execution time. Boxing(‘)
and unboxing(,) operators are labeled uniquely by Label and
Alphabet.

To decrease the complexity of the analysis we make some
assumptions on the language as follows.
• The language only supports two-stage processing.
• Expression run e never generate code fragments.
• All Labels and Alphabets are unique values in the

program text.
From now on, we will only concern this language. Multi-

staged languages over two-stage can be treated similarly.

E ∈ Stage→ Exp→ 2Env → 2V al×Env

is the least fixed point of

F ∈ (Stage→ Exp→ 2Env → 2V al×Env)→
(Stage→ Exp→ 2Env → 2V al×Env)

Stage = {0, 1}

F E 0 JcK Σ := {〈c, σ〉 : σ ∈ Σ}
F E 0 JxK Σ := {〈σ(x), σ〉 : σ ∈ Σ}

F E 0 Jlet x e1 e2K Σ := let T = E 0 Je1K Σ in[
〈v,σ〉∈T

E 0 Je2K {σ[x 7→ v]}

F E 0 Jif e1 e2 e3K Σ := E 0 Je2K (¬B Je1K Σ)

∪ E 0 Je3K (B Je1K Σ)

where for Σ ∈ 2Env and e ∈ Exp,

B JeK Σ ∈ 2Env = {σ ∈ Σ : e becomes 0 under σ}
¬B JeK Σ ∈ 2Env = Σ− B JeK Σ

F E 0 Jfλx.eK Σ := {〈〈fλx.e, σ〉, σ〉 : σ ∈ Σ}
F E 0 Je1 e2K Σ =

let T1 = E 0 Je1K Σ in

let T2 =
[

〈fλx.b,σ〉σ1∈T1

E 0 Je2K {σ2} in

[
E 0 JbK {σ2[x 7→ v][f 7→ 〈fλx.b, σ〉]}

where 〈〈fλx.b, σ〉, σ1〉 ∈ T1, 〈v, σ2〉 ∈ T2

F E 0 J‘leK Σ := let T = E 1 JeK Σ in

{〈[e′], σ〉 : 〈[e′], σ〉 ∈ T}
F E 0 Jrun eK Σ := let T = E 0 JeK Σ in[

〈[e′],σ〉∈T
E 0 Je′K {σ}

F E 1 JcK Σ := {〈[c], σ〉 : σ ∈ Σ}
F E 1 JxK Σ := {〈[x], σ〉 : σ ∈ Σ}

F E 1 Jlet x e1 e2K Σ := let T1 = E 1 Je1K Σ in

let T2 =
[

〈[e′1],σ1〉∈T1

E 1 Je2K {σ1} in

{〈[let x e′1 e′2], σ2〉 :

〈[e′1], σ1〉 ∈ T1, 〈[e′2], σ2〉 ∈ T2}
F E 1 Jif e1 e2 e3K Σ := let T1 = E 1 Je1K Σ in

let T2 =
[

〈[e′1],σ1〉∈T1

E 1 Je2K {σ1} in

let T3 =
[

〈[e′2],σ2〉∈T2

E 1 Je3K {σ2} in

{〈[if e′1 e′2 e′3], σ3〉 :

〈[e′1], σ1〉 ∈ T1, 〈[e′2], σ2〉 ∈ T2,

〈[e′3], σ3〉 ∈ T3}
F E 1 Jfλx.eK Σ := let T = E 1 JeK Σ in

{〈[fλx.e′], σ〉 : 〈[e′], σ〉 ∈ T}
F E 1 Je1 e2K Σ := let T1 = E 1 Je1K Σ in

let T2 =
[

〈[e′1],σ1〉∈T1

E 1 Je2K {σ1} in

{〈[e′1 e′2], σ2〉 :

〈[e′1], σ1〉 ∈ T1, 〈[e′2], σ2〉 ∈ T2}
F E 1 J,αeK Σ := E 0 JeK Σ

F E 1 Jrun eK Σ = let T := E 1 JeK Σ in

{〈[run e′], σ〉 : 〈[e′], σ〉 ∈ T}

Figure 3. A collecting semantics of the target language

e → c

| x

| if e e e

| let x e e

| fλx.e

| e e

| ‘le

| ,αe

| run e

V al = Code+ Closure+ Constant

Env = V ar
fin−→V al

x ∈ V ar

l ∈ Label

α ∈ Alphabet

Figure 2. Syntax of simplified two-staged language

B. Collecting Semantics

We should make concrete domains to be CPOs(Complete
Partial Ordered Sets) for an abstract interpretation. Let us
make each concrete domain to be a power set of them to
make concrete domains to be CPOs.

