University of Wollongong

Research Online

Faculty of Engineering and Information

Faculty of Informatics - Papers (Archive) Sciences

2010

Supporting change propagation in the maintenance and evolution of
service-oriented architectures

Hoa Khanh Dam
University of Wollongong, hoa@uow.edu.au

Aditya K. Ghose
University of Wollongong, aditya@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

6‘ Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Dam, Hoa Khanh and Ghose, Aditya K.: Supporting change propagation in the maintenance and evolution
of service-oriented architectures 2010.

https://ro.uow.edu.au/infopapers/3474

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages

Supporting change propagation in the maintenance and evolution of service-
oriented architectures

Abstract

As Service-Oriented Architecture (SOA) continues to be broadly adopted, the maintenance and evolution
of service-oriented systems become a growing issue. Maintenance and evolution are inevitable activities
since almost all systems tbat are useful and successful stimulate user-generated requests for change
and improvement. A critical issue in the evolution of SOA is change propagation: given a set of primary
changes that have been made to the SOA model, what additional secondary changes are needed to
maintain consistency across mUlItiple levels of the SOA models. This paper presents how an existing
framework can be applied to effectively support change propagation within a SOA model. We also
propose to extend this framework with a minimal modification strategy that helps select change options
in a manner that accommodates the structural and semantic dimensions of SOA models.

Keywords
era2015

Disciplines
Physical Sciences and Mathematics

Publication Details

Dam, H. Khanh. & Ghose, A. (2010). Supporting change propagation in the maintenance and evolution of
service-oriented architectures. In J. Han & T. Dan. Thu (Eds.), Proceedings of the 17th Asia-Pacific
Software Engineering Conference (APSEC) (pp. 156-165). Piscataway, New Jersey, USA: IEEE Computer
Society.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/3474

https://ro.uow.edu.au/infopapers/3474

2010 Asia Pacific Software Engineering Conference

Supporting change propagation in the maintenance and evolution of service-oriented
architectures

Hoa Khanh Dam and Aditya Ghose
School of Computer Science and Software Engineering
University of Wollongong
New South Wales 2522, Australia
{hoa, aditya}@uow.edu.au

Abstract—As Service-Oriented Architecture (SOA) continues
to be broadly adopted, the maintenance and evolution of
service-oriented systems become a growing issue. Maintenance
and evolution are inevitable activities since almost all systems
that are useful and successful stimulate user-generated requests
for change and improvement. A critical issue in the evolution
of SOA is change propagation: given a set of primary changes
that have been made to the SOA model, what additional
secondary changes are needed to maintain consistency across
multiple levels of the SOA models. This paper presents how an
existing framework can be applied to effectively support change
propagation within a SOA model. We also propose to extend
this framework with a minimal modification strategy that helps
select change options in a manner that accommodates the
structural and semantic dimensions of SOA models.

Keywords-Service oriented architecture; maintenance and
evolution; change propagation

I. INTRODUCTION

Service Oriented Architecture (SOA), with its potential
to significantly improve the development of high quality
and complex systems, has attracted an increasing amount
of interest from the research and business communities.
The emergence of cloud computing together with a growing
services-based economy are motivating enterprise transfor-
mation towards SOA to achieve agility, collaboration and
efficiency. In fact, according to a survey conducted by
Forrester Research! in May 2009, 75% of IT executives
at Global 2000 organizations planned to adopt SOA by
the end of 2009. On the one hand, SOA can be seen
as an agile business architecture in which customers and
suppliers are treated as business entities collaborating in a
system of services. On the other hand, SOA is a technology
architecture which helps realize the business services with
an agile, interoperable and loosely-coupled suite of services
that can be used within multiple business domains [1].

The combination of service oriented business and tech-
nical architecture gives SOA the ability to significantly
reduce the gap between business and technology concerns.
However, in order to leverage this advantage, it is important
to provide modeling support in which business analysts and

Uhttp://blogs.zdnet.com/service-oriented/7p=2053

1530-1362/10 $26.00 © 2010 [EEE
DOI 10.1109/APSEC.2010.27

156

application architects can exchange views and share under-
standing. Among recent efforts in providing modeling sup-
port for SOA (e.g. SOMF [2], SOMA [3]), service oriented
architecture modeling language (SoaML?) has emerged as a
promising standard which offers the capability to model a
SOA at the enterprise, system and systems of systems level.
SoaML models show how business entities (e.g. people,
organizations, and systems) collaborate via services within a
SOA and how such services link to other parts (e.g. business
processes, data, and business rules) of the SOA.

In recent years, the ever-changing business environment
demands constant and rapid evolution of an organisation.
As a result, changes to the SOA models of such an or-
ganisation is inevitable if the architectures are to remain
useful and to reflect the current state of service provision
and consumption. For example, initial changes in a SOA
model which are made to include a new service provider may
lead to secondary changes made to relevant service contracts
and service composition. Such changes may lead to further
changes in the implementation components and so on. The
ripple effect that an initial change may cause in a SOA is
termed change propagation. In a large modermn organization
which may have hundred of thousands of services connected
to each other and to its structure and business processes, it
becomes costly and labour intensive to correctly propagate
changes. However, there has been very little work on dealing
with changes in SOA [4]. Since SOA is a relatively new
technology, maintenance of service-oriented systems has
not been so far a critical issue. However, if we are to
be successful in the long-term adoption of service-oriented
development of software systems that remain useful after
delivery, it is now crucial for the research community to
provide solutions and insights that will improve the prac-
tice of maintaining and evolving service-oriented systems.
More specifically, there is a need for techniques and tools
that provide more effective automated support for change
propagation within a SOA model. We do not believe that
change propagation can be fully automated, since there are
decisions that involve tradeoffs where human expertise is

2http://www.omg.org/spec/SoaML

@colr%EEuter
O otiety

required. However, it is possible to provide tool support
in tracking dependencies, determining what parts of the
SOA are affected by a given change, and, as in this paper,
determining and making secondary changes.

