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Abstract—In favor of smaller chip areas and associated fabrica-
tion costs, designers of embedded multi-core systems on occasion
decide not to include cache coherence logic in the hardware
design. However, handling all cache coherence exclusively in
software is error-prone, and there are presently no tools sup-
porting developers in this task. Thus, we propose a new software
testing method, based on online inspection of the cache contents,
to pinpoint programming mistakes related to cache handling.
This concept helps localizing the causing data symbol even for
complicated cache handling errors, e. g. where the causing and
manifesting code-location of an error differ. Our solution is a pure
software solution and does not require any specialized hardware.
We evaluate our approach by using it in a large application, and
show that we can detect typical cache-related errors.

I. INTRODUCTION

The problem of maintaining cache coherence on multi-

core platforms is well known and is solved by means of

coherence fabrics implementing protocols like MESI [1] or

MOESI [2]. However, there are multi-core systems that do not

implement such hardware-based cache coherence. Especially

in the embedded systems domain, hardware designers may

choose to omit such coherence logic in favor of smaller chip

areas and fabrication costs. Also heterogeneous platforms, as

for example the Cell BE architecture [3], often do not maintain

coherent caches. Moreover, there is an ongoing discussion

whether current approaches of cache coherence will scale to

future many-core architectures with hundreds or even thousands

of cores [4].

The absence of hardware cache coherence poses challenges

to the software developer. The software design has to ensure

that concurrent access to shared objects in memory does not

lead to wrong results. We will present two examples that

illustrate the problems that can occur.

Example 1: Assume two cores cooperate in the processing

of an algorithm and need to access a shared variable. Figure 1

shows an example access sequence to such a shared variable.

On platforms providing cache coherence logic, one core’s

update of the shared variable is immediately reflected on the

other core, e. g. through invalidation of the corresponding cache

line. In systems without such logic, cores can have different

values stored for the same memory location in their local

caches, and the shared memory will only reflect changes to

memory after a writeback operation. In the illustration (Figure

1), the value of X in the shared memory is only affected after

the writeback operation in step 4. When reading a memory
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Figure 1. Illustration of a typical bug while using shared variables on
platforms without hardware-based cache coherence logic.

location, the change made by another core becomes visible

only after explicitly invalidating local cache contents causing a

read from memory the next time the address is accessed. Thus,

the subsequent read operation of core A in step 6 still returns

the outdated value for X from the local cache as a consequence

of the missing preceding invalidation of the local cache.

It is clear that without a coherence fabric implemented in

hardware, some sort of coherence protocol must be imple-

mented in software. We will approach this problem by defining

that there can at most be one unique “owner” for each memory

location. By “owner” we mean one thread of execution running

on one core. This thread is exclusively allowed to access the

memory location, i. e. only the core currently executing the

owning thread, should have the location in its local cache. This

notion of “ownership” is a convention that is not enforced by

hardware logic; it is the software’s responsibility to ensure

that data is kept in a consistent state. Ownership of a memory

location can change over time, and can be transferred from one

application or core to another. If such a change of ownership
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occurs, it has to be guaranteed that all cache lines involved are

invalidated on the in the cache of the previous owner before

memory is accessed by the new owner.

Example 2: In a software system, buffers may be used

to transfer data between software components running on

different cores. It is in this case essential to always invalidate

all respective cache lines before a buffer is transferred to a

new owner. Assume a software component A finishes using a

buffer, and due to a programming mistake, the memory area

in question is not completely invalidated in the local cache. If

at a later time, this buffer is ever used to transfer new data to

the same core, but to a different application B, instead of the

new information, the outdated contents from the local cache

will be used instead.

Programming mistakes like this are difficult to detect and

reproduce. In the second example the effect of the incomplete

invalidation might not always be visible, because by the time

the buffer is re-used by application B, the respective cache

lines may have been evicted from the local cache in the course

of normal system operation. Even if a test case is created

that reliably reproduces the issue, pinpointing the mistake can

be difficult. In our example, a programming mistake made in

application A causes a failure in B, while the two applications

may be entirely unrelated.

Currently there are no tools supporting a developer to deal

with the described problems. We therefore propose a method

and tool for online checking of cache contents to detect cache

coherence violations, the Cache Checker. With our Cache

Checker, we target embedded systems, where memory is often

allocated statically, and thus valid cache contents are known

in advance, or are easily verifiable at run-time.