Figure 3 shows a collecting semantics of the target
language. A semantic function E is defined as the least
fixed point of a function F . Boxing operator makes a
subexpression as a code fragment and unboxing operator
evaluates the value of subexpression in one-stage processing.
Run operator evaluates the value of a code fragment in zero-
stage processing. The semantics of other expressions are
same as typical single-staged languages’ semantics.

Lemma 1: 2Env, 2V al, 2V al×Env are CPOs.
Proof: As 2Env is a power set, it is naturally partially

ordered set with relation ⊆. Besides, ∅ is a bottom and set
of all environments is a least upper bound of all chains in
2Env . Therefore 2Env is a CPO.

Similarly, 2V al and 2V al×Env are CPOs.

III. STATIC ANALYSIS OF THE TARGET LANGUAGE

A. Abstract Interpretation

Abstract interpretation[3] is a theory for static analysis of
software systems that gains information about its semantics
without performing all the calculations. We can derive the
result which includes all possible cases with the abstract
interpretation and prove its correctness.

Therefore, an abstract interpretation is a proper framework
for designing an analyzer which can detect code fragments
of multi-staged language generated in execution time. In this
paper, we adopt the abstract interpretation for the analysis
and proof of its correctness.

B. Grammar

Our analysis aims to know what code fragments will be
generated and executed in execution time. So, we should
abstract values which are required for generating code frag-
ments. It is needed to abstract closures and code fragments
of a program because the target language treats a function
as a first-class object.

As it is enough to know the function declaration of a
closure, we can abstract the closure easily. On the other
hand, we should know all possible code values to abstract a
code fragment because the code fragments can be substitued
by those code values in runtime. Therefore we need a new
data type to abstract a code fragment which can indicates
following informations.
• Subexpressions that it contains.
• Possible code fragments that the subexpressions can be

substituted in one-stage processing.
Let us define a new data type, Grammar as a production

rule of formal grammar[5] to abstract the code fragment.
Rules are as follows.
• (Terminal)

Z →M | label | Z[Nonterminal∗] | Z|Z

– Label l: a code fragment whose label is l.
– M: a code fragment whose label is unknown.
– Z[Nonterminal∗]: a code fragment which has unbox-

ing subexpressions represented with nonterminal alpha-
bets. The label of the code fragment is detemined by
Z.

– Z|Z: a sequence of the terminals.
• (Nonterminal)

N → s | alphabet

– s: a start symbol
– Alphabet a: an unboxing operation whose alphabet is a.

• (Start Symbol)
Σ→ s

Terminal and non-terminal represent labels of boxing
expressions and alphabets of unboxing expressions respec-
tively. For example, the code fragment in figure 4 can be
represented as a grammar as follows.

s→ 5[a, b], a→ 1|2, b→ 3|4

It means that an expression labeled by label 5-‘5(,ax ,by)
contains two unbox subexpressions labeled by a and b.
Moreover, the unbox subexpression labeled by a can be
substituted by an expression labeled by 1-‘1fλx.x or 2-
‘2gλy.y and the unbox subexpression labeled by b can be
substituted by an expression labeled by 3-‘3100 or 4-‘4101.
Therefore the code fragment can be one of the following
code fragment in execution time.

• ‘5(fλx.x 100)
• ‘5(fλx.x 101)
• ‘5(gλy.y 100)
• ‘5(gλy.y 101)

let x = (if 0 then ‘1fλx.x else ‘2gλy.y) in
let y = (if 1 then ‘3100 else ‘4101) in
‘5 (,ax ,by)

Figure 4. Example code

One code fragment corresponds with one grammar. On
the other side, one grammar can stand for a number of code
fragments. So we can define following functions naturally.

Definition 1:

ψ ∈ Grammar → 2Exp

ξ ∈ Code→ Grammar

• ψ(g) : For an arbitrary grammar g, a set of expressions
that can be represented by g.

