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Abstract

Model-Driven Engineering is a paradigm for software engineering where software mod-
els are the primary artefacts throughout the software life-cycle. The aim is to define
suitable representations and processes that enable precise and efficient specification,
development and analysis of software.

Our contributions to Model-Driven Engineering are structured according to Boyer’s
four functions of academic activity – the scholarships of teaching, discovery, applica-
tion and integration. The scholarships share a systematic approach towards seeking
new insights and promoting progressive change. Even if the scholarships have their
differences they are compatible so that theory, practice and teaching can strengthen
each other.

Scholarship of Teaching While teaching Model-Driven Engineering to under-
graduate students we introduced two changes to our course. The first change was to
introduce a new modelling tool that enabled the execution of software models while
the second change was to adapt pair lecturing to encourage the students to actively
participate in developing models during lectures.

Scholarship of Discovery By using an existing technology for transforming mod-
els into source code we translated class diagrams and high-level action languages into
natural language texts. The benefit of our approach is that the translations are ap-
plicable to a family of models while the texts are reusable across different low-level
representations of the same model.

Scholarship of Application Raising the level of abstraction through models
might seem a technical issue but our collaboration with industry details how the
success of adopting Model-Driven Engineering depends on organisational and social
factors as well as technical.

Scholarship of Integration Building on our insights from the scholarships above
and a study at three large companies we show how Model-Driven Engineering empow-
ers new user groups to become software developers but also how engineers can feel
isolated due to poor tool support. Our contributions also detail how modelling en-
ables a more agile development process as well as how the validation of models can be
facilitated through text generation.

The four scholarships allow for different possibilities for insights and explore Model-
Driven Engineering from diverse perspectives. As a consequence, we investigate the
social, organisational and technological factors of Model-Driven Engineering but also
examine the possibilities and challenges of Model-Driven Engineering across disciplines
and scholarships.
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2 1 Introduction

1 Introduction
1.1 Context – Raising the Level of Abstraction
In the beginning of software development the programs were manually specified by low-
level instructions detailing how data at a specific memory location should be moved
to a new location or how the data at one explicit location was the sum of the data at
two other locations [1]. While the low-level instructions gave the programmer detailed
expressions and full control it also meant that the programming was error prone,
slow and updating the programs with new instructions was difficult. By automating
some of the tasks – such as memory allocation – and combining repetitive sequences
of low-level instructions to one high-level short-hand notation programming became
more oriented towards the needs of the human users instead of the constraints of the
machines.

In the early 1970’s the trend towards more abstract representations had resulted in
languages with so different ways of expressing the computations that they represented
different paradigms. Examples of paradigms that stem from this era are imperative
languages where C is still a major player, object-oriented languages such as Smalltalk
and Java as well as functional languages like ML and Haskell. The evolution has
continued and during the 1990’s scripting languages like PHP and Perl saw the light.

1.2 Thesis Subject – Model-Driven Engineering
In continuation of the trend of raising the level of abstraction Model-Driven Engineer-
ing, MDE, emerged just after the turn of the century [65]. Models have been used
for a long time in engineering disciplines, both to describe the present and to predict
the future [100]. What distinguishes a model in the context of software development
is that models are not just an aid to describe and predict – models can play a key
role in implementation when used as programming languages [44]. By automatically
transforming the abstract model into more concrete code MDE promises a means for
handling the growing complexity of software as well as increasing the development
speed and the quality of the software by automating tedious and error-prone tasks
[80].

1.3 Thesis Contributions
This thesis reports on the possibilities and shortcomings of Model-Driven Engineering
from three different settings, each with their own perspectives:
Education In order to improve our students’ ability to develop models we introduced

two changes to our course. The first change was to introduce a tool that enabled
the models to be used as a programming language [27] and the second change
was to introduce pair lecturing to encourage the students to actively participate
in developing models during lectures [23].

Basic Research While models can be more abstract than the generated code it does
not mean that they are necessarily easier to understand. We used existing tech-
nologies for transforming models into code to instead generate natural language
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representations from class diagrams [21], high-level behavioural descriptions of
the models [22] and component interfaces [24]. The benefit of this approach in
comparison to generating from code is that the texts are reusable across different
implementations of the same model.

Industrial Practice Raising the level of abstractions might seem to be a technical
issue but our results enforce how the success of adopting Model-Driven Engi-
neering depends on both organisational and social factors as well as technical
[26, 54, 119]. In the long run Model-Driven Engineering empowers new user
groups to become software developers as well as speeding up the development
process [28, 39].

1.4 Conceptual Framework – Scholarship
From the onset the research on MDE was carried out independently within each per-
spective – improving how to teach MDE to students, exploring the possibilities of
model transformations for natural language generation and the adaption of MDE in
an industrial setting. During the latter half of our PhD studies we recognised that
these three perspectives had common features and in 2013 we identified how they
coincided with Boyer’s notion of scholarship [13, 14].

Boyer refers to basic research as the scholarship of discovery, education maps to
the scholarship of teaching while the scholarship of application covers all interaction
with non-academic organisations including industry. Boyer also introduces a fourth
scholarship named integration which aims to seek synergies among disciplines and
scholarships as well as new interpretations of scientific contributions or open research
questions.

While it was originally unintentional, our way of approaching MDE corresponds
to Boyer’s definition of Scholarship. We will therefore use the four scholarships of
Discovery, Teaching, Application and Integration to structure the contributions of the
included publications but also to show how the originally independent research tracks
have merged and influenced each other over time.

1.5 Thesis Overview
The remaining sections of this chapter are organised as follows :

Summary and Synthesis The next section will give more detail to the concepts of
Model-Driven Engineering and scholarship. The used research methodologies
are then described in section 3. The contributions of the included publications
are given per scholarship in section 4. Section 5 discusses insights from combin-
ing a scholarship approach and graduate studies in terms of opportunities for
reflection. The conclusion is found in section 6 while future research directions
are presented in section 7.

The publications supporting the contributions are then included as chapters for
each scholarship:
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Figure 1: The included publications – referenced by paper – organised according to
scholarship and publication year.

Appendix A: Scholarship of Teaching The relevant publications are included as
paper 1 Executable and Translatable UML – How Difficult Can it Be? [27] and
paper 2 Pair Lecturing to Model Modelling and Encourage Active Learning [23].

Appendix B: Scholarship of Discovery Included publications are paper 3 Nat-
ural Language Generation from Class Diagrams [21] and paper 4 Translating
Platform-Independent Code into Natural Language Texts [22].

Appendix C: Scholarship of Application Paper 5 was published as Industrial Ex-
periences from Multi-Paradigmatic Modelling of Signal Processing [26] and paper
6 as Limits of Model Transformations for Embedded Software [54].

Appendix D: Scholarship of Integration The four included papers are Paper 7
Industrial Adoption of Model-Driven Engineering – Are the Tools Really the
Problem? [119], paper 8 Extending Agile Practices in Automotive MDE [39],
paper 9 Enabling Interface Validation through Text Generation [24] and paper
10 Comparing and Contrasting Model-Driven Engineering at Three Large Com-
panies [28].

An overview of the included papers, sorted under scholarship together with their
respective publication year is found in Figure 1.

2 Background
Before we go further into the contributions of the included publications, the paradigm
of Model-Driven Engineering and the concept of Scholarship are described in more
detail.
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2.1 Model-Driven Engineering
Model-driven engineering is a paradigm for developing software relying on models
– or abstractions – of more concrete software representations to not only guide the
development but constitute the single source of implementation.

2.1.1 Software Models

There are a number of definitions regarding the qualities and usage of models for scien-
tific purposes in general [29, 35, 107] and also more specifically for software engineering
[33, 72, 74, 94, 99, 100]. In the context of this thesis we will emphasise two notions
of software models; first the relationship between model and code, second how models
can be used as the actual implementation language(s).

Figure 2 gives the spectrum of model and code as defined by Brown [17]. Brown
defines the code as a running application for a specific runtime platform (acknowl-
edging that the code itself is a model of bit manipulations). In relation to Brown’s
definition of code, a model is defined as an artifact that assists in creating the code
by transformations, enables prediction of software qualities and/or communicates key
concepts of the code to various stakeholders.

