
On Detecting Concurrency Defects

Automatically at the Design Level

Frank Padberg

and Luis M. Carril

Karlsruhe Institute of Technology KIT

Karlsruhe, Germany

frank.padberg@kit.edu

Oliver Denninger

and Martin Blersch

FZI Forschungszentrum Informatik

Karlsruhe, Germany

denninger@fzi.de

Abstract— We describe an automated approach for detecting

concurrency defects from design diagrams of a software, in

particular, sequence diagrams. From a given sequence diagram,

we automatically infer a formal, parallel specification that

generalizes the communication behavior that is designed

informally and incompletely in the diagram. We model-check the

parallel specification against generic concurrency defect patterns.

No additional specification of the software is needed. We present

several case-studies to evaluate our approach. The results show

that our approach is technically feasible, and effective in

detecting nasty concurrency defects at the design level.

Automated Defect Detection; Concurrency Defect Modeling;

Parallel Specification Inference; Specification Mining

I. INTRODUCTION

Concurrency defects are notoriously difficult to detect in
practice. Whether a defect leads to a failure depends not only
on the input data, but also on the scheduling. In practice, many
concurrency failures crash or hang the system, see, f.e., the
empirical study of 84 defects in the MySQL data base [1] and
the empirical study of 105 defects in four major open-source
tools [2]. In addition, the runtime conditions under which a
concurrency defect manifests itself as a failure are often hard to
reproduce. Therefore, finding and fixing concurrency defects
can incur a high cost in software development. To support
developers, a lot of research is available about race detectors
that aid in detecting concurrency defects in the code; research
on automated testing of concurrent code is also increasing. But
– couldn‟t we save a substantial amount of development effort
if we would detect and avoid concurrency defects early during
development, before they enter the code?

In this paper, we present a novel approach for detecting
potential concurrency defects automatically in design diagrams.
Concurrency defects occur if objects access data concurrently,
with insufficient synchronization. We focus on sequence
diagrams as input, since they describe the dynamics of
collaboration among objects in a natural way. In particular,
sequence diagrams are much more adequate for designing
object interaction than state diagrams, which are better used for
designing the internal workings of an object. Sequence
diagrams and state diagrams are most likely to be encountered
as design artifacts in real-world software development, if any.

Our approach can be used at any stage during design, even
with partial designs, and repeatedly as design proceeds. We do
not require any code as input. No special modeling technique is
asked from the developer; nor must he specify any application-
specific properties for checking. In particular, we do not
require diagrams as input that already would be parallel
specifications, such as Petri nets, nor any logic formulas.

We automatically infer a formal, parallel specification in
CSP calculus from the sequence diagrams, then model-check
the formulas for any occurrence of a concurrency defect
pattern. The defect patterns are generic, specified in CSP, and
modeled after concurrency defects that were observed in real
applications. We found that CSP provides compact, highly
readable specifications that are still close to the design input; in
particular, as opposed to automata specs. Currently, we focus
on non-deadlock defects since there already is a substantial
amount of good work on deadlock detection.

We present a prototype tool that automates our approach.
This prototype is part of our QUALICORE research project that
started in 2011. The workflow in our tool starts with a design
diagram being entered by the developer and ends with a
possible match of a concurrency defect pattern.

To evaluate our approach, we present four case-studies.
Since there is no established benchmark with design diagrams
for concurrent software, we use sequence diagrams that
describe collaboration scenarios in well-known open-source
software and that actually turned out to contain a concurrency
bug. The case studies are explorative in nature. Our main goal
in this initial study is not a full-grown validation, but to gain a
better understanding of the potential of our approach and hints
how it could be extended to become more effective.

One might argue that the cutout of the software that is
visible in a design diagram is too small for detecting any
concurrency defects. There is strong empirical evidence,
though, that many (if not most) non-deadlock concurrency
defects are fairly “local” in the sense that just 2 threads, 1 or 2
common variables, and 4 read-write accesses in a particular
order are required for the defect to lead to a failure; see the
empirical study [2].

One might also argue that typical design diagrams are too
abstract to reveal concurrency defects. While this may be true

for simple atomicity violations that are introduced when coding
some variable assignments, we found evidence in our in-depth
analysis of published concurrency defects that many of them
are introduced already at the design or conceptual level.
Concurrency defects often root in incompletely thought-out
synchronization, some overlooked interleaving of operations,
or a violation of implicit ordering assumptions among
operations. Such gaps can be seen and warned about already
when designing object interaction, before coding.