• ξ(c) : For an arbitrary code fragment c, a grammar that
represents c.

C. Abstract Semantics and Operations

We should abstract concrete domains to abstract domains
for abstract interpretation. Figure 5 shows abstract domains.

ˆV al and ˆEnv are abstract domains of 2V al and 2Env

respectively. When a value set V is a set of codes, it can be
abstracted as a grammar and if V is a set of closure, it can
be abstracted as a set of expressions. A detailed abstraction
functions are shown in figure 6.

ˆV al = Grammar + 2Exp + {·}+ ⊥̂v + >̂v + >̂g
ˆEnv = V ar

fin−→ ˆV al

Figure 5. Abstract domains

Lemma 2: ˆEnv, ˆV al, ˆV al × ˆEnv are CPOs.
Proof: Let us define an order between abstract values

as follows.

• (Grammar Order)

g vg g2 iff ψ(g1) ⊆ ψ(g2)

2V al
αv

γv

ˆV al

αvV =

8>>>>><>>>>>:

⊥̂v if V = ∅
{·} if V ∈ 2Constant

{f | 〈f, σ〉 ∈ V } if V ∈ 2ClosureF
e∈V

ξ(e) if V ∈ 2Code and V = {e1, e2, · · · }

>̂v otherwise

2Env
αe

γe

ˆEnv

αe Σ = λx.αv
[
σ∈Σ

{σx}

2V al×Env
αv×e

γv×e

ˆV al × ˆEnv

αv×e T =

8<: 〈⊥̂v , ⊥̂e〉 if T = ∅
〈

F
〈v,σ〉∈T

αv{v},
F

〈v,σ〉∈T
αe{σ}〉 otherwise

Figure 6. Abstract functions

• (Order)

⊥̂v vv v̂ for arbitrary v̂ ∈ ˆV al

v̂ vv >̂v for arbitrary v̂ ∈ ˆV al

v̂1 vv v̂2 ⇐⇒

8<: v̂1 ⊆ v̂2 if v̂1, v̂2 ∈ 2Exp

v̂1 vg v̂2 if v̂1, v̂2 ∈ Grammar
v̂1 = v̂2 if v̂1 = {·}, v̂2 = {·}

Then ˆV al is a partially ordered set for vv and ˆV al has
a bottom ⊥̂v . Besides, all chains in ˆV al has a least upper
bound >̂v . Therefore ˆV al is a CPO.

Next, let us define an order of ˆEnv as follows.

σ̂1 ve σ̂2 iff dom(σ̂1) ⊆ dom(σ̂1) ∧
∀x ∈ dom(σ̂1).σ̂1(x) vv σ̂2(x)

Then ˆEnv is a partially ordered set for ve and ˆV al has
a bottom []. Besides, all chains in ˆEnv has a least upper
bound (let a set of all variables as X = {x1, x2, · · · }. Then
[x1 7→ >̂v, x2 7→ >̂v, · · ·] is a least upper bound). Therefore

ˆEnv is a CPO.
As ˆV al× ˆEnv is a production set of CPOs, it is a CPO.

We should define some operations for abstract domains.
• (Slot Append) For a grammar g and an alphabet α,

α⊕ g

is a grammar that represents a code fragment whose
label is unknown and which has an unboxing expres-
sion labeled with α. The unboxing expression can be
substitued with code framgments represented by g.

• (Code Append) For a grammar g and a label l,

l ⊗ g

is a grammar that represents a code fragment whose
label is l and which has unboxing expressions repre-
sented by g.

• (Grammar Join) Grammar g1, g2,

g1 � g2

is a grammar such that ψ(g1 � g2) = ψ(g1) ∪ ψ(g2).
• (Value Join)

v̂1 t v̂2 =

8>>>>>><>>>>>>:

v̂1 if v̂2 = ⊥̂v
v̂2 if v̂1 = ⊥̂v
{·} if v̂1 = {·}, v̂2 = {·}
v̂1 ∪ v̂2 if v̂1, v̂2 ∈ 2Exp

v̂1 � v̂2 if v̂1, v̂2 ∈ Grammar
>̂v otherwise

• (Environment Join)

σ̂1+̂σ̂2 ∈ ˆEnv

(σ̂1+̂σ̂2)x =

8>>><>>>:
σ̂1x

if x ∈ dom (σ̂1) and x /∈ dom (σ̂2)
σ̂2x

if x /∈ dom (σ̂1) and x ∈ dom (σ̂2)
σ̂1x t σ̂2x otherwise

For the target language, we can define abstract semantics
as figure 7. A semantic function Ê is defined as the least
fixed point of a function F̂ .