Code only To the farthest left of Figure 2 is the code only approach to software de-
velopment, using languages such as C or Java but without any separately defined
models. While this approach often relies on abstractions such as modularization
and APIs there is no notion of modelling besides partial analysis on whiteboards,
paper and slide presentations. This scenario is referred to by Fowler as using
models for sketching [44].

Code visualization A step to the right, and towards more modelling, is code vi-
sualization. Code is still the only implementation level but different kinds of
abstractions are used for documentation and analysis. While some abstractions
are developed manually some are automatically generated from the code – such
as class diagrams or dependencies between components and modules.

Roundtrip engineering The third possibility according to Brown is that code and
model together form the implementation. One example would be a system spec-
ification at model level that is then used to automatically generate a code skele-
ton fulfilling the specification. The skeleton is then manually elaborated to add
more functionality and details. As the code evolves the model is updated with
the new information to ensure consistency between specification and implemen-
tation. The term round-trip engineering comes from the fact that models and
code are developed in parallel and require a roundtrip from model to model via
code (or vice versa).

Model-centric In model-centric development the model specifies the software which
is then automatically generated. In this case the models might include infor-
mation about persistent data, processing constraints as well as domain-specific
logic. In the words of Fowler, the modelling language becomes the programming
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Figure 2: The software modelling spectrum as depicted by Brown [17].

language [44], analogously to how the source code becomes the machine code
through code compilation [75].

Model only Finally, in the model only scenario the model is disconnected from its
implementation. This is common in large organizations who traditionally are
not software companies. After specifying the model it is out-sourced to suppliers
and sub-contractors who either develop new software fitting the specification or
deliver ready-made off-the-shelf solutions.

The spectrum given by Brown is of course a simplification, a model. Reality is not
always that easy to map to the different scenarios and the scenarios can co-exist both
as serial and parallel combinations. An example is software development at Volvo
Cars. At system-level there is a model which specifies the overall system architecture.
From this global model it is possible to generate partial models for specific subsystems.
Some subsystems are then realised in-house using a round-trip engineering approach
while other subsystems are developed using a code-centric approach where the partial
model is seen as a blueprint [44] that the manually derived code must fulfill (a scenario
not covered by Brown).

2.1.2 Executable Models

From the perspective of models as programming languages there are three important
aspects to consider – the chosen representations of the modelling language, the possi-
bility to deterministically interpret and execute a model and the ability to transform
a source model to a target representation for a specific purpose.

Representations Over the decades there has been a strive towards raising the ab-
straction of programming languages [1]. First there were machine languages
using 0’s and 1’s to represent wirings, then came assembly languages and then
the third generation languages such as C and Java. For each generation the level
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of abstraction rose and the productivity of the programmers followed [86]. The
aim of using models as programming languages is to continue raising the level of
abstraction and thereby also the productivity [73]. By reducing the number of
concepts and/or the complexity of the representations the models should be eas-
ier to understand than the corresponding representations in C or Java. Exactly
which representations that are chosen varies between the modelling languages,
just as different third-generation languages have different representations and
abstractions. A language where the chosen representations and the expressive
power is restricted to a certain application domain is referred to as a Domain-
Specific Language, DSL2 [45, 77].

Executable Semantics An interpreter takes a source program and an input and
returns an output [1]. In the case of models as programming languages the source
program is a model which the interpreter can execute statement-by-statement in
order to validate that the model has the right behaviour and structure [85]. In
comparison to programming languages like Java and C, the modelling languages
can consist of both graphical and textual constructions which in turn requires a
more complex development environment to supply an interpreter that handles
both textual and graphical elements as input and output.

Model Transformations In order to define a transformation between two (mod-
elling) languages it is necessary to have a specification for each language. The
common way of transforming a model into machine code is to first transform
the model into a lower-level program language supported by a code compiler.
In this way there is a need for an extra transformation when using a modelling
language instead of a programming language such as C or Java [108]. It is also
possible to reverse engineer a source into a more abstract target representation
[76].

In this view the notion of code in Figure 2 can be either manually derived code or
code automatically generated from a model. When the code is automatically generated
from the model it is no longer a help in developing code – it becomes the single source
of information and serves both as specification and implementation [75].

2.1.3 Model-Driven Approaches

The usage of models as the drivers for software development has many names where
Model-Driven Architecture, MDA [17, 68, 75, 79], and Model-Driven Engineering,
MDE [15, 65, 95], are among the most popular. The aim of adopting a model-driven
approach instead of a code-centric is to handle the complexity of software development
by raising the level of complexity and automate tedious or error-prone tasks [80].

MDA defines three abstraction layers and envisions that the development process
transcends the layers from the more abstract to the most concrete.

2There is a discussion regarding when a DSL is a modelling language or a programming language
– see for instance Yu et al. [114] – but we treat them as modelling languages since they from a user
perspective abstract away from the low-level implementation details while introducing representations
that capture the problem domain [60, 62].
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Figure 3: The relationship between MDA, MDD and MDE given as a Venn diagram.

Computational-Independent Models The highest abstraction level in the MDA
hierarchy uses the terminology of the domain to define the relevant functional
properties. The structural relationship between the terms can also be defined
using domain models [70] or taxonomies. It also defines the context – such as
intended user groups, interacting systems and the physical environment – of
the system while the system itself is treated as a black box, hence the name
computational-independent. The computational-independent model is also re-
ferred to as a conceptual model [70] and abbreviated as CIM.

Platform-Independent Models At the next level of abstraction the Platform-In-
dependent Models, PIM, introduces computational concepts such as persistence
and safety together with interface specifications. The internal behaviour of
the system might be defined by using executable modelling elements such as
state machines or textual action languages that enhance the graphical elements
[73, 85, 109]. The PIM should be possible to reuse across different platforms –
combinations of operating systems, programming languages and hardware – by
a model transformation that takes the PIM as an input and a specific platform
setup as target. In relation to Figure 2 the PIM refers to the model.

Platform-Specific Models A platform-specific model, PSM, represents the lowest
abstraction level and details what kind of memory storage should be used, which
libraries and frameworks to include and if the system is to be run on one core
or a distributed network etc. In relation to Brown’s modelling spectrum a PSM
is the code.

The concept of executable models is one way of realising the MDA vision since
execution allows implementation and validation to be done at the PIM level while the
PSM is obtained through automatic transformations [73, 75].

A taxonomy for distinguishing between different modelling approaches is given
by Ameller [3] and depicted in Figure 3. Ameller distinguishes MDE from Model-
Driven Development, MDD, by seeing MDE as more inclusive than MDD. The reason
is that MDD represents a model-centric view and focuses on the transformation of
abstract models into more concrete representations. According to Ameller (who cites
Hutchinson et al. [60, 58]) MDE acknowledges the importance of a wider range of
software engineering factors, including improved communication between stakeholders
and quicker response towards changes, besides code generation. The difference between
MDD and MDA lies in the fact that MDA only uses the standards conveyed by the
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Object Management Group, OMG3, such as the Unified Modeling Language, UML4

[2, 12, 44], while MDD is a more pragmatic approach where you use what is most
appropriate.

Ameller’s distinction between MDA and MDD on the one hand and MDE on
the other is consistent with the critique of MDA put forward by Kent [65]. Kent
claims that MDA neglects social and organizational issues as well as the need for more
differentiated levels of detail and abstraction than CIM, PIM and PSM. Furthermore,
different kinds of abstractions are needed depending on the varying qualities of software
and that in turn calls for the usage of domain-specific languages instead of generic
representations.

From this point of view the distinction between MDE on the one hand and MDA
and MDD on the other is that while MDE emphasises the model-centric view it also
includes roundtrip engineering with the possibility of reverse engineering concrete rep-
resentations into more abstract ones. MDA and MDD have a narrower scope and see
the transformation from abstract to concrete as the fundamental relationship between
model and code.

2.2 Scholarship
According to Boyer there are four functions that form the basis of academia and the
roles of those it employs – the scholarships of discovery, teaching, application and
integration [13, 14]. The foundation for all four functions is the systematic process
of planning, executing, reflecting on and communicating innovation or changes to ex-
isting phenomena. Depending on the different functions of the four scholarships the
nature of the overall process and the resulting insights will vary accordingly. Through-
out the process the interchange with other scholars – such as discussions with peers
and publishing – is instrumental to identify, and improve, the impact of the process.
The reasoning from Boyer is that embracing the full functionality of the scholarship
will remove the artificial conflict between teaching and research and instead practice,
theory and teaching will interact and strengthen each other.