Note that cache coherence issues only affect the handling of

private (mostly first level) caches, as this is the only situation

in which cores can observe conflicting contents for the same

memory location. There are potential problems also with shared

caches. It is possible that these do not reflect actual memory

contents, e. g. when memory is changed by devices using direct

memory access. However, these effects lie out of the scope

of this paper. Furthermore, we only examine data caches. The

possibility of coherence problems related to instruction caches

arises only in two situations: a) code is loaded dynamically at

run-time, or b) code can be self-modifying. We assume that

neither is the case.

The rest of the paper is structured as follows. In Section

II we present the concept of our Cache Checker. Section III

describes the details of a prototype implementation and gives

an assessment of its performance. In Section IV we evaluate

the use of the Cache Checker in the development process and

present related and future work, before Section V concludes

the paper.

II. CACHE CHECKER CONCEPT

The objective of our Cache Checker is to provide early hints

to cache related problems that are otherwise hard to detect.

This is achieved by online inspection of the cache contents. If

an indication for a software defect is found, a warning message

is generated, presenting details of the incident to the developer.

The advantage of an online inspection is that it enables the

Cache Checker to point out even those software defects that are

not provoked by any regression or black-box test. Moreover,

during an online analysis all data symbols involved in a defect

are known, which can help pinpointing the error location in

the source code.

However, to be able to perform the type of online checking

of cache contents we propose, it is required that the internals

of the core’s caches are accessible by software. It must be

possible to retrieve the corresponding memory addresses for

any given cache line i. e. cache tag, along with information

whether a cache line is currently valid or not. Unfortunately, not

all hardware platforms offer access to this internal information.

The Cache Checker’s main concept is the classification of

cache contents, and thus their related memory accesses, into

two categories: allowed and not allowed. To perform this

classification, system specific rules need to be defined that

specify, which data is accessed by which cores, and thus which

memory addresses are expected to be found in the cache of

the respective cores. There are cases, especially in embedded

systems, when these rules describing the software’s memory

accesses can be defined statically, i. e. at compile time. An

example is a software component that is scheduled to only run

on a single core. All working data of the software component

is exclusively accessed by this core, so if parts of the data are

found in the cache of a different core, this indicates a software

defect, and will be classified as not allowed. We will call this

kind of access scheme statically owned memory.

In other instances, the decision is not as easy, and cannot be

taken with information available at compile-time. This is for

example the case, when an array of buffers is used to transfer

data between different cores. Each single buffer will be accessed

by several cores over time. Thus, the time is important at which

an address related to a buffer was found in the private cache

of a core. In these instances, when the ownership can only be

decided at run-time, we speak of dynamically owned memory.

Ideally, we would want our checks to reflect the complete

contents of all caches at all times. This would permit a complete

analysis of all memory accesses and guarantee that all violations

of the cache coherence can be detected. In practice however,

this is not feasible. A complete analysis of all memory accesses

would result in an unacceptably high computational overhead,

which would in turn change the timing behavior of the target

application. Thus, we have to limit our checks to certain points

in time. These points in time can be carefully chosen by the

developer, to reduce the influence of the Cache Checker on

the target application. Concentrating the cache checks within

certain intervals in time results into a program flow, where

between two consecutive checks of the cache contents, there

are phases of normal program execution, in which coherence

violations can occur. Accordingly, the Cache Checker can

only detect those violations that persist until the next check,

i. e. concerning data that has not been evicted from cache

by subsequent operations. Accordingly, the Cache Checker’s

capability to detect cache coherence bugs is limited by two
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constraints: a) the completeness of the specified system specific

rules and b) the epoch based execution scheme. It is therefore

expected that the Cache Checker will miss some possible cache

coherence violations. The usage scenarios of our tool however

are long test runs. In this way, the longer the test runs, the

more likely it becomes that the Cache Checker sees violations,

even if they do not persist for a long time. Accordingly, we

suggest the idle-loop to perform the cache checks, to reduce

the influence on the observed system to a minimum.

To reliably decide if an access to a certain memory region is

allowed or not allowed, however, requires detailed knowledge

of the application. Thus, the configuration of the Cache Checker

models the memory usage of the system, specifying which

memory accesses, and thus which cache contents, are expected.