The mainstream software maintenance and evolution face
the same challenge in terms of change propagation, i.e.
how to propagate changes so that consistency is preserved
between different software artefacts. Although much of the
work in this area addresses the issue at code level (e.g. [5],
[6]), an increasing number of tools and techniques have been
proposed to deal with changes at the model level (e.g. [7]),
in line with better recognition of the importance of models
in the software development process [8]. In this context,
an agent-oriented change propagation framework [9] has
been proposed by the first author to deal with propagating
changes through design models. This framework uses a
Belief-Desire-Intention (BDI) [10] style of representation
for repair plans to represent compactly a large number of
possible inconsistency resolutions. In addition, these repair
plans can be automatically generated from the Object Con-
straint Language (OCL) constraints and a cost calculation
is used to reduce the number of options to be presented to
the user. Previous work has shown the effectiveness of this
framework in supporting change propagation within agent-
oriented design models [11], [12], [13], [14]. Our recent
work [15] has also indicated that the framework is applicable
to deal with changes in enterprise architectures.

In this paper, we present how this change propagation
framework can be applied to deal with changes within
SOA models. In particular, we will show how changes are
propagated across a number of models developed using the
Service oriented modelling language (SoaML). We however
argue that a major limitation of the existing change propaga-
tion framework resides in the use of a cost-based approach
to select repair options. In fact, assigning costs to change
actions is, to some extent, arbitrary, and the cheapest cost
heuristic, as used in the existing framework, may not always
lead to the best way to resolve inconsistencies. Therefore, we
will propose to substitute the cost calculation with a minimal
modification strategy that helps select change options in such
a way that it accommodates both the structural and semantic
dimensions of SOA models. This approach, in our view,
better reflects the conceptual distance between the modified
model and the original one.

The organization of this paper is as follows. In the next
section, we briefly describe SoaML and use a running
example of a dealers network to illustrate how SoaML can
be used to model a SOA. Section III serves to discuss
the change propagation framework. Related work is briefly
presented in section V. We conclude by discussing future
directions in section VL.

157

II. SoAML

Service oriented architecture modeling language (SoaML)
is an emerging standard adopted by the Object Management
Group® (OMG), which aims to support the activitics of
modeling and design of services within a service oriented
architecture. SoaML has been developed as a Unified Mod-
elling Language (UML) profile, which is the core modeling
standard of OMG. In this section, we briefly describe
how SoaML can be used as an architectural language to
provide technology independent and a standard way to
create, communicate and leverage a SOA. For the illustration
purpose, we use a running example motivated by a business
scenario in which a community of independent dealers,
manufacturers, and shippers want to able to work together
by providing and using each other’s services, without the
need to redesign their business processes or systems [16].
We will now show how to use SoaML to define a SOA for
the community to enable such an open and agile business
environment.

(3] .- - a
) sSanicastichitecims
Dealers Netwark Architecture
’ - - -
s «JaviceConlacls - ~
4 . ps:Purchasing Sevice &
¢ ' . e . ¢
y «Faiticipants |~ presdder | «Paticipants | I
il | deilet : Denler Acme : Manufactiner | |
—_— SR - e -)
| \ /
\ COnsUmar Lonsumer
A g .-Sqr-\-.lr-annlta:h k ~ «SordesContact, ™ /
v b essiShip Status Serdea S \sp: Shipplng Serviee / /
) T pioian - L ¢
«Pamcpants | ’
shippor ; Shigper .
Figure 1. Dealer network architecture

In this example, the community initially has a number
of participants: a manufacturer named Acme, its dealers,
and a shipping company which Acme uses to ship products
to its dealers. This business collaboration can be described
using SoaML “ServiceArchitecture” as in figure 1. It shows
a high-level and contextual view of a network of participant
roles providing and consuming services. For instance, Acme
plays the role of a “consumer” with respect to the “Shipping
Service” and the shipper plays the role of a “provider” with
respect to the same service. It is noted that a participant can
play multiple roles in different services within architecture.
For instance, Acme also plays the role of a “provider” in
the “Purchasing Service”.

Each service is represented in SoaML as a ServiceCon-
tract. For instance, details of the “Shipping Service” Ser-
viceContract are defined in figure 2, which shows the terms

3hitp://www.omg.org

B . =Loges C =
- «SenviceConlracte
Shipping Senvice

«Consumars H
i conshimer : Shipping Consumer ¢

«Providers ¢ }
provider : Shipping Provider E

7/

Figure 2. Shipping service contract

@) O
«Consumers «Provider»
1 Shipping Consumer provider : Shipping Provider
| |

: 1: ShippingOrder '

=
o]

alt |
[fulnitiad)

2: ShipmentScheduled

| 3 OrderRejected i

Figure 3. Shipping service choreography

and condition of “shipping” as well as define two roles:
“Shipping Consumer” and “Shipping Provider”. More details
describing the flow of information (as well as products,
services and obligations) between the participants can be
specified using a UML behavior, which can be either UML
activity, interaction, or state diagrams. Figure 3 shows an
example of a simple choreography of the service contract:
the shipping consumer sends a ‘“ShippingOrder” to the
shipping provider, and the shipping provider sends back
cither a “ShipmentScheduled” or a “OrderRejected”. Such
a behaviour depicts how the message are choreographed in
the service contract, i.e. what flows between the participants,
when and under what conditions.