Figure 4 gives our interpretation of how the four functions represent different as-
pects of the scholarly process. For brevity we refer to each scholarship by its name
where the initial letter has been capitalised, e.g Discovery refers to the scholarship of
discovery.

Discovery The pursuit of new discoveries contributes in general to our knowledge
and understanding of the world - more specifically discoveries are critical for
a vital and intellectual climate within academia. Boyer stresses that not only
is the discovery as such important, the systematic and disciplined process of
conducting original research should also be stressed. The primary audience for
new discoveries are academics within the same discipline while students and
practitioners are also possible recipients and/or benefactors.

Teaching Just as for any of the other academic functions, teaching can and should be
done in a systematic and disciplined way. As the terms scholarship of teaching

3http://www.omg.org/ – Accessed 14 February 2014.
4http://www.uml.org/ – Accessed 14 February 2014.
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Figure 4: The four functions of Scholarship with respective key Scholars.

suggests, Boyer expects the outcome to be communicated to other teachers first
of all but the insights should serve the interests of the students either as shared
theoretical insights or by the application of new insights on the teaching activities
related to the discipline. The aim of teaching as a scholarship is to find new ways
of encouraging active learning and critical thinking while providing a foundation
for life-long learning. In this sense scholars are also learners where the interaction
with the students is an opportunity to improve one’s own understanding of the
subject as well as the process of teaching and learning [57].

Application The scholarship of application refers to applying established discoveries
to problems outside of academia. But it can also work in the opposite direction
where the direction of future discovery is influenced by the challenges encoun-
tered in non-academic settings. In this way theory and practice interact and feed
each other with new insights that will then be communicated to the practition-
ers (commercial or non-profit organizations, individuals or governmental bodies
etc.) but also to academics within the discipline.

Integration The scholarship of integration seeks to illuminate established facts and
original research from new perspectives or interpret them in new ways. As a con-
sequence it opens up new disciplines or – using the terminology of Polanyi [83]
– identifies over-laps among disciplines. Since integration is inter-disciplinary or
even spans multiple scholarships, the assumption that the intended audience are
knowledgable on all of the included topics becomes moot. Rather, the recipients
will be specialists within some of the disciplines included in the integration, but
not knowledgeable in all. This is a challenge not only in how to define a system-
atic methodology but also in how to communicate the results to reach across to
all concerned parties5. Boyer also refers to integration as synergy or synthesis
since it establishes connections among different disciplines or scholarships.

Boyer explicitly states that there is an overlap among the four and insights can fall
into one or more scholarships while the intended audience can include more than one

5This thesis is an example of the challenges involved in communicating the research outcomes by
integrating language technology, software engineering and engineering education research while ap-
plying MDE to disparate domains such as telecommunications and automotive software development.
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kind of scholar [14]. An explicit example is how Teaching has elements of applying
new discoveries from education and the subject area in a classroom context [113] or
implicit examples such as knowledge transfer – applying academic discoveries in new
organisations [40].

3 Research Methodologies
The included publications have been conducted using three different research method-
ologies – action research [64, 71], case studies [92, 121] and design science research
[55, 103]. The research methodologies are not mutually exclusive, in fact they share
the basic steps to plan, execute, reflect and communicate. The methodologies can also
be combined – i.e. a case study can be applied within a design science research method
to demonstrate the applicability of the design [82].

3.1 Action research
Action research is used to understand, but most of all improve, real-life situations
in an iterative way [8, 47]. In relation to software engineering action research has
been used mostly for implementing organizational changes related to software devel-
opment – such as process improvement [61] and technology transfer [49] – in contrast
to developing software artifacts [93]. Action research has also been advocated as a
suitable research methodology for educational purposes. For instance, Stenhouse ar-
gues that action research can contribute both to the practice and theory of education
and that communicating the resulting insights to other teachers is important in order
to promote reflection within the community [111] (cited in [31]).

Action research is conducted over a series of iterations where each iteration can be
broken down into three steps [36]:

Planning Defining the goals of the action, setting up the organization that will carry
out the change and acquire the necessary permissions, knowledge and skills.

Acting Executing the plan and collecting the data that reflects the change. The data
can consist of interviews, surveys, logs and/or observations but also documenta-
tion of the decisions that are made and their rationale.

Reflecting Evaluating the impact of the change in terms of collected data, discussing
the organization and process with the participants, analysing the collected data
as well as communicating the results to the relevant audiences.

A new iteration is initiated as new actions are identified during reflection. The detailed
content and duration of each step varies depending on the objectives of the iteration
and how the context has changed due to earlier interventions.

3.2 Case study
A case study aims to analyse one phenomenon or concept in its real-life context which
in turn means that it is difficult to define the border between phenomenon and context
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[10, 91, 121]. A question that is still under debate is if the findings from a case study
can be generalised beyond the scope of the study or not, see e.g. [32, 43, 66].

According to Runeson et al. a case study can be broken down into five major steps
which they claim can be used for all kinds of empirical studies [91]:

Case study design The design should specify the aim and the purpose of the study
as well as lay out the overall plan.

Preparation for data collection The procedures and protocols for collecting the
data relating to the objectives are defined.

Collecting evidence Depending on the design of the study the data can be collected
from primary sources such as interviews and observations, indirect sources like
monitoring tools or video recorded meetings but also data that already exists –
e.g. requirements or source code – can be collected.

Analysis of collected data If the aim of the study is to explore a phenomena in its
context the collected data is analysed inductively [91] – coding the data and then
forming theories and hypotheses from the identified patterns among the codes.
On the other hand the analysis can be deductive by its nature [91] and aim to
validate or refute existing theories. In this case the collected data is compared to
the predictions of the theories to be validated. Seaman argues that the analysis
of the data should be carried out in parallel to the data collection since analysis
can reveal the need for new data and allow the collection of data to confirm or
refute emerging results [98].

Reporting The outcome of the study is reported to funders, industrial partners,
educational communities etc. Different reports can be necessary depending on
the intended audience.

Robson [89] states that case studies can be used to explore, describe or explain a
phenomena in its context but case studies can also be used in an emancipatory way
by changing aspects of the phenomena to empower certain stakeholders. This is in
contrast to Runeson and Höst who argue that a case study is purely observational and
that empirical studies that aim to change an existing situation should be referred to
as action research [92].

In the case of inductive studies – where the aim is to generate new hypothesis
and theories with respect to the investigated phenomena [91] – Seaman states that
ideally further data collection can help to refute, validate or enrich emerging theories
but this is not always possible [98]. Furthermore, Flyvbjerg argues that in the case
of generating new insights it is more interesting to focus on the exceptional data than
data commonly found throughout the study since this opens for new insights regarding
the phenomena and re-interpretations of established discoveries [43].

3.3 Design Science Research
Design science research is a research methodology for creating software artifacts –
designs – addressing problems encountered in research or practice [55, 82, 103]. In
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this context Simon defines a design as a human-made or artificial object [103] and the
aim of design science research is the systematic investigation of the design of computer
systems used for computations, communication or information processing [56]. While
different designs are driven by different needs – such as addressing problems raised in
previous research or by practitioners – the outcome should not only be a new artifact
but also a theoretical contribution to the relevant field of research [82].

According to Peffers et al. the design process can be described in six steps [82]:

1. Identify and motivate the problem and relate it to state-of-the art as formulated
by previous research.

2. Define the objectives of the artifact that answers to the problem above. The
objectives can be quantitative – such as runtime metrics or figures for precision
and recall, or qualitative – like a description on how the artifact supports new
solutions.

3. Design and develop the artifact so that it delivers a research contribution either
in how it was implemented or in what it accomplishes.

4. Demonstrate the artifact on an instance of the original problem. Depending
on the objectives the demonstration can be anything from a case study to a
proof-of-concept implementation.

5. Evaluate the artifact in relation to the objectives and state-of-the-art. Iterate
steps 3-5 until the artifact meets the objectives.

