
HAL Id: hal-00772812
https://inria.hal.science/hal-00772812

Submitted on 11 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Case for Using Simulation to Validate Event-B
Specifications

Faqing Yang, Jean-Pierre Jacquot, Jeanine Souquières

To cite this version:
Faqing Yang, Jean-Pierre Jacquot, Jeanine Souquières. The Case for Using Simulation to Validate
Event-B Specifications. APSEC2012 - The 19th Asia-Pacific Software Engineering Conference, The
University of Hong Kong, Dec 2012, Hongkong, China. pp.85-90, �10.1109/APSEC.2012.66�. �hal-
00772812�

https://inria.hal.science/hal-00772812
https://hal.archives-ouvertes.fr

The Case for Using Simulation to Validate Event-B Specifications

Faqing Yang Jean-Pierre Jacquot Jeanine Souquières

LORIA – Université de Lorraine, France

Email: {firstname.lastname}@loria.fr

Abstract

This paper addresses the validation of formal spec-

ifications in Event-B through the execution of the

specification. Current tools for Event-B, animators

and translators, can execute only a restricted set of

specifications. So, we propose a third technique, simu-

lation, in which users and tools co-operate to produce

an executable instance of the model. After a short

presentation of Event-B and our simulation framework,

JeB, we show how to use it on two reasonably com-

plex specifications. Observations and analysis from the

point of view of validation are presented and discussed.

1. Introduction

Asserting the correctness of a piece of software

relies on two activities: verification–Have we built the

piece right?–and validation–Have we built the right

piece?– The strength of refinement-based methods

such as B or Event-B [1] is to break down the huge task

of formal verification into a sequence of manageable

proofs. Each refinement generates small proof obli-

gations (POs) and if new refinements are introduced

only when all previous POs are discharged, the whole

sequence produces a verified piece of software.

This procedure has two major advantages: first, it

requires only “small” proofs to carry out the formal

verification; second, errors are detected very close to

the point where they are introduced. With the advent

of usable support tools, such as Rodin1, practitioners

have far less reasons to shun formal methods. However,

there is still the problem of validating the formal

models. The verification process is too costly to allow

for a trial-and-error kind of procedure.

We think that validation should be organized like

verification: along the refinement chain. In principle,

1. Rigorous Open Development Environment for Complex Sys-
tems: http://www.event-b.org

validation is simple: experts or potential users read the

formal specification to judge if it represents a good

model of the expected system. In practice, this does

not work well since we, as humans, are not very good

at reading and analyzing long mathematical texts. A

better way is to look at executions of the specification

and to judge whether the observed behaviours are

consistent with the expected ones [2], [3]. The problem

then becomes technical: how to execute the model?

Within the Rodin platform, several animators have

been developed to execute Event-B specifications. Un-

fortunately, the class of directly animatable specifi-

cations is limited. We have shown how to safely

transform specifications [4] to extend this class. How-

ever, many specifications are still non-animatable. To

further extend the class of executable specifications,

we propose to use simulation, i.e., the generation of a

prototype of the model in a programming language.

JeB (JavaScript simulation framework for Event-B)

is based on an observation and a simple idea. We

observed that while some of our specifications are hard

to animate, we could easily write programs to emulate

them. The explanation is that using non-animatable

features such as non-determinism and high abstractions

in early refinements is recommended, even when we

know how they will be reified. The idea was then to

associate users to the generation of the simulation so

their intelligence would assist the translator in the few

cases where automatic solutions could not be applied.

This paper discusses the validity of the simulation

approach for the validation of Event-B specifications.

We analyze the use of JeB on two case studies. Both

refer to the same problem: an algorithm for controlling

a platoon of vehicles [5]. A simplified version in

1 Dimension [6] is used as a reference as it is easy

to animate. The realistic version in 2 Dimensions [7]

is hard to animate but is easy to simulate.