To specify this memory usage model, the developer provides

rules, which of the program’s data symbols (e. g. variables)

may be accessed by which core, and under which conditions.

These rules form the configuration of the Cache Checker. One

factor that influences the memory usage model is the selection

of points in time at which the checks of cache contents are

performed. It is expected that the complexity of the memory

usage model varies, depending on the decision when to invoke

the Cache Checker.

The actual analysis and classification of the observed

memory accesses into the two categories allowed and not
allowed is done by the so called classification function.

This function compares the program symbols specified in

the Cache Checker configuration rules against the internal

cache information obtained from the hardware. However, this

internal cache information contains physical addresses that

cannot be compared directly to the program symbols from

the configuration, as the linker translates the symbols into

virtual addresses only. Thus, the classification function would

first need to calculate the physical addresses for those virtual

addresses, before it could start the comparison. To avoid this

computational overhead at run-time, we pre-calculate these

addresses offline. To obtain the addresses related to the defined

symbols at compile-time, we analyze the compiled binary (.elf)

image file of the target application. However, as the Cache

Checker is part of this image, but contains code that requires

information from the image, we need to adapt the compilation

process of the target application: First we compile without

the classification function and extract the required address

information from the image, after which we re-compile the

application, this time including the classification function. The

classification function itself is automatically generated from

the configuration files and the information from the binary

image. This approach was chosen because of the following

advantages: (i) The maintenance of the classification function

is greatly simplified when the developer does not have to deal

with the actual code himself. Corrections and adaptions can

be made easily, and the developer can focus on what he wants

classified instead of how classification is performed in detail.

(ii) The actual classification happens based on physical memory

addresses. This means that the compiler usually does not know

the addresses of the symbols at compile-time. Classification

code thus deals with raw addresses, which is tedious and error

prone when done manually. In addition, the addresses can

change when modifications are made to the target application.

This means that all addresses in the classification function

would need to be manually adapted. (iii) Code generation

offers the possibility to automatically optimize the classification

function. We will discuss this aspect in Section III.

In addition to whether an access is allowed or not, our

classification also returns a numerical value. This classification
code lets the developer know, to which memory region the

classified address belongs.

When the Cache Checker detects violations of the configured

rules, an alert should be raised. The information available at

this point includes the physical memory address that was found

in cache, the core on which the violating memory access was

detected, and the result of the classification. The simplest option

to handle alerts is to collect them in memory, from where they

are accessible through a debugger. This does not require any

means of communication like a UART or a network interface.

If other means of communication between the target and the

development host are available, a more comfortable way of

alert handling is possible. As an example, we implemented the

sending of alert messages and performance data of the Cache

Checker in network packets that are received by a user interface

on the development host. Here, some additional information

is available through the linker information, like the virtual

memory address of the data found in cache and the symbol

that is associated with the address. This additional data is

collected and presented to the developer.

The transmission of alerts by the Cache Checker has some

influence on the run-time behavior of the target system.

However, this is tolerable, since the Cache Checker will only

generate alerts if possible software flaws are detected. This

case should be the exception, which means that the overhead

is limited. Also, once a violation is detected, we consider the

further, time-accurate execution of the target software to be of

lower priority.

III. IMPLEMENTATION AND EVALUATION

This section first introduces the target hardware and software

platform, then continues with a discussion of the concept

and implementation of the Cache Checker, and closes with

a performance evaluation of the proposed Cache Checker

implementations.

A. Target Platform

We implemented our Cache Checker on Lantiq’s “Vinetic

SVIP” platform [5], which features multiple MIPS32-cores [6].

The platform contains separate core-private first level caches

for code and data, and a shared second level cache. The L1

data caches targeted by the Cache Checker are implemented as

4-way set associative caches. The on-chip interconnect has the

form of a crossbar, linking the processor cores to the L2 cache,

the memory controller and other on-chip hardware devices. The

SVIP supports two kinds of memory: a fast on-chip SRAM,

which is accessed via core-private L1 caches, and a larger
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off-chip SDRAM accessed via core-private L1 caches and the

shared L2 cache. Figure 2 depicts the relevant aspects of the

hardware architecture.