6. Communicate the outcome of the design, both in terms of the artifact as such
but also the insights gained throughout the process.

Where action research, case studies and grounded theory emphasise the investiga-
tion of a phenomena in its context, design science research emphasises the development
of an artifact. Thus the latter recognises the possibility to investigate designs outside
of their original contexts [117].

4 Contributions
The included publications are described per scholarship, for each scholarship intro-
ducing the shared context of the publications and then the individual contributions
of each publication. The first scholarship is Teaching since this is the origin for our
investigations into software models and MDE. Discovery is next as it builds on the
modelling technologies introduced for Teaching to explore the possibilities of natural
language generation from software models. Then comes Application as we wanted to
validate if our understanding of MDE had bearing in industry. Finally, insights from
the three scholarships are pooled together in Integration where a project involving
three large companies has a central role.
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4.1 Scholarship of Teaching
The scholarship of Teaching is represented by two publications on improving how to
teach MDE. The first publication, Executable and Translatable UML – How Difficult
Can it Be? [27], is a case study on the introduction of executable models while the
second publication, Pair Lecturing to Model Modelling and Encourage Active Learning
[23], reports on the impact of pair lecturing MDE. The two papers are related in that
they both address the challenge of transferring an understanding of the problem into
a validated solution.

4.1.1 Mastering Modelling

In software development the process of understanding a problem and defining a so-
lution using relevant abstractions involves an implicit form of modelling [46]. During
this process the developer has as an internal model of the system which can be shared
and discussed with others. Over time the developer’s internal model evolves through
the interactions with other stakeholders, the changing requirements and context of the
system as well as through the validation of the implementation.

Cognitive Apprenticeship Mastering the process from understanding the problem to
validating a solution is not necessarily an easy task. From the perspective of MDE
education it is not obvious for all students how to share and discuss different solutions
– and even harder to come up with them in the first place.

Cognitive apprenticeship [18] is an approach to instructional design that aims to
teach how masters form their internal model and then step-by-step formalise it into
a solution that fulfills the requirements. In this way the tacit knowledge as well as
the alternative routes are made explicit so that novices – apprentices – learn from
imitating and reflecting on the practice of a skilled master. The learning possibilities
are structured as six teaching methods:

Modelling The master verbalises her own cognitive process of performing a task –
including dead-ends – so that the novices can build their own cognitive model
of the task.

Coaching The master observes the novice performing a task and offers feedback and
hints in order to further develop the novices’ ability.

Scaffolding Compared to scaffolding the novices get less support while performing a
task in a setting which is assessed by the master to fit the abilities of the novice.

Articulation The novices are given the opportunity to articulate knowledge, rea-
soning skills as well as problem-solving strategies either in collaboration with
another novices or in interaction with the master.

Reflection The novices compare their ability to that of other novices or the master
but also to the emerging internal cognitive model of expertise.

Exploration The novice is given room to solve problems without the help of the
master.
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As teachers we need to facilitate a learning environment where students can explore
MDE concepts in different contexts and validate the completeness of their models.
These are challenges we have encountered in our own course on MDE.

Teaching Model-Driven Engineering The course runs over eight weeks and corre-
sponds to 200 hours. Most of the time the students spend on a course project work-
ing on an open-ended problem. The first part of the project consists of developing
blueprint CIMs of a hotel reservation system and then in the second part developing
an executable PIM. The project work is supported by two lectures per week except the
last week when the students demonstrate their projects. A majority of 90-130 students
are at their third year in one of three different bachelor programs while some come
from a master program in software engineering. During the evolution of the course
we have aimed to address both how to capture domain knowledge using models and
how to reason about software models as well as how to validate the functionality and
structure of the models.

Cognitive apprenticeship was not originally part of the motivation of the first in-
cluded paper [27] – the connection was made while synthesising the thesis. For the
second included paper [23] the link was made during our reflection on the outcome
while preparing for communicating the outcome to a broader audience.

4.1.2 Paper 1: How Difficult Can it Be?

The publication presents the outcome of letting our students develop executable PIMs
as part of their project work [27]. Before we introduced executable models into our
course the students spent 175 hours preparing models in our course and then 200
hours in the following course to manually transform them into Java. As a result it
took months before they were able to test their design decisions. The models and the
code rarely correlated and the different models were inconsistent with each other. And
since the only way to validate the models was by manual model inspection the students
often had a different view than the teachers on the level of detail in the model.

From an MDA perspective an executable PIM would be the remedy since the in-
terpreter would give the students constant feedback [73, 85] as they explore how to
transform their CIM into an executable PIM. Using the terminology of cognitive ap-
prenticeship the supervision time was used for modelling and coaching while scaffolding
and exploration would distinguish the work the teams did on their own. Hopefully the
students would spend time on reflection on their own initiative but the demonstration
at the end of the course was an opportunity for us as teachers to ensure they did reflect
on their own ability.

The question we wanted to explore ourselves was to which extent it would be
feasible to develop an executable PIM as part of the course?

During the first part of the project the teams consisted of eight students that
split into two teams of four to develop executable models. Each team had a total of
300 hours to their disposal and we defined a set of evaluation criteria to specify the
expected design and functionality. In the first year, 2009, there were 22 teams and in
2010 the number of students had increased and 28 teams of four participated. From
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the evaluation in 2009 we learnt that the students wanted more tool supervision so in
2010 one of the earlier students spent 22 hours on helping out with tool related issues.

In 2009 all 22 teams managed to deliver an executable model within the time
frame but four teams failed to meet the evaluation criteria. In 2010, 25 out of 28
teams delivered on time as well as following the criteria but two teams failed to deliver
on time and one team did not meet the criteria. The 25 teams that succeeded to meet
both time constraints and evaluation criteria had in general more elaborate models
than the 18 teams of 2009. In 2010 we introduced a survey to get a more detailed
picture of how much time the students had spent learning the tool and its modelling
paradigm. Out of 108 students 90 responded and 75 of those estimated that they
required up 40 hours before they were confident using the tool. Our own evaluation of
the models gave that the quality in terms of details and consistency had improved in
general and in some cases went beyond what we thought possible, given the context.

4.1.3 Paper 2: Pair Lecturing to Model Modelling

While the introduction of executable models changed the students project work to
the better we still found that the students struggled to apply the lecture content to
their project. Lectures tend to present a neat solution to a problem and in the case
the process for obtaining the solution is given that is also given as a straight-forward
process [112]. What we wanted to do was to increase the interaction with the students
in order to adjust the lecture content to their needs since students learn more when
they are actively involved during lectures [51, 84].

Pair lecturing lets us do just this. In the context of cognitive apprenticeship we
used the lectures to model, articulate, reflect and explore different ways of modelling
the domain of course registration. In this way we make explicit our own individual
cognitive processes in interaction with the students where we let them be the masters
of the domain and we are the masters of MDE. Together we explore different ways
of modelling the same phenomena while discussing their pros and cons. The lectures
become an arena for how to use models to organise the functionality and structure of
the domain and how information from one kind of model can be passed on to other
kinds of models and enriched with more details from the domain.

The publication aimed to answer two questions Can pair lecturing encourage stu-
dents to take a deep approach to learning in lectures? and What are the pros and cons
of pair lecturing for students and teachers? In order to answer the questions a survey
was used to collect the impressions of the students – as assessments on a five-grade
Likert scale and as comments in relation to four statements.

From the survey it was possible to conclude that pair lecturing enabled students to
be more active during the lectures than what they were used to. One obvious way of
for a student to be more active is to participate in the on-going discussion. However, in
a lecture hall with 100 students it is difficult to get everyone involved in the discussion
– both practically but also since not everyone wants to state their opinion in public.
But by posing two solutions to one problem even the silent get more active since they
need to chose one of the solutions to accommodate to their project or come up with
their own. We also found that the students felt they could influence the lecture content
more than usual which gave them more opportunities to address the issues of MDE
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they found most challenging. The students also reported on remembering more after
the lectures.

Regarding the pros and cons the students found that too many opinions could
be confusing while they appreciated that complicated concepts were explained twice
and in different ways by the two teachers. As teachers we found that we were out of
comfort zone since we could not predict where the student interaction would take us.
The most important change for us was the new possibility for reflection-in-action [96].