The following presents Event-B (Section 2) and re-

lated work (Section 3). After, Section 4 presents JeB

with a particular emphasis on its design and its organi-

zation. Next, Section 5 details how to generate and set-

MACHINE platoon0

SEES context0

VARIABLES xpos0

INVARIANTS

typing : xpos0 ∈ 1..VEHICLES → Z

non_collision : ∀ v . v ∈ 2..VEHICLES ⇒

xpos0(v-1) - xpos0(v) > CRITICAL_DISTANCE

EVENTS

INITIALISATION

BEGIN

act1 : xpos0 := initial_xpos

END

all_moves

ANY

magic_xpos

WHERE

typing : magic_xpos ∈ 1..VEHICLES → Z

spaced : ∀ v . v ∈ 2..VEHICLES ⇒

magic_xpos(v-1)-magic_xpos(v) > CRITICAL_DISTANCE

THEN

act1 : xpos0 := magic_xpos

END

END

Figure 1: Event-B model of a platoon

up the simulations. Then, Section 6 analyses how the

simulations can be used for validation. Last, Section 7

gives some research directions.

2. Event-B Language

Event-B is a formal framework to specifiy com-

plex systems. It is a state-based method: a system

is modeled as a mapping from names to values (a

state) constrained by invariants. Events make the state

evolve; they model behaviours. Event-B is a formal

method: a model can be mathematically proven correct.

The proofs concern mainly the preservation of the in-

variants. Event-B is a refinement-based method: a con-

crete implementation of an abstract model is derived

through a sequence of refinements whose correctness

can be proven. Event-B is supported by the Rodin

environment which allows users to edit models, to

generate the proof-obligations, to discharge the proofs,

and to transform or animate the specifications.

Figure 1 shows an abstract Event-B model of a

platooning system in 1D. It consists in a state with one

variable (xpos0), an invariant with two predicates,

and one event all_moves. INITIALISATION is

a pseudo-event which describes the starting state of

the model. The event all_moves has a parameter:

magic_xpos. It expresses a guarded substitution on

the state. Six POs are generated, the most important

being the preservation of the non_collision pred-

icate. In this present case, the proofs are easy.

An intuitive operational interpretation of an Event-

B model consists in the repeated execution of a four

step procedure: (1) to pick (or compute) and assign

values to the events’ parameters, (2) to compute the

set of enabled events, (3) to choose one enabled event,

and (4) to pick (or compute) and assign values to the

substituted variables.

The model can be validated by observing the evolu-

tion of the state’s values and the sequences of events

fired during executions. Technically, assigning values

to parameters, choosing an event to fire and picking

the substituted values introduce non-determinism.

3. Related Work

Two kinds of techniques to execute Event-B models

have been developed: animation and translation.

Brama [8], ProB [9] or AnimB2 are animators

which interpret directly the Event-B specification. As

a main advantage, these tools have the shortest path

between the specification and the observations of sys-

tem behaviours. Their main limit comes from abstract

types (Section 5.3.1) and non-determinism. The exe-

cution engine needs actual values for abstract types

and for parameters of events. Brama and AnimB use

enumerations of potential values; ProB uses constraint-

solving techniques. Both strategies fail either through

combinatorial explosion (complex, unconstrainted do-

mains) or lack of value.

Animators have another limit: they often require

changes in the formal text before its execution. Brama

requires complex transformations [10]; ProB requires

one refinement to give explicit values to constants if

we want set up realistic animations. This preparation

step is time-consuming; it is also a source for errors.

B2C [11] and B2ALL [12] are translators. They

transform Event-B models into programs written in a

mainstream language such as C or Java. On the one

hand, translators provide us with a safe translation: the

program implements the model. On the other hand, the

translation can only be made on deterministic models.

So, only the last refinement of the development can be

executed using translators.

Validation requires a good visualization of the be-

haviour of the system. Animators provide us with

API toward graphic systems, however, their limitation

makes the construction of a nice display a complex

and time-consuming activity. Programs generated by

translators can be augmented with graphics by using

standard graphic libraies. This is also time-consuming.