=} <Participari>
Siipper |
“sorter:Soring % | |
i
consumer
Lo T 7 servceConviacs ~
screaning : Scragidig Service "

, 7 BericaGonvacl T ~ .
B3 -0 shiping Servce J ~ -
~ -

Shipping Frowdar

- 7

provider
| delvere: : Delivering ;3‘}

B pm\'lderl/ ‘

Figure 4. Shipper’s components

158

Figure 4 shows an example of the service architecture of
a participant, i.e. the Shipper, that complies with the com-
munity architecture. The shipper has a “Sorting” component
which is responsible for sorting and screening packages and
a “Delivering” component which is responsible for deliver-
ing packages. The shipper also delegates the shipping service
to the delivering shipping component. The Shipper has a
“Shipping Provider” ServicePort which is compatible with
the “Shipping Provider” role that it plays in the Shipping
Service Contract. Figure 5 shows an activity diagram which
defines the business process of the Shipper. It it is noted that
for the brevity of the example, this is just a portion of the
business process — but it shows the correspondence between
the information flows of the SOA and activities within a
participant.

[ci=an)

. scan
i Package -

emie———d slalus

| o A
. Meld); Access N FReuto
7T package %" Packain l

Figure 5. Shipping business process

A. SoaML metamodel

It is noted that since SoaML is a UML profile, it ex-
tensively uses and extends UML elements and structures
such as collaborations, parts, ports, and composite structures.
Figure 6 is an excerpt of a SoaML metamodel which shows
the relationships between major elements in a SOA defined
using SoaML. A ServiceArchitecture is a UML collaboration
which consists of a number of ParticipantRoles participating
in a ServiceContractUse, each of which corresponds to a
Participant type. A Participant has a set of Ports which
represent features of the Participant where the service is
offered or consumed . There are two types of Ports: Ser-
vicePort — a port where a service is offered, and Request
Port — a port where a service is consumed. Those ports
have a Servicelnterface type. Each ServiceContractUse has
a corresponding ServiceContract as a service specification.
There are different roles involve in a ServiceContract, each
of which has a type, which must be a Servicelnterface.
Furthermore, an important part of the ServiceContract is the
choreography, which is a UML Behaviour such as may be
shown on an interaction diagram, or activity diagram that is
owned by the ServiceContract. The choreography specifies
exchanges between the ServiceRoles in a ServiceContract.

Consistency requirements upon a model are often ex-
pressed using its metamodel and a set of constraints that
specify conditions that a well-formed and consistent model
should satisfy. Constraints may describe syntactic and se-
mantic relationships between model elements. They may
also be used to prescribe coherence relationships between
different views of a model, i.e. intra-model or horizontal
consistency as defined in [17]. In addition, constraints can

e Sarvicelntarface

Servizehrchilective

\' pan
:

e

'
UMLBehaviour
v

aetvice ownedBshaviour

[kru!cotcnlrnl'.lu] |3IM:¢CD’|IWG|I“

1 1

Figure 6. An excerpt of a SoaML metamodel

be used to impose best practices, industry standards, com-
pliance requirements and any other specific requirements
related to a particular domain. We use the Object Constraint
Language (OCL) [18]. to specify constraints. Below are
examples of two consistency constraints for SoaML models
that are expressed using OCL.

C1: Participants in a service contract should have services
ports defined on the participant type which have a
Servicelnterface type defined in the service contract.
Context ParticipantRole inv C1:
self.service—forAll(scu ServiceContractUse |
scu.specification.role—exists(r : ServiceRole | r.type
= self.type.serPort.type))

The owned behaviour which describes the choreog-
raphy of a service contract should have participants
which play a role in the service contract.

Context ServiceContract inv C2:
self.ownedBehaviour.participant—forAll(sr : Service-
Role | sr.service—includes(self))

c2:

Such consistency constraints and the metamodel form an
important foundation for the process of propagating changes
in a SoaML model which we describe in the next section.

III. CHANGE PROPAGATION

In the previous section, we have briefly shown how
business analysts and SOA developers can use SoaML as
a modeling language to build a SOA enterprise architecture.
In this context, such a business and technology architecture
is represented as a SoaML model. When a SoaML model
is modified (due to changes in requirements or environ-
ments), typically some primary changes are made and then
additional, secondary, changes are made to this model as
a result. Change propagation is the process of determining
and making these secondary changes. Recently, a number
of existing modelling tools (e.g. IBM Rational Software Ar-

159

chitect*, NoMagic’s MagicDraws, Modelio®) have provided
support for SoaML modelling. These tools significantly help
business analysts and SOA developer quickly develop a
new SOA for their organizations. However, they provide
very limited support for propagating changes during the
maintenance and evolution of the existing SOA models.

In this section, we will briefly explain how we support
change propagation in SoaML models by adopting a generic
change propagation framework which has been previously
developed by the first author [9]. This change propagation
framework has been developed based on the conjecture
that, given a suitable set of consistency constraints, change
propagation can be done by fixing inconsistencies caused
by primary changes. In other words, we propagate changes
by finding places in a model where the desired consistency
constraints are violated, and fixing them until no incon-
sistency is left in the model. This framework provides a
“change propagation assistant” that helps business analysts
or SOA developers by suggesting additional (secondary)
changes once primary changes have been made. Figure 7
shows an overview of the change propagation framework.