D. Abstractions

Next step of the abstract interpretation is defining abstract
functions between concrete domains and abstract domains.
We define abstract functions as figure 6. Then we can
easily show that concrete domain is Galois connected[6]
with abstract domain.

Lemma 3: 2V al and ˆV al are Galois connected with αv
and γv .

Proof: To prove the lemma, we should show that

V ∈ 2V al, v̂ ∈ ˆV al, αvV vv v̂ ⇐⇒ V ⊆ γv v̂

We present the proof when v̂ ∈ Grammar and V ∈
2Code. Other cases can be easily shown similarly.

1) Assume that V ∈ 2V al, v̂ ∈ ˆV al and α2V vv v̂.
If V ∈ 2Code, v̂ wv αvV = ξ(e1)t ξ(e2)t · · · where
V = {e1, e2, · · · }. Therefore v̂ = >̂v or v̂ = g such
that g wv ξ(e1) t ξ(e2) t · · · .
When v̂ = >̂v , γv v̂ = Set of all values. Therefore
V ⊆ γv v̂.
When v̂ = g, ψ(g) ⊇ {e1, e2, · · · } by definition.
Therefore γv v̂ = ψ(g) ⊇ {e1, e2, · · · } = V . There-
fore, V ⊆ γv v̂. Thus,

αvV vv v̂ =⇒ V ⊆ γv v̂

2) Assume that V ∈ 2V al, v̂ ∈ ˆV al such that V ⊆ γ2v̂.
If v̂ ∈ Grammar, V ⊆ γv v̂ = ψ(v̂). Therefore V = ∅
or V ∈ 2Code and ∀e ∈ V,∃e′ ∈ ψ(v̂) such that e =
e′.

Ê ∈ Stage→ Exp→ ˆEnv → ˆV al × ˆEnv

is the least fixed point of

F̂ ∈ (Stage→ Exp→ ˆEnv → ˆV al × ˆEnv)→
(Stage→ Exp→ ˆEnv → ˆV al × ˆEnv)

F̂ Ê 0 JcK σ̂ = 〈{·}, σ̂〉
F̂ Ê 0 JxK σ̂ = 〈σ̂x, σ̂〉

F̂ Ê 0 Jlet x e1 e2K σ̂ = let 〈v̂′, σ̂′〉 = Ê 0 Je1K σ̂ in

Ê 0 Je2K σ̂′[x 7→ v̂′]

F̂ Ê 0 Jif e1 e2 e3K σ̂ = let 〈v̂2, σ̂2〉 = Ê 0 Je2K σ̂ in

let 〈v̂3, σ̂3〉 = Ê 0 Je3K σ̂ in

〈v̂2 t v̂3, σ̂2 t σ̂3〉
F̂ Ê 0 Jfλx.eK σ̂ = 〈{fλx.e}, σ̂〉
F̂ Ê 0 Je1 e2K σ̂ = let 〈v̂, σ̂′〉 = Ê 0 Je2K σ̂ in

let 〈f̂ , σ̂0〉 = Ê 0 Je1K σ̂′ in

let 〈v̂1, σ̂1〉 = Ê 0 Jb1K σ̂′1 in

where σ̂′1 = σ̂0[x1 7→ v̂][f1 7→ {f1λx1.b1}]
· · ·
let 〈v̂n, σ̂n〉 = Ê 0 JbnK σ̂′n in

where σ̂′n = σ̂0[xn 7→ v̂][fn 7→ {fnλxn.bn}]
〈v̂1 t v̂2 t · · · t v̂n, σ̂1 t σ̂2 t · · · t σ̂n〉
where f̂ = {f1λx1.b1, · · · , fnλxn.bn}