In the absence of hardware support for maintaining cache

coherence, the complex architecture of the memory subsys-

tem is exposed via software interfaces. Figure 3 shows the

components involved. When a core executes a store-operation,

it only updates its core-private L1 cache. For the data to be

propagated further, a writeback needs to occur, either because

the cache line is evicted and replaced by another in normal

operation, or through explicit issuing of a writeback command

by the core. Before data actually leaves the core, it is held in

a writeback buffer. Here it is delayed until either cache logic

decides it is time to flush the buffer, or until such a flush is

explicitly requested by the core. After leaving the writeback

buffer, data is processed by the crossbar. The crossbar itself

exposes no software interface and thus is out of the control of

the individual cores. However, queuing and access reordering

within the crossbar are possible and intended by design, making

it unpredictable when and in which order memory accesses

reach the L2 cache or the internal SRAM. The only operations

available to influence the local caches are explicit writeback

and invalidate instructions, as well as a flush instruction for

the local writeback buffer. It is not possible for one core to

invalidate cache lines in the private cache of another core.

B. Target Application

The software we use as target for our evaluation performs

voice and telephony coding. It consists of roughly 150,000

lines of C code, and the resulting binary image has a size of

about 800 kBytes.

C. Memory Model of the Cache Checker

The Cache Checker performs its address classifications based

on a model of the systems memory usage, i. e. a list of memory

objects (symbols) and conditions under which an access to the

memory region in question is allowed from a specific core.

The following conditions were implemented, based on the

requirements of our target application:

• Always: Access is allowed unconditionally, from all cores.

• Never: Access is forbidden unconditionally, regardless of

core.

• Core: Access is allowed from certain cores.

• Static array: The memory region in question is an array,

and there is a static assignment of ownership of array

elements to cores. This is a convenience function that

implements a number of core conditions.

• Dynamic array: The memory region in question is an

array, and a decision on the ownership can only be made

at run-time. Additional code is required, which can either

implement instrumentation or evaluation of target software

state to decide on the ownership.

D. Cache Checker Architecture and Configuration

We evaluated several architectures for our Cache Checker,

which are depicted in Figure 4. The presented architectures

are based on a subset of the following components:

1. Recorder. One instance of the Recorder is needed on each

core, which is responsible for examining the core-private

caches. During this process interrupts need to be disabled

to avoid a change of cache contents while the examination

takes place.

The Recorder marks the first step of the cache inspection;

it retrieves the currently cached memory locations, i. e. those

locations that were previously accessed by the core, by ex-

amining the different cache lines of the core-private caches.

All invalid cache lines are ignored and the corresponding

addresses of valid cache lines are stored in a buffer for later

analysis. The actual analysis can be postponed to reduce

the time during which interrupts are disabled.

2. Analyzer. The stored addresses corresponding to the valid

cache lines, as retrieved by the Recorder, are received

and processed by the Analyzer. The Analyzer classifies

the recorded memory accesses into the afore mentioned

categories: allowed and not allowed accesses. In case an

access is classified as not allowed, it is stored in another

buffer for further processing. One instance of the Analyzer

is present on each core.

197



Result
Array

AnalyzerBufferRecorder

Cache

(one instance per core) (one unique instance)

classify()

Buffer Collector

(a) Basic “two-pass” architecture. The analysis is decoupled from the
recording of the cache lines.

Result
Array

AnalyzerBufferRecorder

Cache

(one instance per core) (one unique instance)

Target
instrumentation classify()

Buffer Collector

(b) “Two-pass” architecture with target instrumentation. The target
software tracks changes in ownership of dynamically owned memory.

Result
Array

Recorder Buffer

Cache

(one instance per core) (one unique instance)

classify()

Collector

(c) Architecture for “one-pass” operation.

Figure 4. Alternative architectures of the Cache Checker

3. Collector. Unique among the complete Cache Checker

system is the Collector. It receives the classification results

from all Analyzer instances and stores them in memory.

Periodically, this data is then transmitted via the network

interface to the development host.

Three different architecture variants were evaluated for the

Cache Checker: basic two-pass operation, two-pass operation

with target instrumentation, and one-pass operation.

Basic two-pass operation: The basic architecture (cf. Figure

4a) aims at decoupling the different phases of the Cache

Checker. Interrupts are only disabled during the actual accesses

to the cache contents, while the analysis happens at a later time.