Our approach mixes the advantages of both ap-

proaches by producing simulators. From animators, we

retain the general execution model and the manage-

ment of non-deterministic features. From translators,

we retain the generation of programs in a mainstream

language. Our major contribution is to provide users

2. AnimB is available at http://www.animb.org

Requirement Description

REQ-1 Easy and cheap building of simulations
REQ-2 Simulation consistent with model
REQ-3 Integrated graphic interface
REQ-4 Possibility to guide the generation
REQ-5 Generated code extendable by users
REQ-6 Full user-control on simulations
REQ-7 Easy building of ad-hoc graphics

Table 1: Requirements for JeB

with facilities to guide the translation (annotations),

to provide hand-coded functions to generate non-

deterministic values, and to set easily graphic displays.

4. JeB: a Simulation Framework

The JeB simulation framework is intended to com-

plement animators and translators when they cannot be

used. Table 1 summarizes the main requirements.

4.1. Design Philosophy

The model validation is a three-step process: (1)

generate the simulator, (2) set up a particular simula-

tion environment, including visualization, and (3) run

the simulator.

We use JavaScript/HTML as the target language.

Modern browsers provide us with the graphic-rich

environment we need for our simulations. JavaScript

was also chosen because of its technical features.

Objects allow the JeB translator to produce code whose

structure is close to the Event-B text structure. It is

easy to instrument the code for specific observations.

Prototypes allow users to provide their own functions

to override the generated ones. We use this feature to

separate the generated function stubs from the main

simulator code; so, users need only to work with files

separated from the main code.

Methodological and technical reasons account for

why refinement-based methods promote a slow in-

troduction of determinism and concrete data-structure

during the development. Yet, specifiers have often

clear ideas about possible implementations for abstract

entities. JeB allows specifiers to add annotations in

Event-B to help generate reasonably efficient code.

We consider that simulation should be a collabo-

rative process between automated tools and humans.

Specifiers, experts and users are involved at four levels:

(1st) specifiers provide the annotations prior to the

translation in the Event-B text, (2nd) specifiers pro-

vide hand-coded functions in the user configuration

files, (3rd) experts may provide functions, typically

for generating event parameters in different scenarios,

Figure 2: Simulation window

and extra graphic visualizations, and (4th) users can

interact during the simulation.

4.2. Simulator User Interface

The user interface of the simulator consists of six

views (Figure 2.) The top-most area is a graphic, ad-

hoc, view of the state. Below is a toolbar view to set

up general parameters. The lowest area is organized in

three columns. On the left, variables and invariants are

shown. In the middle, all events, with their parameters,

guards, actions and activation status, are displayed. On

the right, the history of the simulation is kept as a

sequence of events and parameters.

5. Creation of Simulations

5.1. Event-B Specification of Platooning

JeB was motivated by our studies on platooning

where we aimed at proving that some control algo-

rithms are safe. The safety condition we retained is

the absence of collision between a vehicule and its

predecessor. This definition of “safe” is of course a

simplified version of what would be needed for moving

on actual roads, but it is highly representative.

We developed in Event-B a local version of a well

known platooning algorithm [5]. It uses only percep-

tions of the preceding vehicle to take decisions, hence,

it is very robust. The hypothesis that longitudinal

(i.e., speed) and lateral (i.e., turning) controls are

independant prompted us to develop two models. The

first model considers only longitudinal control, as if

vehicles move on a rail. It allowed us to study the

general structure of the specification, within and be-

tween refinements, and to identify critical issues. In the

second, we develop the more realistic bi-dimensional

model.

Both models have the same structure which consists

of an abstract machine and four refinements. Each

refinement introduces a clearly identified concept.

As ProB and Brama can animate the 1D model, it

serves us as a benchmark. As animators fail on the

2D model, it serves as a test-bed for assessing the

feasability of the simulation approach 3.

5.2. 1D Simulations

The JeB translator is applied as the level of Rodin

projects. Each machine, either abstract or refined, and

each context is translated into a file in a common direc-

tory, “<Rodin wkp/<Ev-B project>/jeb”. A

simple naming scheme facilitates the navigation in the

simulator code.