F̂ Ê 0 J‘leK σ̂ = let 〈g, σ̂′〉 = Ê 1 JeK σ̂ in

〈l ⊗ g, σ̂′〉

F̂ Ê 0 Jrun eK σ̂ = let 〈g, σ̂′〉 = Ê 0 JeK σ̂ in

let 〈v̂1, σ̂1〉 = Ê 0 Je1K σ̂′ in
· · ·
let 〈v̂n, σ̂n〉 = Ê 0 JenK σ̂′ in
〈v̂1 t v̂2 t · · · t v̂n, σ̂1 t σ̂2 t · · · t σ̂n〉
where ψ(g) = {‘l1 e1, · · · , ‘ln en}
if ψ(g) is not infinite

F̂ Ê 0 Jrun eK σ̂ = let 〈g, σ̂′〉 = Ê 0 JeK σ̂ in

〈>g , σ̂′〉
if ψ(g) is infinite

F̂ Ê 1 JcK σ̂ = 〈∅, σ̂〉
F̂ Ê 1 JxK σ̂ = 〈∅, σ̂〉

F̂ Ê 1 Jlet x e1 e2K σ̂ = let (v̂1, σ̂1) = Ê 1 Je1K σ̂ in

let (v̂2, σ̂2) = Ê 1 Je2K σ̂1 in

〈v̂1 t v̂2, σ̂2〉
F̂ Ê 1 Jif e1 e2 e3K σ̂ = let 〈v̂1, σ̂1〉 = Ê 1 Je1K σ̂ in

let 〈v̂2, σ̂2〉 = Ê 1 Je2K σ̂1 in

let 〈v̂3, σ̂3〉 = Ê 1 Je3K σ̂2 in

〈v̂1 t v̂2 t v̂3, σ̂3〉
F̂ Ê 1 Jfλx.eK σ̂ = Ê 1 JeK σ̂

F̂ Ê 1 Je1 e2K σ̂ = let (v̂1, σ̂1) = Ê 1 Je1K σ̂ in

let (v̂2, σ̂2) = Ê 1 Je2K σ̂1 in

〈v̂1 t v̂2, σ̂2〉
F̂ Ê 1 J,aeK σ̂ = let 〈g, σ̂′〉 = Ê 0 JeK σ̂ in

〈a⊕ g, σ̂′〉
F̂ Ê 1 Jrun eK σ̂ = Ê 1 JeK σ̂

Figure 7. Abstract semantics

When V = ∅, αvV = ⊥̂v vv v̂.
When V ∈ 2Code, αvV = ξ(e1) t ξ(e2) t
· · ·where V = {e1, e2, · · · }. Thus, αvV vv v̂ by
definition of ψ. Thus,

V ⊆ γv v̂ =⇒ V ⊆ αvV

Lemma 4: 2Env and ˆEnv are Galois connected with αe
and γe.

Proof:

1) Assume that Σ ∈ 2Env, σ̂ ∈ ˆEnv such that αeΣ ve σ̂.
∀x ∈ V ar,

σ̂x wv (αeΣ)x (by assumption)

= (λx.αv
[
σ∈Σ

{σx})x (by definition)

= αv
[
σ∈Σ

{σx}

=
G
σ∈Σ

αv{σx} (by lemma 3)

Therefore, ∀σ ∈ Σ, αv{σx} vv σ̂x.

αv{σx} vv σ̂x

γv ◦ αv{σx} ⊆ γvσ̂x (by lemma 3)

∴ {σx} ⊆ γvσ̂x (by lemma 3)

= (γeσ̂)x (by definition)

Thus,

αeΣ ve σ̂ =⇒ Σ ⊆ γeσ̂

2) Assume that Σ ∈ 2Env, σ̂ ∈ ˆEnv such that Σ ⊆ γeσ̂.

(αeΣ)x = αv
[
σ∈Σ

{σx} (by definition)

vv αv
[

σ′∈γeσ̂

{σ′x} (by assumption)

By definition of γe, σ′x = v such that v ∈ γv(σ̂x).