However, in some situations, this approach is not applicable:

When classifying an access to dynamically owned memory,

the Cache Checker has to use internal information of the target

software at run-time to determine whether the access is allowed

or not. This information needs to be up-to-date, so it has to be

guaranteed that the system state at the time of classification

has not changed since the recording of the cache line.

Two-pass operation with target instrumentation: To over-

come the limitations of the basic two-pass operation architec-

ture, we identified two possible solutions. One is to instrument

all code locations within the target software that cause a change

of ownership of dynamically owned memory. We call this

approach the two-pass operation with target instrumentation.

With the help of the instrumentation code it is possible to

record ownership changes for all dynamically owned memory

locations. During data collection it is important that the correct

ordering of the change-of-ownership events and the observation

of cache lines is maintained, e. g. through the use of one

shared queue for all events. In this way, the information, which

accesses were allowed at which time, is preserved for the

Analyzer. Figure 4b shows the changes in architecture: The

Analysis is still decoupled from the recording of cache data.

One-pass operation: The second solution to ensure that

the system state does not change between observation of a

specific cache content and classification, is to perform the

classification immediately after the Recorder found a valid

cache line, with interrupts still disabled. We call this one-pass

operation, as opposed to the two passes executed when using

the decoupled approach with a dedicated Analyzer component,

as described before. This approach changes the Cache Checker

architecture, as shown in Figure 4c: There is no dedicated

Analyzer component; instead, the classification function is now

called directly by the Recorder.

It depends on the target application which of the three

architectures represents the best choice. The basic two-pass

operation minimizes time at which interrupts need to be

disabled by decoupling recording and analysis. It is however

only applicable if there are no dynamically owned memory

regions. The basic two-pass operation has similarly short

interrupt disable times, but makes it necessary to instrument the

target application. With the third option this instrumentation

can be avoided at the cost of longer interrupt disable times.

In our case, the application makes heavy use of dynamically

owned memory regions, so the basic two-pass operation is

unsuitable because it is conceptually unable to track dynamic

changes of ownership. Of the two remaining options we gave

preference to the one-pass operation, as it allows for the target

application to remain unchanged.

In a system without hardware cache coherence, transferring

data between software components is not trivial. In the Cache

Checker we use ringbuffers for communication, which is safe

even without the use of locks, provided that each buffer has

only one exclusive reader and writer. In case the reader and

writer reside on two different cores, additional care has to be

taken. To guarantee a consistent state of the buffer, it has to

be ensured that write access to individual cache lines can only

happen from one single core. In practice this means that the

head and tail pointers of the ringbuffers need to be located in

dedicated cache lines.

Because of the disabling of interrupts during its operation, the

Cache Checker is expected to change the behavior of the target

application. To minimize this intrusion, we do not inspect the

whole cache on each invocation. This means that the probability

of detecting a coherence violation is decreased, leading to a

tradeoff between higher inspection frequency and more severe

influence on the run-time behavior of the target application.

The lower probability to detect present cache coherence issues

can however be compensated by performing longer test runs.
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unsigned long classify(unsigned long pa) {
if (pa >= 0x800000 && pa < 0x900000) {

return 0x1;
} else if (pa >= 0x900000 && pa < 0xc00000) {

if (pa == 0x900000) {
return 0x3;

} else if (pa == 0x900020) {
return 0x4;

} else if (pa >= 0x900040 && pa < 0x900840) {
...

} else if (pa >= 0x910640 && pa < 0x911240) {
...

} else { // sram_cached
return 0x108f;

}
} else { // unknown

return 0x0;
}

}

Listing 1. Automatically generated classification function: linear-if approach

unsigned long classify(unsigned long pa) {
if (pa < 0xa88bc0) {

if (pa < 0x986e20) {
if (pa < 0x92d040) {

if (pa < 0x915a40) {
if (pa < 0x900040) {

if (pa < 0x900000) {
if (pa < 0x800000) {

return 0x1000;
} else { // (pa >= 0x800000)

return 0x1;
}

} else { // (pa >= 0x900000)
...

}
} else {

}
}

Listing 2. Automatically generated classification function: binary-if approach

const unsigned long classification_table[] = {
/* 0 */ 0x00a88bc0, 0x000200e4,
/* 2 */ 0x00986e20, 0x00040074,

...