5.2.1. Minimal Simulation. After the simulator of the

most abstract machine platoon0 has been generated,

we must provide some values for the abstract constants.

This can be done in one of four ways:

1) annotate the constant in the specification text with

@value=<integer>; before running the JeB

translator,

2) set the value in the jeb.user.js file after

running the JeB translator,

3) set the value in the <context>.js file,

4) set the value in the <machine>.user.js file.

With (1) and (2) the values of constants are per-

manently kept. With (3) and (4), the values need

to be set again after each run of the translator

since new instances of the files <context>.js and

<machine>.user.js are then created. With (1),

(2) and (3) the values are available to all machines

while, with (4), they are restricted to only one.

By using the second technique, we add the following

two lines in the jeb.user.js file (the prefix $ctx

denotes constants):

$ctx.VEHICLES = 4;

$ctx.CRITICAL_DISTANCE = 20;

The button INITIALISATION turns then green,

indicating an enabled event. The next step is to provide

an implementation for the magic_xpos parameter.

Events’ parameters model either true parameters or

local variables in the usual programming sense. JeB

translates each true parameter pari as a function

get_pari. By default, those functions are called at the

beginning of each simulation cycle. Since parameters

are highly non-deterministic, the JeB translator gener-

ates only function stubs that should be replaced in the

<machine>.user.js file, for instance:

// TODO Auto-generated function stub:

// argument generator

var get_magic_xpos = function(event) {~};

3. Simulators are accessible at http://dedale.loria.fr/?q=en/JeB

Assuming we replace this stub by a probabilistic

value generator, we can put the simulation in Auto

Run mode and observe how the state evolves. Another

possibility is simply to enter values manually at each

simulation cycle. We could then drive the simulation

toward certain specific configurations. We can switch

from one mode to the other at any time during execu-

tion of the simulation.

5.2.2. Graphic Display. The JeB simulator in-

cludes an HTML5 canvas to display graphi-

cally the state. Users can provide two functions:

jeb.animator.init which initializes the display,

and jeb.animator.draw which draws an image

of the system state at each simulation cycle.

5.2.3. Simulation of the Refinements. All refine-

ments in the 1D model can be executed with JeB. The

work required on each refinement is similar to what

is presented above and summed up in Table 2, with

the number of entities, constants or functions provided

by the user. It should be noted that the functions for

the graphic animation are defined only once for all

simulations.

5.3. 2D Simulations

The 1D and 2D models share the same structure, but

not the same complexity. Animators cannot execute the

2D model because of two features: abstract or “too big”

carrier set, and functions defined by properties. The

following analysis explain how simulation provides

users with possibilities to execute the models.

5.3.1. Carrier Sets. The 2D specification requires the

modeling of a notion of space. For the most abstract

refinements, we used an abstract carrier set, Point,

as we did not want to commit specific characteristics

too early in the specification. Further down the devel-

opment, Point will be refined into a kinematic space

with 6 dimensions: (x, y, γθ, σθ, v, κ) representing the

geometric position, the orientation, the velocity and

the trajectory’s curvature. Animators cannot execute

with either symbolic Points or 6-uplets. The for-

mer cannot be instanciated by meaningful enumerable

values; the latter leads to combinatorial explosion.

Yet, implementing Point as objects with six access

functions is simple and sufficient for simulation.

5.3.2. Functions Defined by Properties. The 2D

specification uses several functions associated with

the notion of distance, such as the distance between

two vehicles, the deviation from the trajectory, or

Model 1D 2D

Platoon0 functions 1 4
constants 2 4

sets 1

Platoon1 functions 1 1
constants

Platoon2 functions 7
constants 3 6

Platoon3 functions
constants

Platoon4 functions
constants 1 3

Table 2: Number of required user-defined entities

the closest point of a curve from a position for in-

stance. A computational definition of thoses function

is not needed until very concrete refinements have

been reached. It may even be impossible to give as

it depends on the actual geometry of the vehicles.

We only need some standard properties of measure

functions at the abstract levels.