∴ (αeΣ)x vv αv
[

σ′∈γeσ̂

{σ′x}

vv αv
[

v∈γv(σ̂x)

{v}

vv (αv ◦ γv)(σ̂x)

vv σ̂x (by lemma 3)

Thus,
Σ ⊆ γeσ̂ =⇒ αeΣ ve σ̂

Let us define an abstraction between between 2V al×Env

and ˆV al × ˆEnv.
Definition 2 (Abstraction):

αv×e : 2V al×Env → ˆV al × ˆEnv

αv×e T =

(
〈⊥̂v, ⊥̂e〉 if T = ∅
〈

F
〈v,σ〉∈T

αv{v},
F

〈v,σ〉∈T
αe{σ}〉 otherwise

Lemma 5: 2V al×Env and ˆV al × ˆEnv are Galois con-
nected with αv×e and γv×e.

Proof: Trivially, 2V al×Env and ˆV al × ˆEnv are CPOs.
1) Assume that T ∈ 2V al×Env, 〈v̂, σ̂〉 ∈ ˆV al× ˆEnv such

that αv×eT v 〈v̂, σ̂〉.
Let T =

⋃
i∈N
{〈vi, σi〉}. Then, by assumption

αv×eT = 〈
G
i

αv{vi},
G
i

αe{σi}〉

v 〈v̂, σ̂〉

Therefore
⊔
i

αv{vi} vv v̂ and αv{vi} vv v̂. Thus,

{vi} ⊆ γv v̂ by lemma 3 and vi ∈ γv v̂.
Similarly, σi ∈ γeσ̂.
Let

A = γv×e〈v̂, σ̂〉
=

[
v∈γv v̂,σ∈γeσ̂

{〈v, σ〉}

Trivially, 〈vi, σi〉 ∈ A. Therefore

T =
[
i∈N

{〈vi, σi〉}

⊆ A

= γv×e〈v̂, σ̂〉

Thus,

αv×eT v 〈v̂, σ̂〉 =⇒ T ⊆ γv×e〈v̂, σ̂〉

2) Assume that T ∈ 2V al×Env, 〈v̂, σ̂〉 ∈ ˆV al× ˆEnv such
that T ⊆ γv×e〈v̂, σ̂〉.

Let T =
⋃
i∈N
{〈vi, σi〉}. Then, by assumption

[
i∈N

{〈vi, σi〉} = T

⊆ γv×e〈v̂, σ̂〉
=

[
v∈γv v̂,σ∈γeσ̂

{〈v, σ〉}

So, ∀〈vi, σi〉 ∈ T, ∃〈v′, σ′〉 ∈ γv〈v̂, σ̂〉 such that vi =
v′and σi = σ′. Therefore

v′ ∈ γv v̂ ⇐⇒ {v′} ⊆ γv v̂
⇐⇒ {vi} ⊆ γv v̂
⇐⇒ αv{vi} vv v̂

Similarly, αe{σi} ve σ̂.

∴ αv×eT = αv×e(
[
i∈N

{〈vi, σi〉})

= 〈
G
···

αv{vi},
G
···

αe{σi}〉

v 〈v̂, σ̂〉

Thus,

T ⊆ γv×e〈v̂, σ̂〉 =⇒ αv×eT v 〈v̂, σ̂〉

E. Correctness of Abstractions

We should prove that the abstraction between collecting
domains and abstract domains is sound. To show the correct-
ness of abstraction, we should prove the following theorem.

Theorem 1: For e ∈ Exp, For arbitrary expression e,

αv×e ◦ fixFJeK v fixF̂JeK ◦ αe

Proof: We will prove the theorem by fixpoint
induction[7].

Let P (f, g) be an assertion

P (f, g) = ∀s ∈ Stage,∀e ∈ Exp : αv×e ◦f s JeK v g s JeK◦αe

Base case: From lemma 4 and lemma 5, αe and αv×e
are strict. Therefore, P (⊥,⊥) holds trivially.

Inductive case: Assume that for continuous functions E
and Ê , P (E , Ê) holds. Then we should show that

P (F(E), F̂(Ê))

The entire proof of the inductive case can be found in [8].
In this paper, we present the proof of the induction step for
run expression. Other cases can be easily shown as similar.
• (run e: 0-stage)

Let

T = E 0 JeK Σ

〈g, σ̂′〉 = Ê 0 JeK αeΣ

As αv×eT v 〈g, σ̂′〉 by induction hypothesis,
∀〈e′, σ〉 ∈ T , αv{e′} vv g and αe{σ} ve σ̂′ by
definition. Thus, {e′} ⊆ γvg and e′ ∈ ψ(g).
Let L = αv×e(F E 0 Jrun eK Σ).