/* 452 */ 0x0096080c,
/* 453 */ 0x1f208000, 0x01c701c8,
/* 455 */ 0x10970001, // sram_cached(fragment)
/* 456 */ 0x00980001, // unknown(fragment)
};

unsigned long classify(unsigned long pa) {
while (1) {

x = table[current_line];
c = x & 0xf;
if (c == 0) { // compare

y = table[current_line + 1];
if (pa < x) {

current_line = y >> 16;
} else {

current_line = y & 0xffff;
}

} else if (c == 0x1) { // no condition
return x >> 16;

} else if (c == 0xc) { // core condition
if ((1 << core) & (x >> 8)) {

return x >> 16;
} else {

return (x >> 16) ˆ 0x1000;
}

}
}

}

Listing 3. Automatically generated classification function: binary-table
approach

E. Optimized Classification Function

We already mentioned above that the actual classification

of physical memory addresses is performed by automatically

generated code, the classify function. We provide three different

implementation variants of this function. Source code extracts

of the three variants are presented in Listings 1–3, and their

discussion follows below.

1. Linear-if: The classification function takes the form of long

nested if statements that reflect the memory usage model.

This means that the address to be classified is compared

with the lower and upper bounds of known memory regions,

one by one. The if statements are nested to reduce the mean

number of comparisons, but the nesting is only done at

points that are reflected in the configuration. The result

is that the top level if statement might select the memory

segment, while the next might select the symbol and the

last level of if statements might select the portions of an

array that is used by different cores.

2. Binary-if: To minimize classification time and improve

scalability, we provide the binary-if implementation variant,

which is also based on nested if statements. Instead of

employing long if / else if chains, which have a high mean

execution time, we perform a binary search. This has

two advantages over the previous approach: First, each

if statement only has one then and one else branch, leading

to a deterministic O(log n) execution time, and second, the

condition of each if statement contains only one comparison.

3. Binary-table: Our third implementation also performs a

binary search, with the exact same comparisons as the

binary-if approach. But instead of many if statements that

contain the addresses for comparison, we now operate based

on a table. There is only little code executed to walk through

this table.

Options 1 and 2 are designed to stress the data cache as little

as possible. They contain many comparisons with immediate

operands that reside in the executable code. In contrast, option

3 uses only little program code, but performs more memory

accesses, thus influencing the contents of the data cache.

F. Performance Evaluation

We evaluate the performance of the Cache Checker within the

real-world application described in Section III-B. The internal
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architecture used is the one-pass operation (cf. Figure 4c). This

option was chosen to a) support dynamically owned memory,

and b) leave the application itself unchanged and free of

instrumentation code. To classify dynamically owned memory,

internal data structures of the target application are examined

at run-time by the Cache Checker. The results presented in this

section were obtained through measurements using the internal

cycle counter of the CPU cores.

It should be noted that these measurements are not supposed

to set the performance of the Cache Checker into relation with

other tools, nor are they supposed to provide an indication

of the speed at which the Cache Checker might discover

bugs. Instead, they are intended to give an indication of the

processing overhead induced by the Cache Checker in various

configuration scenarios.

With regard to the code size of the Cache Checker, we

examine first the checker itself, without the automatically

generated classification function, and then the classification

function. We compile using the GNU Compiler Collection,

with an optimization setting of –O2 –G1 –mabi=32 –mdsp
–mips32r2 –mtune=24kec –nostdinc.

The complete code size of the Cache Checker, without the

classification function, is 2824 bytes. The required memory for

data representing internal state (including ring buffers and data

for performance analysis and run-time measurement) is ncores ·
(188 bytes + 8 bytes · lringbuffer), for the result array 12 bytes ·
lresultarray, and for the notification message 88 bytes · ncores +
248 bytes, where ncores is the number of cores, and lringbuffer

and lresultarray denote the number of entries in the ringbuffers

and the result array.

For the classification function, code and data sizes depend

on the number of distinctive memory regions that are classified.

Figure 5 shows the memory required for a classification of

statically owned memory only. The figure shows the combined

code and data memory used. In case of the linear-if and binary-

if approach, the memory used contains only program code

and no data elements, while for the binary-table option, the

memory usage includes a constant code size of 216 bytes and

a variable data size for the classification table.

The addition of dynamically owned memory regions to the

memory usage model increases the code size by 120 bytes per

dynamically owned region.