I Regav Flan e mlp‘:‘“n:m-ﬂﬂl
b B Livary remren gty pen
- S thange gan Bedy)
Sos
— bt —] * MRamade!)
Hrpen plsn b \
— U trmapih—- Tawl
b
Conslancy 1 Chack r Geneean ropat
Constraltts —, .-'.‘ffm"[canpirpnay [T VRS COSMAST0] an atances
Repontory A = —
ranal appscatan
—moddl o -
L] Pagar plan walireen
R) - —
l s
Halect e g Toabh tomd iner
Unes dalncus plan b Pl LB s Bapet comi——| Fillee ropair plana
“[sxncaits]
B, bl e ee
Figure 7. Change propagation framework for SoaML

In this change propagation framework, there are three
important data items: a collection of consistency constraints,
a SoaML model, and a collection of repair plans. The
change propagation framework consists of the following key
activities:

1) After consistency constraints are written (either by
SoaML tool developers or tool administrators), the
repair plan types are automatically generated from the
constraints and form a library of repair plans.

2) The user (i.e. either a business analyst or a SOA
developer) uses the SoaML tool to make some primary

4hitp://www.ibm.com/software/awdtools/architect/swarchitect
Shitp://www.magicdraw.com
Shttp://modeliosoft.com

changes to the SoaML model and then the user invokes
the tool to start propagating changes.

a) Consistency constraints previously defined are
checked if they still hold in the modified SoaML
model. Violated constraints are identified in this
step.

Repair plan instances (i.e. repair options) for the
violated constraints are automatically generated
based on the library of repair plan types.
Repair options are then filtered to eliminate in-
feasible repair options (e.g. cyclic) or to reflect
the user preferences. Previous work [11] uses a
cost-based approach to select repair plans based
on their costs. In this paper, we propose an
alternative minimal-change approach to repair
plan selection.

The repair options that successuflly pass the
previous filtering round are presented to the user
and ask for their selection.

The selected repair plan option is executed, and
it updates the SoaML model.

As a step towards automated change propagation, the
repair plans are generated automatically (at design time)
from the OCL consistency constraints and form a repair
plan library which is used at run time. A key consequence
of generating plans from constraints, rather than writing
them manually, is that, by careful definition of the plan
generation scheme, it is possible to guarantee that the plans
generated are correct, complete, and minimal, i.e. there are
no repair plans to fix a violation of a constraint other than
those produced by the generator; and any of the repair plans
produced by the generator can fix a violation. However, we
also allow the users to use their domain knowledge and
expertise to modify generated repair plans or remove plans
that should not be executed.

We have developed a translation that takes a OCL con-
straint as input (for example constraint C1 and C2) and
generates repair plans that can be used to fix violations [9,
Chapter 6]. Such a translation can be developed by consider-
ing all the possible ways in which a constraint can be false,
and hence all the possible ways in which it can be made
true. For instance, repair plans to make constraint C1 true
are defined by choosing all the elements scu in self .service
that makes C1° false’, and for each such element either
delete it from self .service or make C1’ true for it. The repair
plan generator also has rules for making the sub-constraint
C1’ true, which match three ways of making this constraint
true: picking one element r in scu.specification.role and
making constraint C1” true® for this element; adding an
existing element to scu.specification.role and making the

b)

d)

e)

1C1 % scuspecification role—sexists(r
self.type.serPort.type)

ServiceRole | r.type

8C1" L riype = self.type.serPort.type

160

constraint true for it; and crealing a new element, adding
it to scu.specification.role, and making the constraint true
for it. Plan generation rules are then applied to generate
repair plans for sub-subconstraint C1” and so on. Such repair
actions are eventually translated to various change actions
(e.g. addition, deletion, modification, creation) made to a
SoaML model. Those repair plans form a library of plans
for fixing violations of constraints C1 and C2, which are
instantiated at run time. The plan generation rules cover most
of the OCL expressions including attributes (e.g. <, >, <>,
and =), navigations (e.g. self .service), boolean connectives
(e.g. and, or, etc.), set expressions (e.g. forAll, exists), and
addition or deletion involving derived sets (e.g. select, union,
reject) [9, Chapter 6].

Let us use the dealers network example in section II to
illustrate how this change propagation process works for
SoaML models in practice. We assume that there is a new
requirement that the shipping company needs to comply:
shipping packages needs to be scanned upon arrival to the
shipping company to establish their status, and ensure that
they are screened by a regulatory authority to determine if
they should be held. The following scenario may take place:

o The SOA developer create two roles (i.e. ServicePart
in the SoaML metamodel) “ShippingOrganization” and
“RegulatoryAgent”.

« The SOA developer then creates a choreography be-
tween these roles in the new service in a form of a
UML activity diagram as shown in figure 8.

ShippingOrganization RegulatoryAgemt

Scan |
Package |

stalus \l/

[l Id[l 1
Access L f
Package “1

2
Route
Packagie | |

Handle : L
Package _f<—|_Cearmce
— .
!

Uptate
| status

]

Check |
Datails

:

Clear
_ Package |

Pézkage Del&i[s

[clgai]

Figure 8.

At this point, the SOA developer may wish to ask

our change propagation system what other artefacts he/she
should alter to correctly propagate the new change. In this
example, consistency constraints C1 and C2 (refer to section
1I for details of these constraints) are checked and found to
be violated. Therefore, to fix those violations, repair plan
instances are generated from the library of plan types which
discussed earlier. These would result in the following change
actions made to the SoaML model of the dealers network’:

1) Create a Servicelnterface “RegulatingInterface”.

2) Create a new ServiceContract “Regulating Service”.

3) Connect “ShippingOrganization” with “Regulating
Service”.

4) Connect “RegulatoryAgent” with “Regulating Ser-
vice”.

5) Connect “RegulatoryAgent” with “Regulatinglnter-
face”, i.e. “RegulatoryAgent” is a type of ‘Regulating-
Interface”.

6) Create a new Participant “Regulatory Authority”.

7) Create a new ParticipantPart “regAuth” which has a
type of “Regulatory Authority”.

8) Create a new ServiceContractUse “regService” which
has a type of “Regulating Service”.