L = αv×e(
[

〈e′,σ〉∈V S

E 0 Je′K {σ})

v
G

〈e′,σ〉∈V S

αv×e(E 0 Je′K {σ}) (by lemma 5)

v
G

〈e′,σ〉∈V S

Ê 0 Je′K αe{σ} (by induction hypothesis)

v
G

〈e′,σ〉∈V S

Ê 0 Je′K σ̂ (by continuity of Ê)

v
G

e′∈ψ(g)

Ê 0 Je′K σ̂

= F̂ Ê 0 Jrun eK αeΣ

IV. TEST COVERAGE

In this chapter, we propose new test coverage metric for
two-staged language using the analyzer described in chapter
III.

Let V̂e,σ̂ ∈ 2 ˆV al be a set of abstract values returned by
expressions e on an abstract environment σ̂ and for some
abstract value set V̂ , let V̂ ∗ be a set of all grammar elements
in V̂ . Then

⋃
g∈V̂ ∗e,σ̂

ψ(g) means all expressions generated by

expression e on abstract environment σ̂. Now, among these
expression set, let us define B e σ̂ as a set of expression
having branch.

Let #Be be a number of branches generated in execution
time, #Bc be a number of branches which already exist in
the program text and #Bt be a number of branches tested
by test case t. Then we can define new decision coverage
(NDC) of test suite T on two-staged language program as
follows.

Definition 3 (New Decision Coverage):

NDC(T) =

P
t∈T

#Bt

#Bc + #Be

=

P
t∈T

#Bt

#Bc + 2× cardinality of(B e ∅)

Figure 8 is an example code to compare decision coverage
with our new decision coverage. Labels of boxing expres-
sions are 1, 2, · · · , 10 and alphabets of unboxing expressions
are a, b, c and d.

f0λi.λj.
let x = if i then ‘1 (f1λv.v) else ‘2 (f2λv.v) in
let y = if i then ‘3 (f3λv.v) else ‘4 (f4λv.v) in
let z = if i then ‘5 (f5λv.v) else ‘6 (f6λv.v) in
let w = if i then ‘7 (f7λv.v) else ‘8 (f8λv.v) in
if j then
run ‘9(if i then ,ax else ,by)

else
run ‘10(if i then ,cz else ,dw)

Figure 8. Example code for test coverages comparison

Axiomatically, #Bc = 2× 5 = 10.
By analyzing this program, we’ve got result

V̂ ∗e,∅ = s→ 9[a, b] | 10[c, d],

a→ 1|2, b→ 3|4,
c→ 5|6, d→ 7|8

We have 8 candidate code fragments with this grammar.
Therefore,

#Be = 2× cardinality of B e ∅ = 16

Table I
TEST COVERAGE FOR EACH TEST SUITE

Test Suite Test Values DC NDC
A {(0, 0), (0, 1)} 0.6 0.23
B {(0, 0), (0, 1), (1, 0)} 1.0 0.75
C {(0, 0), (0, 1), (1, 0), (1, 1)} 1.0 0.88

We can achieve 60% decision coverage with a test suite
(A) in table I because we can test 6 of 10 branches with the
test suite. With test suite (B), we can test 10 branches and
get 100% coverage but we do not have enough test cases yet
because there exists more branches that would be generated
in execution time. The decision coverage do not changed
with test suite (C) but we can raise new decision coverage
from 75% to 88% because we can test totally 16 branches.

What was interesting is that it is not possible to gain 100%
new decision coverage sometimes. Consider the simple
example code in figure 9. No matter how many test cases we
have, we can never achieve 100% decision coverage because
there is an unreachable code block. Similarly, our analyzer
makes a result including all possible code fragments, but
some code fragments in the result may not be generated
actually. In this case, it is not possible to achieve 100% new
decision coverage.

function foo(a) {
if (a | MAX_INT) return 3;
else return 4;

}

Figure 9. Example code including unreachable code block

V. RELATED WORK

A basis of an abstract interpretation was founded by
Cousot et al[3]. He showed that the abstract interpretation
of programs consists in using that denotation to describe
computations in another universe of abstract objects, so that
the result of abstract execution give some informations on
the actual computations. Thus, abstract interpretation can be
used for static analysis.