To assess the execution time of the Cache Checker, we ex-

amine its components (Recorder, Classification, and Collector)

separately. First we consider the case when the target system

is idle, later we also give a statement on the behavior while

the system is under load.

The mean execution time of one invocation of the Recorder

component of the Cache Checker is composed of:

tinvocation = nlines · ρvalid · (trecord + tclassify)

+ nlines · (1− ρvalid) · tdon’t record

where nlines denotes the number of cache lines examined per

invocation, ρvalid the fraction of cache lines that turn out to

be valid, and tclassify the execution time of the classification

function. The two times trecord and tdon’t record are the times

within the Recorder that are required to process a cache line,

either by classifying it and passing it to a ringbuffer if the cache

line is valid, or by discarding it if it is not. Our measurements

found that trecord ≈ 90 cycles and tdon’t record ≈ 40 cycles.
The execution time of the classification function tclassify

depends on the classification method (cf. previous section) and

the number of different memory classes that are distinguished.

Figure 6 shows the mean execution time of the classification

function when only statically owned memory is used. For

dynamically owned memory, in our case, an additional ≈ 50
cycles are needed to complete the classification.

The Collector component, which is only executed on one

core, receives cache violations from the Recorder components

and stores them in a result array. When a violation is received,

it is first checked if the same address is already present in the

array. If it is, then we simply increment a counter, otherwise

we create a new entry in the result array. It is clear that storing

an incoming violation into the result array takes longer, if many

violations have been collected previously. In our scenario, the

mean execution time of the Collector is ≈ 300 cycles when

the result array is empty.
To observe the Cache Checker performance when the

system is loaded, we measured execution times and cache

misses in several different load scenarios. Due to the specific

target application, it was not possible to stress the system

systematically and with a representative load. However, we

observed the following two patterns:

1. When there are more modules of the target application

active, the fraction of valid cache lines increases, leading

to more classifications that need to be performed.

2. When the system is loaded, the stress on the caches increases,

leading to reduced overall performance, which includes the

performance of the Cache Checker.

Our evaluation of the three classification approaches revealed

that the binary-if classification performs best in terms of

execution times, followed by the liner-if and the binary-table

approaches. The binary-if and linear-if solutions have similar

memory footprints, while the memory usage of the binary-table

approach is considerably smaller. However, it has to be noted

that when using the binary-table approach, the Cache Checker

does not observe all violations that are visible to the other two

approaches. This is due to the fact that this approach makes

heavy use of the data cache, which can lead to the eviction of

cache lines of the target application, thus hiding their presence

from the Cache Checker.
One other parameter that was examined during our study

is nlines, the number of cache lines checked per invocation of

the Cache Checker. In the 4-way set associative cache, our

implementation checks in one step all four ways corresponding

to one index. Choosing higher values for nlines increases the

frequency at which the complete cache is examined, but also

leads to higher overall execution times of the Cache Checker.
After completing the evaluation of different implementation

approaches for the Cache Checker, we chose a configuration

suitable for our use case: We chose the architecture option

depicted in Figure 4c, which supports dynamically owned
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Figure 6. Execution times of classification as a function of the number of
memory classes

memory, but does not need changes to the application. For

classification we use the binary-if approach, which provides

best performance and scalability out of the three options.

Finally, we decided to limit our checks to the minimum value

of 4 cache lines per invocation to minimize overall Cache

Checker execution time.

IV. DISCUSSION

After assessing the performance of the Cache Checker in

the previous section, we now want to discuss its value to the

software developer. As it is intended to be a tool to help in

the detection and localization of software defects, it is hard

to quantify its usefulness. We report here our experience after

using the Cache Checker within the large real-world application

described in Section III-B.

We re-introduced to the application a number of program-

ming mistakes related to the handling of cache coherence

which had previously been detected and fixed manually. In

several of these cases, our tool generated a warning even after

short application runs, providing information on the memory

region in question, and thus helping in the identification of the

affected program module. In addition, our Cache Checker also

detected previously unknown issues. These violations of cache

coherence occurred only occasionally during long test runs,

and had so far gone undetected, because they did not cause

any visible application malfunctions or data corruption.

We designed the Cache Checker to be a tool that examines

core-private caches based on rules. We have seen that the

concept is indeed valuable in two different situations:

1. It helps to find the location of software defects and

significantly reduces the time needed to fix them.