4.2 Scholarship of Discovery
This section will first relate the concept of natural language generation to model trans-
formations before describing the contributions of the included publications – Natural
Language Generation from Class Diagrams [21] and Translating Platform-Independent
Code into Natural Language Texts [22]. While originally published as exploratory case
studies it would have been more sound to label the investigations as design science
research due to the fact that it is the transformations – the designs – that are in focus
while the designs are motivated by the findings of Arlow et al. where the original
context has been abstracted away. The validation of the technique is limited to the
feasibility of generating natural language descriptions from software models – there is
no validation of the usability of the texts in an industrial context.

4.2.1 Model Transformations

A model transformation is a set of rules that define how one or more constructs in a
source language are to be mapped into one or more constructs of a target language [68]
together with an algorithm that specifies how the rules are applied [75]. The rules are
specified according to the syntactical specification of the source and target languages
and since the specification is a model of the modelling language it is referred to as
a meta-model [5, 67]. A translation is transformation where the source and target
languages are defined by different meta-models [118].

Depending on the levels of abstractions of the source and target languages a trans-
lation has one of the following characteristics [76]:

Synthesis The translation from a more abstract source to a more concrete target
language is referred to as a synthesis translation. An example is the translation
from source code to machine code where the compiler synthesises the information
in the source code with information about operating system and hardware [1].

Reverse Engineering To reverse engineer is the opposite of synthesising – the trans-
lation removes information present in the source when defining the target [30].
Brown’s notion of code visualisation [17] is an example of reverse engineering.

Migration The source is migrated to a target when the languages have the same level
of abstraction but different meta-models, e.g. when porting a program from one
programming language to another [76].
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Natural Language Generation from Software Models The publications realise the
transformation from model to natural language in the same way, using a two-step pro-
cess. The first step is to transform the relevant parts of the model into the equivalent
constructs as defined by a linguistic model – in other words a grammar. The linguistic
model is then used to generate the natural language text. The two transformations
relate to Natural Language Generation which transforms computer-based represen-
tations of data into natural language text in a three-step process – text planning,
sentence planning and linguistic realisation [9, 88]:

Text planning During text planning the data to be presented is selected and struc-
tured into the desired presentation order.

Sentence planning Then the individual words of the sentences are chosen and given
their sequential order according to the syntactical structure of the target lan-
guage.

Linguistic realisation Finally, each word is given the appropriate word form de-
pending on case, tense and orthography.

Depending on the purpose of the target language, the resulting translation can either
be an example of synthesis, reverse engineering or migration. I.e. a textual summary
of the model would be a reverse engineering transformation, a migration translation
would yield a text that exactly paraphrases the model and a translation that not
only paraphrases the model but also adds contextual information would be a synthesis
transformation.

Literate Modelling Both the included publications under Discovery stem from the
same problem reported by Arlow et al. [4]. From their experiences of the aviation
industry they claim that models are not always suitable for organising requirements
into source code. Their example is based on the concept of code-sharing (one flight
having more than one flight number) worth millions of pounds every year in revenue
for the airlines. This is denoted by an asterisk (*) when transformed into a class
diagram. They go on to claim that in a class diagram all requirements looks the same
– making it impossible to distinguish which requirements are more important than
others.

Arlow et al. further claim that in order to validate the correctness of a model
it is necessary to understand the modelling paradigm (object-oriented in their case),
knowledge of the used models to decipher the meaning of the different boxes and
arrows as well as acquiring the necessary skills to use the different modelling tools
that are used for producing and consuming the models [4].

The aim of the two publications is then to explore the possibilities to paraphrase
the models as natural language texts – a medium stakeholders know how to consume
[42]. The idea is that since all changes to a system are done at the PIM level the
generated texts residing at the CIM level will be in sync with the generated PSM.
Thus documentation and implementation are aligned with each other and there is a
single source of information for both documentation and implementation.
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4.2.2 Paper 3: Language Generation from Class Diagrams

For the first translation the input was class diagrams while the output paraphrased
both the included classes and associations in a textual format. Any comments embed-
ded in the diagram were taken at face value and appended to the corresponding text
element. In this way the underlying motivations of the diagram is carried over to the
textual description.

Our transformation rules were inspired by the work done by Meziane et al. [78].
They generate natural language descriptions of class diagrams using WordNet [41], a
wide-coverage linguistic resource which makes it useful for general applications but
can limit the use for domain-specific tasks. In contrast our transformation reuses the
terminology of the model to generate a domain-specific lexicon. Since the transforma-
tion rules are defined using the meta-model of the modelling language they are generic
for all models that conform to the meta-model. In combination these two qualities
enable the described approach for transformation from model to natural language text
to be applied to any domain.

4.2.3 Paper 4: Translating Platform-Independent Code

Where the prior publication translated a class diagram that defines the structure of the
software this publication takes an action language – a behavioural description of the
model – as its input. The difference between an action language and a programming
language compares to the difference between a programming language and assembly
code – where the programming language abstracts away from the hardware platform
the action language abstracts away from the software platform [75]. This means that
when a programming language enables computations without knowing the number of
registers or how the structure of the stack, an action language enables the addition
of the ten first values of a set without specifying it as an iteration of a list or a
increment over an array. As a consequence, according to Mellor et al. [75], just as the
computations are reusable across hardware, the actions are reusable across software.

To our knowledge this was the first attempt of generating natural language from
an action language. In comparison to previous work on generating natural language
from code (e.g. see [105, 106, 87, 50]) our approach enables one transformation to
be reused across many software platforms. This means that the generated texts can
be reused independent if the behaviour is realised using C, Java or Python. Another
benefit is that if the transformation is done at code-level the transformation has to
sieve away the platform-specific details [105] as well as be re-implemented for each
software platform.

4.3 Scholarship of Application

The contributions under Application consist of two publications that report on the
possibilities – Industrial Experiences from Multi-Paradigmatic Modelling of Signal Pro-
cessing [26] – and challenges – Limits of Model Transformations for Embedded Software
[54] – of multi-paradigmatic modelling from a case study in industry.
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4.3.1 Multi-Paradigmatic Modelling

The case study at Ericsson was a testbed for evaluating the possibilities of combining
multiple domain-specific modelling languages for implementing the channel estimation
of a 4G base station.

Domain-Specific Modelling In relation to modelling techniques being applied to
more complex systems consisting of domains with different characteristics, the neces-
sity to apply modelling languages with appropriate representations has risen as well.
A platform-independent modelling language tailored for a specific domain is referred
to as a domain-specific modelling language, DSML [63].

In this context a domain represents one subject matter with a set of well-defined
concepts and characteristics [101] that cooperate to fulfill the interactions of the do-
main [85]. This definition of a domain is in line with what Giese et al. [48] call a
horizontal decomposition and ensures the separation of concerns between the domains
[37] as well as information hiding [81]. Furthermore, each domain can be realised as
one or more software components as long as these are described by the same platform-
independent modelling language [85].

The aim of a DSML is to bridge the gap between how domain concepts are rep-
resented and how they are implemented. Therefor a DSML consists of a set of repre-
sentations relevant for the domain and one or more code generators that transform a
program expressed by the DSML into code for a specific platform. DSML is another
way to approach the challenges of validating models as expressed by Arlow et al. –
instead of knowing how to map the modelling paradigm and the modelling concepts to
the domain [4], the modelling languages uses a paradigm and representations relevant
for the domain.

Multi-paradigmatic modelling is a research field that addresses the challenges that
arise when using multiple DSMLs within the same system. Among the challenges are
co-execution, integration of languages and transformation from multiple sources to a
shared platform [52].

Channel Estimation for 4G The underlying case study for the two publications was
a testbed for using two different DSMLs for implementing the channel estimation of
the LTE-A uplink of a 4G telecommunication system at Ericsson AB. The system was
demonstrated at the Mobile World Congress in Barcelona 2011. The requirements
included unconditional real-time constraints for calculations on synchronous data and
contextual determination of when signals should be sent and processed.

The system was analysed as consisting of two domains with their own characteris-
tics and representations. The first domain was the signal processing domain which is
signified by more or less fixed algorithms that filter, convert or otherwise calculate on
incoming data while keeping a minimum interaction with external factors. The second
domain was referred to as the control domain since it controlled the flow of execution
and was responsible for interacting with the surrounding environment, determining
which signals to send and process given that the context changed every millisecond.