Multi-staged language has a long history[9]. Keppl de-
veloped a portable system for modifying instruction spaces
and presented that dynamic code generation can be effective
for different applications. Poletto described the design and
implementation of ’C, a high-level language for dynamic
code generation[10]. With the study, it has been possible to
compile and analyze multi-staged language easily. Despite
of many studies on multi-staged language and test coverage,
there were few tries to define or modify test coverage for
multi-staged langauage.

Rajan claimed that test coverage should be used in care-
fully for each program style[11]. For example, test suites
that provide MC/DC on the non-inlined implementation
did poorly on the inlined implementations. They show that
a coverage metric that takes masking into consideration
irrespective of implementation structure, or a canonical way
of structuring code so that condition masking is revealed
when measuring coverage using existing coverage criteria.

VI. CONCLUSION

In this paper we have shown that applying existing test
coverage metric to multi-staged language could be distorted
because some code fragments can be generated dynamically
in execution time. We proposed new test coverage metric for
multi-staged language to correct the distortion. We designed
an abstract analysis to estimate what code fragments would
be generated dynamically during execution time and proved
the correctness of the analysis. We claimed that our new
test coverage can give more precise result than current
test coverages and we hope that this technique would help
developers to increase responsibility of software.

The accuracy of analysis should be improved. Advanced
techniques in static analysis such as widening and narrowing
operations could be used to enhance the analysis. The lan-
guage specifiction discussed in this paper should be extended
to cover many common language features such as long jump,
global variables, exceptions and so on.

Improving the accuracy of the analysis should be followed
by the implemention of an automated tool to measure our
test coverage. The measurement tool could be used to show
the efficiency of new test coverage. Our approach can also
be used to extend other existing test coverages(statement,
MC/DC and so on). We plan to study on conjugating static
analysis technique to extend other test coverages.

ACKNOWLEDGMENT

This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Educa-
tion, Science and Technology(MEST) / Korea Science and
Engineering Foundation(KOSEF), grant number R11-2008-
007-01002-0.

REFERENCES

[1] I. Kim, K. Yi, and C. Calcagno, “A polymorphic modal type
system for lisp-like multi-staged languages,” in Proceedings
of The ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2006, pp. 257–269.

[2] S. Chilenski, J.J. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Software Engi-
neering Journal, vol. 9, pp. 193–200, 1994.

[3] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in POPL ’77: Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. New York, NY, USA: ACM, 1977,
pp. 238–252.

[4] W. V. Quine, Mathematical Logic, Revised Edition. Harvard
University Press, 2003.

[5] N. Chomsky, “Three models for the description of
language,” Information Theory, IEEE Transactions on,
vol. 2, no. 3, pp. 113–124, 1956. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1056813

[6] M. Erne, J. Koslowski, A. Melton, and G. E. Strecker, “A
primer on galois connections,” in York Academy of Science,
1992.

[7] J. D. U. Hopcroft, John E.; Rajeev Motwani, Introduction
to Automata Theory, Languages, and Computation (2nd ed.).
Addison-Wesley, 2001.

[8] T. Kim, C. Lee, K. Lee, S. Baik, and K. Yi, “A control flow
analysis for 2-staged programming languages,” Research On
Software Analysis for Error-free Computing Center, Seoul
National University, Technical Memorandum ROSAEC-2009-
005, September 2009.

[9] D. Keppel, “A portable interface for on-the-fly instruc-
tion space modification,” SIGARCH Comput. Archit. News,
vol. 19, no. 2, pp. 86–95, 1991.

[10] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek,
“C and tcc: a language and compiler for dynamic code
generation,” ACM Trans. Program. Lang. Syst., vol. 21, no. 2,
pp. 324–369, 1999.

[11] A. Rajan, M. W. Whalen, and M. P. Heimdahl, “The effect
of program and model structure on mc/dc test adequacy
coverage,” in ICSE ’08: Proceedings of the 30th international
conference on Software engineering. New York, NY, USA:
ACM, 2008, pp. 161–170.