Of course, executions require a computational def-

inition, which is actually quite straightforward us-

ing euclidean distances. An interesting note is that,

depending on the implementation of trajectories, the

definition of some distances may vary and generate

subtly different behaviours. JeB then allows us to

test several implementations before commiting to a

refinement.

Table 2 presents the numbers of entities that we were

required to hand-code to run the simulations. As can

be seen, there was not much to do. The validation of

each refinement does not require a heavy investment.

6. Exploitation of Simulations

To be useful as a validation tool, JeB must allow

users to detect anomalous behaviours or to experiment

with some. Here are presented some observations on

the simulations of our 2 models.

6.1. Observations

During its development, the 1D specification went

through several stages where the model was correct but

specified unintended behaviours. We checked that the

use of JeB could reveal some of the “problems.”

An early version allowed vehicles to move back-

ward, contrary to an implicit assumption. This undesir-

able behaviour is highly visible on the graphic display

in auto-run mode.

Although fully proven, the version published in [6]

contains a deadlock. In some circonstances, no event

is enable and the execution halts. Implementations

of this model show the vehicles colliding. With the

simulation produced with JeB, we could easily provoke

and analyze the deadlock situations. As all refinements

can be executed, locating the introduction of the error

in platoon2 was straightforward.

Sometimes, the speed of vehicles oscillates around

the average platoon’s speed. This is an emergent, un-

desired, behaviour. Oscillations are quite visible on the

graphic display; their apparition can be finely analyzed.

When executing the 2D specification we concentrate

observations on a few questions. The most impor-

tant is the deadlock issue. Thorough executions of

platoon2 make us confident that the model is dead-

lock free. The study of oscillations is also possible.

Speed oscillations are similar in 1D and 2D models;

lateral oscillations are new. As already mentioned, set-

ting up the observations for lateral oscillations raised

many interesting questions about the computational

definition of “closest point” or of “distance.”

6.2. Analysis from a Validation Point of View

The 1D specification consists of 15 events and

contains around 130 individual logical formulas. Many

of those formulas are very simple as they express some

typing property. Yet, getting the specification right was

a difficult task. In this section, we discuss how JeB

would have helped in this task.

The backward movement problem was found by a

picky human reader. Platooning systems with back-

ward moves may be designed but at the probable

expense of higher complexity. To use Brama to animate

the model, we had to wait for platoon4 to be

defined, yet the correction is better done at the most

abstract model. JeB can execute this model, and so,

would have helped detect the issue earlier.

The issue of deadlock-freeness in Event-B specifi-

cations is a complex one. The standard POs do not

protect from deadlocks. It is possible to automatically

build a theorem and POs which ensure the absence

of deadlock [13]. However, the size of the formulae

to prove grows very fast with the number of events

and guards. Proving this theorem is highly time-

consuming. Actually, we discovered the existence of

deadlocks when we animated the concrete model with

Brama. Since the problem is introduced two refine-

ments earlier, and JeB can execute all refinements, we

would have spared a lot of time if we had “fixed”

the model then. Using simulation before proving a

deadlock-freeness theorem makes sense.

The improvement offered by JeB on 1D model exe-

cution is mostly about cost and practicality. The effort

to build the simulations of the different machines is

Elements Manual Total Rate

1D Platooning

sets 0 0 -
constants 6 15 40%
parameter functions 2 11 18%
animation functions 2 2 100%
code size (KB) 3 290 1%
2D Platooning

sets 1 1 100%
constants 24 50 48%
parameter functions 2 43 5%
animation functions 2 2 100%
code size (KB) 7 890 1%
Pacemaker

sets 1 1 100%
constants 15 15 100%
parameter functions 0 26 0%
code size (KB) 1 954 1%

Table 3: Summary of creating simulation effort

small. Furthermore, it is spread over all the refinements

since large parts of user’s code can be reused. The cost

of using ProB on 1D model is low if we use it only

for deadlocks detection, but it would sharply increase

if we try to set up a graphic display. Because JeB is

based on a rich graphic substrate, we could build a

simple informative display in a few lines.