2. It can be used in software testing to uncover issues before

they become visible as application malfunctions and thus

help increase software quality.

Maintaining cache coherence with hardware logic is complex.

For the platform used in our evaluation, it is estimated, that

10–12% chip area was saved by not including such logic in the

design. Especially in embedded devices, these savings present

an opportunity, if the system software can handle the difficulties.

Our approach presents a first step into this direction.

Other approaches to simplify software development on

platforms without hardware-support for cache coherence can

be based on a supporting compiler, middleware, or a simulation

environment. The compiler could rearrange the code within

an optimization pass in such a way that cache safe memory

accesses are guaranteed. A specifically designed middleware

or operating system could provide an interface for cache safe

memory accesses, reducing the occurrence of critical memory

access code to view locations within the operating system or

middleware. Finally, an elaborated simulation environment

could execute i. e. simulate an application, detect critical

memory accesses and log them. With the help of debugging

symbols this log could indicate actual code locations to the

developer that require special attention. Our approach, however,

is based on a minimal software system that can be integrated

into arbitrary system code without efforts. Nevertheless, it

provides as much information to the developer as the other

approaches do.

DeOrio et al. [7] proposed a post-silicon verification concept

for MESI cache coherence protocols. Their concept is based

on periodical checks of the cache contents, but in contrast to

our approach, DeOrio et al. require hardware support in form

of logging components within the L1 and L2 cache controllers.

They quantify the area overhead of these components to only

0.002%. The logging components record all cache operations

within a time period (a so called epoch). The resulting log

includes, among other information, the timestamp and the MESI

state for each cache operation. After each logging period all
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processor cores are stalled and a checking phase is initiated.

During the checking phase DeOrio et al. propose to compare

the histories of the different cache instances, i. e. all local

L1 caches and the shared L2 cache. When inconsistencies

between the histories are detected, a bug within the cache

coherence protocol was found. However, DeOrio et al. strictly

focused their approach on the verification of an existing cache

coherence protocol, it is not clear whether their approach is

transferable to platforms without cache coherence and how

much area overhead it would induce on such a platform.

Denisco and Beaverson [8] propose a software based cache

examination and coherence protocol verification concept, based

on an arrangement of multiple slave (collector) processes

and a central master process (checker). The slave processes

continuously collect information about the data addresses and

control flags contained in the local caches and save them in

memory. Every time the master / checking process is invoked

it checks these collected information against a predetermined

table with valid cache states of the system. Inconsistencies

between the predetermined and the collected cache states

mark errors in the coherence protocol. Denisco and Beaverson,

however, left open how such a predetermined table could be

created and how this creation process might scale to other

systems with bigger cache sizes or more cores.

Cheong and Veidenbaum [9], as well as Choi et al. [10]

propose techniques for compiler-directed cache coherence. Both

groups suggest purely software-based concepts along with

concepts that utilize small hardware extensions to reduce the

processing overhead. However, to the best of our knowledge

their exists no completely software based solution that could

be used to detect and locate cache coherency bugs in system

software. Thus, our Cache Checker represents the first tooling

support for developing system software on platforms without

hardware based cache coherence logic. Moreover, current

research focuses mainly on hardware based cache coherence

protocols and their verification.

Future work to improve the current version of the Cache

Checker can go in several directions. One possibility is the

extension to cache examinations triggered by interrupts, to not

be limited to certain points in time. Another option would be

synchronized cache examinations on all cores. This way we

could detect, if two cache lines are simultaneously active on

more than one core.

V. CONCLUSION

In this paper we presented our Cache Checker, a new kind of

software tool that performs online checks of cache contents. It

is useful on multi-core platforms that do not contain hardware

support to maintain cache coherence, and thus require that

all cache handling be done in software. On these hardware

platforms, there are so far no tools to support the developer;

our approach significantly simplifies debugging and testing of

software on such systems.

We evaluated several implementation variants and optimiza-

tions of our tool, which resulted in a low-overhead solution

for online cache inspections.

Use of the Cache Checker in a large-scale software system

proved its success. We showed that it can detect cache-related

programming mistakes, thus simplifying development and

testing of software on platforms that do not provide hardware

support to maintain cache coherence.
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