Traditionally such a system would be realised using C, at least at Ericsson. The
problem is that the result is a mix-up of language-dependent details, hardware opti-
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misations and desired functionality. Instead a multi-paradigmatic modelling approach
was tried out were the signal processing domain was implemented in a textual language
without side effects that was embedded in functional language [6, 7]. The control do-
main was implemented in the same object-oriented modelling language that we had
previously introduced in our course [73, 85].

The case study set out to answer four research questions:

1. To which extent is it possible to develop the signal processing and the flow of
execution independently of each other?

2. How can the sub-solutions be integrated into one application running on the
designated hardware?

3. Which are the key challenges to consider when generating imperative code from
a functional modelling language?

4. To what extent is it possible to reuse existing model transformations for new
hardware?

Questions 1 and 2 were answered in Industrial Experiences from Multi-Paradigmatic
Modelling of Signal Processing while questions 3 and 4 were addressed in Limits of
Model Transformations for Embedded Software.

4.3.2 Paper 5: Multi-Paradigmatic Modelling of Signal Processing

The development process relied on the possibility to validate the domains indepen-
dently. For this to be possible it is important that the modelling languages are ex-
ecutable in their own right and that they later on can be translated into deployable
code, after the models have been validated to have the right structure and behaviour.
A benefit of the chosen approach was that we avoided the difficulties regarding tool
and language integration recently reported on by Mohagheghi et al. [80] and Torchiano
et al. [116].

Since the DSML used for the digital signal processing was embedded in a functional
language the domain was independently developed and validated using the interpreter
of the functional language. The control domain was implemented and validated us-
ing the interpreter that came with the executable modelling tool. In both cases the
interaction with the other domain was stubbed, using dummy values for testing the
signal processing and simulating the execution of signals in the control flow. Regarding
the DSMLs appropriateness for the domains, the experts in respective domain stated
that the chosen representations of respective language were not ideal since it was a
challenge to map the domain concepts to the representations of the DSMLs.

The interfaces between the domains could be negotiated through Scrum meetings
[11, 97] since the two teams were located in the same office landscape. Thus the
interfaces could be detailed as the understanding of the domains grew during im-
plementation instead of in advance. The implementation of the interface was then
hand-coded since it required multi-core deployment which neither of the DSMLs had
representations to handle. Full interaction of the two domains could not be done until
after code generation.
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4.3.3 Paper 6: Limits of Model Transformations

In the case of transforming a functional DSML to an imperative platform we en-
countered a problem that could not be solved under the time constraints. During
the transformation new variables were introduced for intermediate results. Since the
available memory on the chip was scarce all variables were limited to 16 bits of mem-
ory. However, in some cases the intermediate results needed 32 bits in order for the
calculations to be precise enough. If all intermediate variables had been assigned 32
bits the generated code would not fit on the chip. Since the intermediate variables
were introduced by the transformation they could not be marked in the models for
special treatment during transformation [75]. In the end the only solution feasible
within the time frame was to manually edit these variables in the generated code.
If Multi-Paradigmatic Modelling is going to be successful it is necessary to pay more
attention towards cross-paradigmatic transformations when the target platform comes
with hard constraints on memory or processing capabilities.

In the case of the object-oriented DSML there already existed a model transforma-
tion proven to be efficient [102]. However, the transformation needed to be updated
to accommodate for the new platform. The transformation expert did a first itera-
tion and the results seemed promising when the decision was taken further up in the
organisation that his services were needed better elsewhere. In the decision between
finishing the update of the transformation themselves or to manually edit the gener-
ated code the engineers decided that it would be quicker to post-edit the generated
code. From an organisational point-of-view the introduction of MDE can imply that
new skills are needed. If the skills are scarce among the engineers the experts can
quickly become bottlenecks in the development.

4.4 Scholarship of Integration
Integration consists of four publications with a shared origin in a study of MDE that
we undertook at three companies. The publications are presented in the same order
as they were published since the three first publications present more specific aspects
of the data while the fourth presents a fuller analysis – which explains why it was
finished last. Since the collected data was used and analysed in different ways for
the four publications the analysis procedure and results will be presented under each
publication.

First out is a publication in relation to Industrial Adoption of Model-Driven En-
gineering – Are the Tools Really the Problem? [119]. The paper integrates data from
an earlier study by Hutchinson et al. [58, 59, 60, 120] with a subset of the interviews
from our own MDE study in order to explore the impact of tooling on the adoption
of MDE.

The second paper is Extending Agile Practices in Automotive MDE [39]. At the
same time as our own study an internal and independent study was conducted at
one of the involved companies. The included paper is the result from integrating the
two studies in relation to the possibilities and challenges concerning agile development
from an MDE perspective.

For the third paper we integrated the text generation techniques developed under



Summary and Synthesis 23

the scholarship of discovery with interview data from our MDE study to came up with
Enabling Interface Validation through Text Generation [24].

Finally, the fourth paper shares the general analysis from our MDE study as Com-
paring and Contrasting Model-Driven Engineering at Three Large Companies [28]. The
reported integration is a validation of Hutchinson et al.’s aforementioned research on
industrial adoption of MDE, together with new insights specific to our own study.

4.4.1 A Study of MDE at Three Companies

The study was planned during the autumn of 2012 and then executed in the spring of
2013 with the final analysis and dissemination taking part during the autumn of 2013.
There was a considerable overlap between execution and analysis which enabled new
data to be collected during the analysis in order to follow up on emerging themes and
validate spiring hypothesis [98]. The study was an international collaboration with
Jon Whittle at Lancaster University. He was involved in an earlier study assessing the
industrial application of MDE which included a survey with more than 400 respondents
and 19 interviews at 18 companies representing 10 different industrial sectors [58, 59,
60, 120].

Motivation The aim of our study was to compliment the earlier study – which we
refer to as Hutchinson et al. since John Hutchinson was the primary investigator –
with a deeper and more narrow investigation. In this context we wanted to answer
two questions, What are the similarities and differences in the way that the three
companies have adopted and applied MDE? and How does the nature of practice at the
three companies agree or disagree with the findings from Hutchinson et al.?

Context The study involved three companies; Ericsson AB, Volvo Cars Corporation
and the Volvo Group. The three companies had in common that they were all in a
transition into more agile software development while their experiences of MDE varied.

At Ericsson we collaborated with a unit developing software for radio-base stations.
The unit has been involved in various MDE projects since the late 1980’s and have
primarily used UML for both documentation, specification and code generation in
relation to their software development. We interviewed nine engineers, ranging from
newly employed software developers, senior architects to managers. The interviews
were conducted from January to March 2013.

Electronic Propulsion Systems is a new unit at Volvo Cars that develop software
for electric and hybrid vehicles which started to use MDE in 2010. The interviewees
were 12 all-in-all, mainly experts in physics or electric engineering encoding their
knowledge in a modelling language that supports code generation. Just as for Ericsson
the interviews took place during January to March 2013.

The Volvo Group is a code-driven organisation but there are pockets of MDE
development, mainly at the top-level system planning with partial code generation.
Due to the fact that the Volvo Group entered the project during the spring of 2013
and that there were fewer MDE practitioners we only interviewed four engineers. The
interviewees represented Truck Technologies and had both managerial roles as well as
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being developers or architects. The later entry date meant that the interviews were
conducted between March and June 2013.

Data Collection The interviews were semi-structured and lasted for approximately
60 minutes each. A typical interview started off with general questions about personal
experiences and attitude towards MDE as well as educational background and current
role in the company. Depending on the outcome of the first questions the rest of the
interview would go into more depth, exploring topics that struck the interviewer as
most interesting or controversial. The interviews were audio recorded and then tran-
scribed. The interviews were complemented with additional data collection in order to
cross-verify the quality [91]. Besides observations we also used informal interactions
at the coffee machine or lunch table since this allows for more spontaneous interaction
and data collection from other practitioners than those interviewed [34]. Our find-
ings were then presented at technical meetings to the engineers as well as at regular
process meetings with company representatives where the findings were discussed and
we received additional interpretations of the data. During the complimentary data
collection field notes were used to document insights and impressions.