9) Connect “regAuth” with “regServie” such that “re-
gAuth” plays the “RegulartoryAgent” role.

10) Connect “shipper” with “regServie” such that “ship-
per” plays the “ShippingOrganization” role.
11) Create a ServicePort “regPort” which has a type of

“RegulatingInterface”.
12) Connect “regPort” to “regAuth”.

Figure 9 shows a portion of those secondary changes. It
is however noted that the above repair options are however
only one of the multiple ways of making changes to the
SoaML model to remove inconsistencies. In the next section,
we discuss an approach to select between multiple change
options.

IV. A MINIMAL CHANGE STRATEGY TO SELECT REPAIR
OPTIONS

In practice, there can be multiple applicable repair options
for resolving a given inconsistency. Choosing between those
different possible repair options can depend on various
factors such as the cause of inconsistencies, or even factors
other than consistency that contribute to a good design
(e.g. experience, knowledge on the future evolution of the
architecture, architecture styles). In general, many of these
dependencies may not even be capable of being formu-
lated formally and being captured without extra knowledge
provided by the user. As a result, it is expected that the
execution of repair actions requires user interaction.

In some cases, the number of different ways of fixing
a inconsistency can however be very large. Therefore, it

9 Actions 1-4 make constraint C2 hold for the new SoaML model, and
remaining actions make constraint C1 hold.

161

cSemcushichdaciuina R
Dealers Network Arcldtecin e S

. 7 eSemeconkacts | <
~ __paiPwchaskgSedce A - -

__ epamapants J
| Acme : Mamidactiy es
<Paticipants pioar A i

dealei : Dealor caRumar -

! e o e \

7 «SeraraConkatla \
0 Shippuwg Service_/

- s <Partieinants
] regAuih ; RegulaloryAutior

LT LET

SBARLAL AT

. VA Shin SLatins Sandce ! oo e [/
Ve - " regagenl 1]
N [}
LR I :
S Patcoams ln, L R
S L L I sancaconyacts i {, <!
4 ~ __ ragServica; Heguisimg Serice /L f
T e - I
R = I
1
* type
sPatrearte |
WIINYMMY“
regPon ..
]
gL
\
s
-y
sBrnsvCantipl
Heguditing Solwee
7
Coa <Consumers S » " Piovidens |
b | shippingOrg : ShipplngOrganization tegAgent : RegulatoryAgeit | i
[Vi A= | T
Figure 9. “Regulating Service” service choreography

is also important not to overwhelm the user with a large
number of choices. For example, it is necessary to prevent
infeasible repair options (e.g. repair actions that result in
infinite cycles) from being presented to the user. The issue of
repair plan selection has been addressed in [11] by defining a
suitable notion of repair plan cost that takes into account the
important cascading nature of change propagation and fixing
inconsistencies. More specifically, this approach provides a
cost calculation component that is responsible for calculating
the cost of each repair plan instance. This cost calculation
takes into account that fixing one violated rule may also
repair or violate others as a side effect, and thus the cost
calculation algorithm computes the cost of a given repair
plan instance as including the cost of its actions (using basic
costs defined by the user), the cost of any other plans that
it invokes directly, and also the cost of fixing any rules that
are made false by executing the repair plan.

The cost-based approach, to some extent, reflects the
user preferences in terms of biasing repair plans that have
cheaper costs. In addition, the user may use this mechanism
to adjust the change propagation process. For example,
if he/she wishes to bias the change propagation process
towards adding more information then he/she may assign
lower costs to actions that create new entities or add entities,

and higher costs to actions that delete entities. However, this
cost-based approach also has some major limitations. More
specifically, the cheapest cost heuristic may not always lead
to the best way to resolve inconsistencies. Choices amongst
alternative repair plans are necessarily driven by domain-
specific consideration, and cannot be adequately captured in
a cost-based approach.

We argue that the best inconsistency resolution is the
one for which the resulting model, after having fixed all
violations, is “conceptually closest” to the original model.
Therefore, we adopt a minimal-change approach to filter
repair options in our change propagation framework, which
have been proposed by the second author in the context of
auditing compliance for business processes described using
the Business Process Modelling Notation!® (BPMN) [19].
In this context, an important step is defining what it means
for a SoaML model to minimally deviate from another. This
task is however complicated since there is no consensus on
the semantics of SoaML given the fact that it is still an
emerging standard. In this paper, we focus on describing
minimal changes for a service choreography and leave other
parts of the SOA for future work.

In SoaML, a service choreography can be specified using
a UML activity diagram in which each swimlane represents
a service participant. We encode this representation of a
service choreography into semantically-annotated diagrams
called Semantic Process Networks (or SPNets) [19]. A
SPNet is a digraph (V,E) in which each node is of the
form (ID, nodetype, owner)!'! and each edge is of the form
{{u, v), edgetype, condition). Each event, activity, decision,
or fork/join in an activity diagram maps to a node, with the
nodetype indicating whether the node was obtained from
an event, activity, decision or fork/join respectively in the
activity diagram. The /D of nodes of type event, decision or
activity refers to the /D of the corresponding event, decision
or activity in the activity diagram. The owner attribute of a
node refers to the service role associated with the swimlane
from which the node was obtained. The edgetype of an edge
can be either control or object depending on whether the
edge represents a control flow or object flow in the activity
diagram. The condition associated to an edge describes the
guard condition, set to true by default, controlling the flow
of the process. It is noted that a unique SPNet exists for
each UML activity diagram.

Based on the SPNets, we then define a class of proximity
relations that allow us to compare alternative modifications
of a service choreography in terms of how much they
deviale from the original model. Due to space limitation,
in this paper we present one typical class of proximity
relations: structural proximity. Another type of proximity

Whttp://www.bpmn.org

QOriginally, a SPNet also includes an immediate effect and cumulative
effect. These two concepts are used for semantic proximity which due to
space limitation we do not present in this paper.