With the 2D model, only Jeb allows us to analyze the

system’s behaviours. The issue raised in the observa-

tions about the distance functions is actually a crucial

one for the direction of next refinements. In practice,

trajectories are not continuous lines, but sequences of

points perceived through imperfect sensors. We can

expect that the tracking behaviour of the vehicles is

dependent of the actual computations of the distances.

JeB allows us to experiment several practical algo-

rithms before we commit them to the next refinement.

Table 3 gives the relative effort needed for creating

the simulations on three models. It is worth noting that

the amount of user-provided code is small: around 1%.

Also, although the simulations of the refinements are

independent, user-provided code can often be shared.

This is particularly true of the argument generator

functions. Preliminary observations on the simulation

of the specification of a pacemaker developed outside

of our group confirm the figures.

7. Conclusion and Future Work

JeB proves that the generation of simulations for

validating Event-B models is feasible. We were able

to use it successfully on several large models realized

outside our group. JeB calls for news work on several

direction. The efficiency of the simulations depends

on the quality of the generation and of the run-time

libraries. Efficient set-manipulation libraries and big

integer lobraries are needed. The second direction is to

provide safe-guards to users when they introduce hand-

coded functions. It requires a formal of behaviours

and observations. The last direction concerns the in-

tegration of validation activities into refinement-based

methods. The issue is to connect the validation of each

refinement with the validation of the final system.

References

[1] J.-R. Abrial, Modeling in Event-B: System and Software
Engineering. Cambridge University Press, 2010.

[2] R. M. Balzer, N. M. Goldman, and D. S. Wile, “Oper-
ational specification as the basis for rapid prototyping,”
SIGSOFT Notes, vol. 7, no. 5, pp. 3–16, 1982.

[3] N. E. Fuchs, “Specifications are (preferably) exe-
cutable,” Software Engineering Journal, vol. 7, pp.
323–334, September 1992.

[4] A. Mashkoor, J.-P. Jacquot, and J. Souquières, “Trans-
formation Heuristics for Formal Requirements Valida-
tion by Animation,” in 2nd IW SaFeSert, York, UK,
2009.

[5] P. Daviet and M. Parent, “Longitudinal and Lateral
Servoing of Vehicles in a Platoon,” in Proceeding of the
IEEE Intelligent Vehicles Symposium, 1996, pp. 41–46.

[6] A. Lanoix, “Event-B Specification of a Situated Multi-
Agent System: Study of a Platoon of Vehicles,” in
2nd Int. Symposium on Theoretical Aspects of Software
Engineering, Nanjing, China, 2008.

[7] F. Yang and J.-P. Jacquot, “Scaling up with Event-
B: A Case Study,” in The 3rd NASA Formal Methods
Symposium, LNCS, no. 6617. 2011, pp. 438–452.

[8] T. Servat, “BRAMA: A New Graphic Animation Tool
for B Models,” in B 2007: Formal Specification and
Development in B, Springer-Verlag, 2006, pp. 274–276.

[9] M. Leuschel, J. Falampin, F. Fritz, and D. Plagge,
“Automated Property Verification for Large Scale B
Models with ProB,” FAC, pp. 1–27, 2011.

[10] A. Mashkoor and J.-P. Jacquot, “Stepwise Validation
of Formal Specifications,” in The 8th Asia-Pacific SEC,
Ho Chi Minh City, Vietnam, 2011.

[11] S. Wright, “Automatic Generation of C from Event-
B,” in Workshop on Integration of Model-based Formal
Methods and Tools, 2009.

[12] D. Méry and N. Singh, “Automatic Code Genera-
tion from Event-B Models,” in Proc. Symposium on
Information and Communication Technology, Hanoi,
Vietnam, 2011.

[13] F. Yang and J.-P. Jacquot, “An Event-B Plug-in for
Creating Deadlock-Freeness Theorems,” in The 14th
Symposium on FM, São Paulo, Brazil, 2011.