4.4.2 Paper 7: Are the Tools Really the Problem?

The immaturity of the tools is an often mentioned reason for why MDE adaption fails
[69, 99, 116, 115]. But we also know from Kent [65] and the study by Hutchinson et
al. that social and organisational aspects impact the adoption of MDE in industry
[58, 60]. The questions we investigated in this publication was To what extent poor
tools hold back adoption of MDE? andWhat aspects – both organisational and technical
– should be considered in the next generation of MDE tools?

The taxonomy was induced from the interviews conducted by Hutchinson et al.
[58, 60]. Each transcript was coded by two researchers at Lancaster University. The
codes were then grouped into four themes – technical, external organisational, internal
organisational and social factors – each factor with its own categories. We then used
the data collected at Volvo Cars and Ericsson to validate the taxonomy by mapping
tool related issues in the interviews to the taxonomy. Whenever there was any ex-
ceptional issue or it was unclear how to classify an issue this was noted down and
discussed among the researchers.

The technical factors relate to issues such as specific functionality like code gener-
ation, the impact on quality and productivity as well as complexity of the tools and
the modelling languages. Adapting tools to governmental or commercial standards or
the cost of buying tools are examples of external organisational factors. Under inter-
nal organisational factors we grouped the need for new skills when adopting MDE,
finding the right problem to start with and how to adapt the existing process with
the possibilities enabled by the tools. Social factors identify among other things how
engineers relate to the tools due to the (lack of) trust towards tool vendors and tools.
The four factors are to a certain extent overlapping and it is possible to arrange the
identified categories in other ways. We also expect new aspects to be identified as new
issues are found in future studies.
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The taxonomy can be used for evaluating existing tools or as a checklist when
developing new tools but we also identify a number of aspects that warrant more
attention from the MDE research community. We therefore propose that:

• tools should match the intended users instead of forcing people to adapt to the
tools;

• while commercial tool vendors focus on code generation from low-level designs
the research community could explore tools for creativity and high-level designs;

• more effort is needed in identifying which problems are suitable for MDE;

• researchers pay more attention to understand how processes and MDE tools can
improve overall software development and

• open MDE communities are important since practitioners often feel isolated due
to the lack of on-line forums where tool related issues can be discussed.

The last proposition was identified during the validation phase and an appropriate
category should be included under social factors. We also found that a single tool
issue often maps to more than one category in the taxonomy which shows how the
factors interact in determining the success of MDE adoption.

Returning to the original questions of investigation we found that the technical
aspects of the tools do not support those who try to adopt MDE but also that the
organisational and social factors are just as important to consider.

4.4.3 Paper 8: Agile Practices in Automotive MDE

The automotive industry is traditionally oriented towards mechanical and electrical
engineering using a rigorous process for planning, developing, integrating and finally
testing the integrated software, hardware and mechanical parts in a prototype vehicle
before going into mass production. Each step of the process is given firm start and
end dates minimising the possible overlap between activities.

During the last twenty years the influence of software has grown exponentially so
that a modern car contains 100 or more individual hardware units [19, 38]. The rig-
orous process used for mechanical and hardware development is a barrier for software
development since each iteration lasts for approximately half a year with the conse-
quence that software designs specified during the planning stage cannot be validated
until several months later. One problematic area for software development is the inter-
faces between the top-level components since these are frozen at the planning stage.
If the need for new signals or parameters is identified during implementation these
changes cannot be included in the interface until next iteration.

At Volvo Cars software development teams that work within a top-level compo-
nent have been successful in applying Simulink6 for developing software for electronic

6A modelling language commonly used for control engineering tasks such as regulating water
levels or state transitions of a system: http://www.mathworks.se/products/simulink/ – Accessed 14
February 2014.
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propulsion – even though the team members have no training in software develop-
ment. Instead the engineers have a background in electrical engineering or physics.
An important aspect here is that the engineers have used Simulink, and the related
MatLab7 tool, during their university training. The resulting models are then trans-
formed into code by a code generator. By building up a simulation environment it is
also possible to validate the behaviour of the sub-system models before the software
is integrated on a prototype vehicle. This allows for much shorter iterations between
changes and shortcuts the necessity of specifying the software before development since
the specifiers implement their own domain expertise.

Our publication sets out to answer the question Which are the challenges and
possibilities for a more agile software development process on a system level?. And the
way we did it was through two independent case studies.

The first study was launched internally by Cars in order to explore how the current
process could become more agile. The second study was our own on MDE at three
different companies. The first study used semi-structured interviews as the main source
of data, interviewing eight software developers between May 2012 and April 2013. In
the publication we narrow the number of interviewees at Cars in the second study to
eight so that the two sets of informants are consistent in terms of background and
responsibilities. Though the two interview sets were analysed independently of each
other they came to the same conclusion – something that was recognised by one of
the managers involved in facilitating both studies.

The identified challenge towards more agile development at system level was the
freezing of the interfaces. The engineers reported on different work-arounds to over-
come the problems such as defining extra signals or parameters that might not be
used. As a result the interfaces are difficult to understand with regards to the ac-
tual behaviour and consume more memory and processing capabilities than necessary.
These problems are dealt with but lead to more work later in the development process
than originally planned for.

To identify possible solutions to the identified challenge a system architect with
responsibility for the system-wide interfaces was interviewed. The perceived remedy
was more MDE. The focus in the future should be on the teams developing the software
and not on the planning stage in the development cycle. By extending the current
tool that manages the interfaces to also execute consistency checks the teams could
add new signals as they were needed and old signals that were never used could be
discarded. The consistency check would ensure that the new signals were compliant
to legacy signals in a manner similar to what Rumpe advocates [90].

4.4.4 Paper 9: Validation through Text Generation

As seen in the previous publication the interfaces are problematic when they are
overloaded with unused signals – it becomes difficult to know which signals are used
and if there is an intended order between the signals. The problem of understanding
the interface implementation was not unique to Volvo Cars but encountered at the
other companies as well. It seemed to be an opportunity to try to integrate the insights
regarding model transformations from Discovery with a problem found in industry.

7http://www.mathworks.se/products/matlab/ – Accessed 14 February 2014.
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The aim of the design was to explore if a text describing an interface can be
generated from an existing test model. The reason for using a test model is that it
should capture the desired functionality of the system behind the interface, describing
in which sequence the signals are supposed to be sent and what the expected response
is [53]. The problem is that it is a model and not necessarily understood by all
stakeholders, hence a possibility for natural language generation.

The contribution consists of generic transformation rules that transform a test
model into a natural language text. The text specifies the intended order between
the signals and also filters out the signals that are not covered by the test model.
In contrast to the earlier publications under Discovery this transformation does not
rely on an intermediate grammar for linguistic realisation. Instead the concepts of the
source language are mapped into holes of a template representing the target language.
In this way the transformations are easier to manipulate since they do not require
an understanding of the target language’s linguistic paradigm. And as we saw under
Application it is positive if we can keep the complexity of the transformations low.

While reported as a case study the publication is more appropriately defined as a
design study since we due to time constraints could not evaluate the outcome in its
original context. The lack of validation in the original context means that the question
of what we will find when balancing the complexity of the transformation with the
fluency of the generated text is still open. The same is also true for how useful and
readable the generated texts are and what measures can be taken to improve them.

4.4.5 Paper 10: Model-Driven Engineering at Three Companies

For this publication the focus was two-fold – to induce new hypothesis from the data
[98, 43] and validate the findings of Hutchinson et. al [58, 59, 60, 120]. The interviews
were transcribed and each transcript was coded by at least two researchers. The codes
were then grouped into themes where the most interesting themes were selected for
publication. Each selected theme was validated both by triangulation of data and by
letting company representatives confirm the outcome before we submitted the paper.
After this analysis was finished we extracted the findings from Hutchinson et al. and
for each finding we went through the transcripts to see if the finding was supported
or refuted by our data.

The first reported insight is that MDE enables software development to be brought
back in-house. This is important to shorten lead times between the decision to im-
plement a feature and its actual integration on platform. A key factor here is that
it also enables a more agile way of working since software development can be done
by the domain experts that traditionally specify what suppliers and consultants are
supposed to deliver. In this way the dependency on the knowledge of external actors is
mitigated as well as the risk that they misinterpret the specification or do not deliver
on time. It also enables the development of new features in an exploratory fashion
which is not possible if the functionality has to be detailed before development. The
change is possible since the domain experts can encode their knowledge in a suitable
domain-relevant language that supports the specification to be transformed into code.