162

relation that we have explored but is not presented in this
paper is semantic proximity which involves the use of effect
annotations for process models [20].

Each SPNet spn is associated with a proximity relation
<spn such that spn; <y, spn; denotes that spn; is closer to
spn than spn;. We define <, as a tuple (<}, <&) where
S};n is a proximity relation associated with the set of nodes
V of spn, and ggm is a proximity relation associated with
the set of edges E of spn.

The proximity relations g}’pn and gfpn can be defined in
different ways to reflect various intuitions. For instance, the
following set inclusion-oriented definition might be useful
in some situations: spn; Sfpn spr; i Vipn A Vg, € Vi
A Vi, where A C B denotes the symmetric difference
of sets A and B!%2. Alternatively, set cardinality-oriented
proximity measurement can be useful in other situations,
which is defined as: spn; <%, spn; iff [Vipn & Vpui| < |
Vipn & Vipej|'. Such alternative definitions can be applied
for the <}, proximity relation. Both </, and <[, define
the structural proximity of one SPNet to another.

Let now use the dealers network example to illustrate how
our structural proximity relations can be used to select repair
options in the change propagation framework. Assume that
in addition to the two consistency constraints C1 and C2,
there is another constraint that should be taken into account:
packages known to be held by a regulatory authority must
not be routed by a shipping company until the package is
known to be cleared by the regulatory authority. This con-
straint is an example of a domain-specific constraint which
reflects a compliance requirement. Due to the introduction
of this constraint, changes previously made to the SoaML
model of the dealers network architecture, particularly the
service choreography, cause a violation of this constraint. In
fact, as can be seen in figure 8, a package is routed before
clearance notification is received from the regulatory agent.

Although there is a number of alternative resolutions for
this inconsistency, we present here two simple resolutions
for the purpose of illustrating our minimal change approach.
However, the same techniques can be applied for other alter-
natives. Figure 10 and 11 show how the existing regulating
service choreography can be modified into two different
ways to conform with the new constraint. Let SC; be the
service choreography represented in figure 10 , SCy be the
service choreography depicted in figure 11, and SCq be the
existing one in figure 8. We now use the proximity relations
defined earlier to identify which one is more preferable
in terms of minimal deviation from the original service
choreography.

With regard to the proximity relation g}j,,,, it can be easily
seen that SC; and SCy share all their nodes with SCy, and

12The symmetric difference of sets A and B is the set of all elements of
A or B which are not in both A and B.
13| A | denotes the cardinality of set A

ShippingOr ganlzation RegtlstoryAgent
Scan
Package
status [
elal,]
| Access [Chieck
| Package Datalls
[eiqanl Handle L L Cloa \
Package I c"’_“""“ 1 Package |
e
Packape [
B
| Update
| Status

Figure 10. Resolved “Regulating Service” service choreography (SC1)

ShippingOrganization RegulmoryAgait
Scan
Package _l,
slalug -lr
ﬂluld]L | _!"F-‘mhaue omn: |
Accoss [- N check
Package Details
[elgai] l
Handle i L Cleqs i
! Package | Cloncnica e—j Package |
[
Update
Status
Route |
Package |
Figure 11. Resolved “Regulating Service” service choreography (SC2)

therefore, no comparison can be made across this structural
dimension. Figure 12 shows the differences between SC; and
SCy and SCy in terms of the proximity relation gfpn. The sig-
nificant edge difference between SC; and SCj includes the
“Route Package”— “Handle Package”edge. SC» also differs
with SCp across some edges including “Update Status”—
“"Route Package”. If an inclusion-oriented definition for
proximity is applied, we would not be able to differentiate
SC; and SCy with regard to structural proximity to SCy. On
the other hand, if we choose to apply the cardinality-oriented
definition, wewould determine SC, Sf,m SCy as |SC; A SCy)

=6and | SC; A SCq | =4. It means that SCy is closer to SCy
than SC; and consequently is the preferable repair option.

163

SC1 A SCq | AssessPackage— HandlePackage (SC1),
DecisionNode — RoutePackage (SCy),
RoutePackage — UpdateStatus (SCy),
DecisionNode — UpdateStatus (SCp),
RoutePackage — HandlePackage (SCo),
AssessPackage— RoutePackage (SCp)
AssessPackage— HandlePackage (SCy),
UpdateStatus — RoutePackage (SCy),
AssessPackage — RoutePackage (SCp),
RoutePackage — HandlePackage (SCp)

Edge difference of SC1 and SCo with regard to SCO

SCy A SCy

Figure 12.

V. RELATED WORK

As mentioned earlier, there is limited work that specif-
ically addresses maintenance and evolution in a service-
oriented environment although this issue is important and
growing more difficult [4]. The work in [21] proposes an top-
down approach to analyze the impact of changes in business
processes upon the source code, and uses this analysis to
identify affected system components. On the other hand, the
work in [22] proposes a bottom-up approach in which they
provide a set of generic guidelines for assessing changes
made to a service or its implementation and their impact to
the business processes and other consumers of the service.
Change impact analysis is however only loosely related to
our work. Change impact analysis techniques aim to assess
the extent of the change, i.e. the artefacts, components, or
modules that will be impacted by the change, and conse-
quently how costly the change will be. Our work is more
focused on implementing changes by propagating changes
between SOA artefacts in order to maintain consistency as
the SOA evolves.

In the area of change propagation for SOA-based environ-
ment, Ravichandar et. al. {23] has recently proposed a set of
inference rules between use cases, sequence diagrams and
service specifications. Such rules are used to determine elc-
ments in one artefact that are directly or indirectly impacted
by the changes in the other artefact. These rules are also
defined to propagate the changes across those specific types
of models. Recent work in [24] also aims to automate change
propagation by identifying specific change propagation rules
for all types of changes in SOA solution design. Similarly
to our work, their change propagation framework is flexible
and extensible in which it can accept any model types as
long as they are compliant to the Meta-Object Facility!*
(MOF) standard. However, those approaches suffer from
the correctness and completeness issue since the rules are
developed manually by the user. As a result, there is no
guarantee that these rules are complete (i.e. that there are
no inconsistency resolutions other than those defined by the
rules) and correct (i.e. any of the resolutions can actually fix

hitp://www.omg.org/mof

a corresponding inconsistency).

There has been a wide range of work in the area of
consistency management of models. Some of them (e.g.
[25]) address the issue of consistency checking instead of
resolving inconsistencies. Other work such as the Viewpoints
approaches (e.g. [26]), inconsistencies arising between indi-
vidual viewpoints are detected by translating into a uniform
logical language. Such inconsistencies are resolved by hav-
ing meta-level inconsistency handling rules, which have to
be defined by user. However, these approaches suffer from
the correctness and completeness issue as discussed earlier.
In addition, a significant effort is required to manually
hardcode such rules when the number of consistency con-
straints increases or changes. In order to deal with this issue,
[27] has proposed an approach for automatically generating
repair options by analyzing consistency rules expressed in
first order logic and models expressed in xLinkIt. They did
not take into account dependencies among inconsistencies
and potential interactions between repair actions for fixing
them. In other words, their work considers repair actions
as independent events, and thus does not explicitly deal
with the cascading nature of change propagation. The work
proposed in [28] aims to fix inconsistencies in UML models
at the level of detailed design (instead of at the higher level
of SOA). In addition, their work does not provide options
for how to repair inconsistencies, but only suggests starting
locations (entities in the model) for fixing the inconsistency.
Their recent work [29] has addressed this issue by only
considers a single change at a time, is potentially incomplete
and is not suitable for change propagation, and does not
consider the creation of model elements.

V1. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach to support
change propagation in the maintenance and evolution of
service oriented architecture. Although we have applied our
approach to SoaML, an emerging standard for modelling
SOAs which has been adopted by the OMG, our ideas and
results can be applied to other SOA modelling languages.
The key idea of our approach is a change propagation
framework which takes a SoaML metamodel and a set of
consistency constraints as inputs and proposes additional
(secondary) changes once primary changes have been made
to a SoaML model. Change propagation is driven by fixing
consistency constraint violations caused by either primary
or secondary changes made to the SoaML model.

Using this change propagation framework, change options
are represented in terms of repair plan types which allows
us to abstractly represent certain classes of concrete ways of
fixing a consistency constraint. The representation in terms
of repair plan types can represent compactly a large number
of repair options, and captures nicely the cascading nature
of repairing constraint violations, and the way that a given
constraint violation may be repaired in a number of ways.

164

In addition, using this approach, SoaML tool developers do
not need to write resolution or change propagation rules
and consequently save substantial time. More importantly,
they avoid the issues of soundness and completeness, since
repair plan types are automatically generated from the OCL
consistency constraint, and are guaranteed to be sound and
complete [9, Chapter 6].

The current cheapest cost heuristic used in this change
propagation framework is, to some extent, arbitrary, and may
not always lead to the best way to resolve inconsistencies.
We have argued that the best inconsistency resolution is
the one for which the resulting SOA model, after having
fixed all violations, is conceptually closest to the original
model. This conceptual distance is represented as a class
of proximity relations which can capture both structural
and semantic proximity. In this paper, we have defined the
structural proximity of one service choreography to another
and illustrated how it can be used to select among alternative
inconsistency resolutions.

Our future work involves exploring proximity relations
on other parts of a SOA such as the quality of service
(QoS) constraints specified in service contracts. Our long-
term goal is to develop a class of proximity relations for the
whole SoaM1. model which captures both the structure and
semantic of a SOA, and use this to repair plan selection in
the context of change propagation. Another important part of
our future work involves integrating the change propagation
framework into an existing SoaML tool. This would allow us
to perform further case studies to evaluate the effectiveness
and efficiency of our approach.

REFERENCES

[1] C. Casanave, “Enterprise service oriented architecture using
the OMG SoaML standard,” Model Driven Solutions, Inc,
White Paper, December 2009,

[2

[t

M. Bell, Service-Oriented Modeling (SOA): Service Analysis,
Design, and Architecture. Wiley & Sons, 2008.

[3] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Gariapathy,
and K. Holley, “SOMA: a method for developing service-
oriented solutions,” IBM Syst. J., vol. 47, no. 3, pp. 377-396,
2008.

[4] K. K. Grace A. Lewis, Dennis B. Smith, “A research agenda
for service-oriented architecture (SOA): Maintenance and
evolution of service-oriented systems,” Camegie Mellon Soft-
ware Engineering Institute (SEI), Technical Note CMU/SEI-

2010-TN-003, March 2010.
[5]

V. Rajlich, “A methodology for incremental changes,” in
Proceedings of the 2nd International Conference on eXtreme
Programming and Flexible Process in Software Engineering,
Cagliary, Italy, May 2001, pp. 10-13,

[6] A.E. Hassan and R. C. Holt, “Predicting change propagation
in software systems,” in JCSM '04: Proceedings of the 20th
IEEE International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2004, pp.
284-293,

(7]

(8]

[10]

(11]

[12]

(13]

{14]

[15]

[16]

(17]

[18]

{19]

A. van Deursen, E. Visser, and J. Warmer, “Model-driven
software evolution: A research agenda,” in Proceedings 1st
International Workshop on Model-Driven Software Evolution
(MoDSE), D. Tamzalit, Ed. University of Nantes, 2007, pp.
41-49.