Hutchinson et al. flag for the possibility that the gain of adopting MDE can be
counterbalanced by the cost for adapting the tools for the specific context [60]. We
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found that large-scale MDE does not only require adapting single tools but rather
requires the introduction of a MDE-specific infrastructure that compensates for the
domain experts lack of software development skills. We use the term primary software
to denote the software developed as part of the product to deliver – in this case a
car – and the term secondary software for the software that supports the development
of the primary software. Since the primary software is explorative to its nature and
developed under agile forms it is not possible to define the secondary software in
advance – its functionality and content will depend on the directions taken for the
primary software.

We found that abstractions do not necessarily help in understanding complex soft-
ware. One example is how a modelling tool enforces the user to open new windows for
each level in the hierarchical structure of the software as well as for each subpart at
that level. The consequence, according to one interviewee, was that you could never
get the details of a part and its context at the same time which made it difficult to
interpret the given model elements.

In most cases our study validates the findings of Hutchinson et al. The exceptions
regard the engineers’ sense of control – Hutchinson et al. found that code gurus feel
they loose control while managers are risk-averse and avoid new technologies including
MDE – and the lack of relevant MDE skills among practitioners. In contrast we found
that the introduction of MDE in a new unit enabled the adaption of new tools, new
processes and the employment of engineers that had prior experience of the chosen
modelling language. And coders employed to develop secondary software saw no loss
of control in their role.

While interfaces between top-level components was a problem at Volvo Cars the
engineers at Ericsson had new opportunities to address the challenge due to the in-
troduction of agile development. At Ericsson the developers get access to both ends
of the interface and can change it according to the changing understanding of what
needs to be communicated over the interface. The organisational impact is enabled by
the software residing on one hardware unit and all software being developed in-house.
As reported on in Extending Agile Practices in Automotive MDE [39] neither are the
case at Volvo Cars so other ways of handling the challenge are needed.

In our publication regarding MDE tools [119] we claim that the MDE community
needs a better way of determining when and how to introduce MDE in an organisation.
From our data it seems that forming a new unit was a successful way since it allowed
the engineers to adapt the experiences from other units to a new organisational context
without the legacy in terms of existing culture and software.

5 Reflection
Smith defines reflection as the “assessment of what is in relation to what might or
should be and includes feedback designed to reduce the gap” [104]. Reflection is a vital
part of teaching and learning where new situations constantly arise for which we have
not been specifically trained [16, 96]. But as we saw in Section 3 on research method-
ologies, reflection plays an important part in evaluating the decisions and outcomes of
a research process. As Steeples points out, the involved researcher has the dual roles
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to both drive and critically review the process [110].
The four scholarships allow for different possibilities for reflection, in what Schön

refers to as reflection-in-action and reflection-on-action [96]. Reflection-on-action takes
place before or after the execution of an activity, at the planning or evaluation stage.
Reflection-in-action is in contrast done during the activity. By changing the con-
text the possibilities for reflection change since the time frame for reflection-in-action
varies from seconds in a class room or during interviews to days or weeks during the
implementation of a design. And the ability to reflect in-action which pair lecturing
provided was useful during the interviews since it was necessary to both reflect on how
the situation evolved while being involved in the discussion.

Different roles have different perspectives, even within the scholarships. A teacher
and a student will see different challenges and possibilities and bring their own as-
sumptions into the equation. The same goes for an engineer and a manager who will
have different experiences and perspectives on software development within the same
organisation. By interacting with a number of different practitioners the ability to see
new possible interpretations of a phenomena grows.

In relation to the changing perspectives the level of expertise of the academics
vary, both in relation to MDE and the domain it is used for. In some cases the
academics’ knowledge of MDE in general is greater than the practitioners, as in the
class room, while in other cases practitioners have more in-depth knowledge of their
way of working with MDE and the domain, while the contribution of the academic
instead is to provide new interpretations. And in some case the academic becomes the
novice yet again.

Transferring between the different scholarships has also enabled new perspectives
on the diverse activities within the scholarships. Sometimes this has lead to publica-
tions but other times the results are more informal in terms of feedback on how to
improve or handle different aspects. The collaboration behind Executable and Trans-
latable UML – How Difficult Can it Be? is an example of where the discussions have
led to a formal result in terms of both course improvement and publication. Another
example is how the feedback from our students on executable modelling tools is the
reason why the challenges facing the engineers regarding interfaces was recognised.
In general, being active in more than one scholarship gives new contexts to air and
discuss recurring challenges that often are shared but have different impact depending
on context.

The different audiences when communicating the results of the research means
insights into different research traditions such as computer science’s focus on imple-
menting designs in comparison to inducing new insights from empirical data.

6 Conclusions
The contributions under Teaching relate to how novice modellers can be helped to
master the process of organising domain knowledge into software solutions. This was
achieved by transitioning from models as blueprints to using models as the program-
ming language [27]. The second change was to move from lectures focused on describ-
ing the features of the models to how we reason when using the models [23]. While the
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scope of the course is model-driven development the skills should be transferable to
code-centric development since the focus is on achieving good designs and articulating
the pros and cons of different solutions.

The main theoretical contribution for Discovery is how Natural Language Gener-
ation relates to the concept of model transformations [20]. The benefit of generating
natural language texts from models instead of code is that the texts can be reused
across implementations and describe the same structure and behaviour independent of
how it is realised in terms of hardware, operative system and software representations.
The technique is also domain-independent since the terminology of the model is reused
for the textual descriptions.

Our contributions towards the Application of MDE stem from an industrial case
study on multi-paradigmatic modelling within the telecoms domain. We saw how
executable models allowed the independent development of distinct domains [26] while
the subsequent transformations caused problems due to both the different paradigms
of the source and target languages as well as from organisational perspective [54].

While raising the level of abstraction might seem a technical issue, our contributions
enforce how the success of adopting Model-Driven Engineering in industry depends on
both organisational and social factors as well as technical [119]. We have also shown
how balancing the chosen modelling techniques with a suitable organisation empowers
new user groups as software developers as well as speeds up the development process
[28, 39].

Our findings also support the claims of Kent [65] and Ameller [3] that using models
in software development is more than a technical question and that modelling abstrac-
tion in terms of clearcut platform-independent and platform-specific qualities is not
always applicable [28, 39]. The insight manifests itself in the contributions a pro-
gression from MDA to MDE as interaction with industry puts insights from Teaching
and Discovery into new contexts. An example of the transition is how the two first
publications on Natural Language Generation under Discovery were positioned in an
MDA context. The third publication, found under Integration, instead avoids using
the terminology of MDA and instead reasons about the relationship between model
and text without fixed definitions of abstraction layers.

7 Future Work
For the future we see three main areas that we would like to further pursue – industrial
evaluation of natural language generation, promoting life-long learning and agile MDE.

The main concern relating to natural language generation from software models
is the lack of industrial evaluation. It is not only in the case of our contributions
but in the field as a whole [25]. We aim to initiate a new industrial collaboration
to evaluate to which extent practitioners in industry find generated texts useful. As
part of such an evaluation the generation procedure will be included to see if and how
the technique could be used in general and to determine how much linguistic effort in
terms of grammars is needed to fulfill the needs of the readers.

If the role of software and how it is developed keeps changing the coming twenty
years as it has the previous twenty years it will be an industrial challenge to ensure
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that ’old’ employees can keep in touch with new trends. This is already a concern
that was mentioned during the interviews at the three companies where the unwilling-
ness to adapt new technologies and paradigms was a common obstacle for systematic
change. This opens for new collaborations between industry and academia for contin-
uous learning and emphasises the impact of knowledge transfer.

In our opinion agile MDE warrants more attention. Raising the level of abstraction,
automating recurring and complicated tasks as well as full-scale simulations can enable
domain experts to become the primary software developers. We still don’t know how
this scales up in large and distributed software development and if the investment in
MDE infrastructure has a positive impact on return of investment in the long run.
These are questions we would like to further investigate.
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