S. I. Mellor, A. N. Clark, and T. Futagami, “Guest editors’
introduction: Model-driven development.” IEEE Software,
vol. 20, no. 5, pp. 14-18, 2003.

K. H. Dam, “Supporting software evolution in agent systems,”
Ph.D. dissertation, RMIT University, School of Computer
Science and IT, 2009,

A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical
computable language,” in MAAMAW '96: Proceedings of the
7th European workshop on Modelling autonomous agents in a
multi-agent world : agents breaking away. Springer-Verlag,
1996, pp. 42-55.

K. H. Dam and M. Winikoff, “Cost-based BDI plan selection
for change propagation,” in Proceedings of the 7th Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Miiller, and Parsons,
Eds., Estoril, Portugal, May 2008, pp. 217-224.

K. H. Dam, M. Winikoff, and L. Padgham, “An agent-oriented
approach to change propagation in software evolution,” in
Proceedings of the Australian Software Engineering Confer-
ence (ASWEC). IEEE Computer Society, 2006, pp. 309-318.

K. H. Dam and M. Winikoff, “Generation of repair plans for
change propagation,” in Agent-Oriented Software Engineering
VI, ser. Lecture Notes in Computer Science, M. Luck and
L. Padgham, Eds., vol. LNCS 4951. Springer Berlin /
Heidelberg, April 2008, pp. 132-146.

——, “Evaluating an agent-oriented approach for change
propagation,” in Proceedings of the Ninth International Work-
shop on Agent Oriented Software Engineering, M. Luck and
J. J. Gomez-Sanz, Eds., Estoril, Portugal, May 2008, pp. 61—
72.

H. K. Dam, L.-S. Le, and A. Ghose, “Supporting change
propagation in the evolution of enterprise architectures,” in
The 14th IEEE International Enterprise Distributed Object
Computing Conference (EDOC) (to appear), October 2010.

Object Management Group, “Service oriented architecture
Modeling Language (SoaML) Version 1.0 - Beta 2,” http:
/lwww.omg.org/spec/SoaML/1.0/Beta2/PDF, 2009.

G. Spanoudakis and A. Zisman, “Inconsistency management
in software engineering: Survey and open research issues,”
in Handbook of Software Engineering and Knowledge Engi-
neering, K. 8. Chang, Ed. World Scientific, 2001, pp. 24-29.

Object Management Group, “Object Constraint Language
(OCL) 2.0 Specification,” http://www.omg.org/docs/ptc/
03-10-14.pdf, 2006,

A. Ghose and G. Koliadis, “Auditing business process com-
pliance,” in ICSOC '07: Proceedings of the 5th international
conference on Service-Oriented Computing. Berlin, Heidel-
berg: Springer-Verlag, 2007, pp. 169-180.

165

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

K. Hinge, A. Ghose, and G. Koliadis, “Process seer: a tool
for semantic effect annotation of business process models,”
in EDOC’09: Proceedings of the 13th IEEE international
conference on Enterprise Distributed Object Computing. Pis-
cataway, NJ, USA: IEEE Press, 2009, pp. 49-58.

H. Xiao, J. Guo, and Y. Zou, “Supporting change impact
analysis for service oriented business applications,” in SDSOA
'07: Proceedings of the International Workshop on Systems
Development in SOA Environments at International Confer-
ence on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2007, p. 6.

L.-J. Zhang, A. Arsanjani, A. Allam, D. Lu, and Y.-M. Chee,
“Variation-oriented analysis for SOA solution design,” Ser-
vices Computing, IEEE International Conference on, vol. 0,
pp. 560-568, 2007.

R. Ravichandar, N. C. Narendra, K. Ponnalagu, and D. Gan-
gopadhyay, “Morpheus: Semantics-based incremental change
propagation in SOA-based solutions,” in SCC *08: Proceed-
ings of the 2008 IEEE International Conference on Services
Computing. Washington, DC, USA: IEEE Computer Society,
2008, pp. 193-201.

R. Sindhgatta and B. Sengupta, “An extensible framework for
tracing model evolution in SOA solution design,” in OOPSLA
'09: Proceeding of the 24th ACM SIGPLAN conference com-
panion on Object oriented programming systems languages
and applications. New York, NY, USA: ACM, 2009, pp.
647-658.

A. Egyed, “Instant consistency checking for the uml,” in ICSE
'06: Proceedings of the 28th International Conference on
Software Engineering. New York, NY, USA: ACM, 2006,
pp. 381-390.

A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer,
and B. Nuseibeh, “Inconsistency handling in multiperspective
specifications,” IEEE Trans. Softw. Eng., vol. 20, no. 8, pp.
569-578, 1994.

C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency
management with repair actions,” in ICSE '03: Proceedings of
the 25th International Conference on Software Engineering.
IEEE Computer Society, 2003, pp. 455-464.

A. Egyed, “Fixing inconsistencies in UML models,” in ICSE
'07: Proceedings of the 29th International Conference on
Software Engineering. Washington, DC, USA: IEEE Com-
puter Society, May 2007, pp. 292-301.

A. Egyed, E. Letier, and A. Finkelstein, “Generating and eval-
uating choices for fixing inconsistencies in uml design mod-
els,” in ASE '08: Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineer-
ing. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 99-108.

	Supporting change propagation in the maintenance and evolution of service-oriented architectures
	Recommended Citation

	Supporting change propagation in the maintenance and evolution of service-oriented architectures
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1368158805.pdf.XwWVg