II. RELATED WORK

There is a large amount of work on race detectors [3] [4]
[5] [6] [7] [8]. Race detectors work at the code level, hence,
can be employed only late in the development process where
the cost for detecting and fixing defects is high; dynamic
detectors even need executable code. For software of a realistic
size, their internal models get very large and their defect
analysis is computationally expensive. Similar comments apply
to other dynamic analysis-based approaches such as [22] [23]
[24] [36] [29]. While race detectors are good at detecting low-
level atomicity violations and deadlocks, they have problems
detecting more intricate concurrency defects where the
programmer implicitly relies on ordering assumptions among
concurrent operations.

In contrast, our approach aims at detecting defects early
from the design when code is not yet available. In addition, the
formal models that we generate and analyze are smaller by
orders of magnitude since we start from a more abstracted view
than code and focus on the concurrent communication. Hence,
our defect detection tool is very fast.

There also is a large body of work on deriving formal
models for UML or OMT diagrams, the focus being on class,
activity, and state diagrams. For activity diagrams, which
basically are parallel specs already, Petri nets [32] [31] and
CSP [9] [10] [11] are often used as the spec language. The
goals are manifold: define a precise formal semantics for
diagrams [33] [10] [34]; perform consistency checking and
refinement checking of diagrams [30] [9]; perform model-
checking of application-specific behavioral properties on
diagrams [30] [11] [35]. In contrast, our modeling goal is
different, our focus is on object interaction, and our natural
input are sequence diagrams.

Inferring a parallel spec from sequence diagrams has not
received much attention yet. [26] [27] derive state machines to
precisely capture sequence diagram semantics. [25] transform
UML sequence diagrams into coloured Petri nets for the
purpose of consistency checking and model integration. [28]
use algebraic semantics to capture different variants of
sequence diagrams. [37] transform sequence diagrams into
CSP to precisely capture their semantics; they use UML meta-
models for sequence diagrams and CSP, and specify the
transformation rules with QVT/XSLT.

Our approach naturally shows some overlap in technical
aspects with the CSP-based modeling approaches sketched in
[10] and [37]; f.e., we also model individual method calls as
CSP events. Contrary to all existing formal modeling work for
sequence diagrams, we do not aim at providing a spec that
reflects a given sequence diagram as faithfully as possible.

Rather, for the purpose of detecting potential concurrency
defects, we infer a generalized spec from the scenario which
deliberately includes potential interleavings of operations that
are not shown in the design, but later might make their way
into the final code. In addition, we do not require application-
specific properties of the software as input for model-checking.
Rather, we check our inferred CSP models against generic
patterns that capture well-known, nasty concurrency defects.

In [12], Briand e.a. pursue a goal similar to ours: detection
of certain concurrency issues at the design level. They focus on
starvation and deadlocks, though, whereas we aim at detecting
complicated race conditions that are not easily handled by race
detectors. They start from diagrams that must be enriched with
timing and concurrency information. Instead of using CSP or a
similar spec language, they use a custom tuple representation.
Their detection approach is much different from ours: They
apply a genetic algorithm to try and cause starvation or
deadlock in their models. The authors claim that their approach
can be tailored to race detection by suitably choosing fitness
functions in the genetic algorithm, but they do not show this in
the paper. Contrary to our tool, their approach can require up to
several hours of running time.

III. MODELING AND DEFECT DETECTION

Our defect detection approach has two main steps:

1. Generate a formal, parallel model from the sequence
diagrams.

2. Check the formal model against generic concurrency
defect patterns.

We use the CSP calculus [13] for formal parallel modeling
and the FDR2 tool for model checking [14]. FDR is free for
academic use.

Our models focus on the communication between objects
and abstract away from the details of computations inside
objects. This seems natural as we aim at concurrency issues.

The internal logic of a CSP process gets specified using
sequences of events, deterministic and non-deterministic
choices, recursion, and parallel composition. CSP processes
communicate by participating in common events. That means,
two (or more) processes share the same event and “fire” this
event all at the same time, synchronously. If one of the
processes cannot fire the event now because of the logic in his
process formula, the event cannot occur – no communication.
The other processes have to wait and are blocked if this event
comes next in their program logic.

The key technical difficulty that we are facing is to map the
usual procedure-call semantics in a standard design diagram to
the synchronous event semantics of the CSP calculus. This
problem is not specific for CSP, but applies to other process
calculi as well. We solve this difficulty by introducing an event
for each method call (and return) and share this event between
the caller and callee.

The key conceptual difficulty that we are facing is to infer
the parallel model in such a way that it captures not only the
one scenario that the designer specified in the diagram, but also

other, closely related scenarios that might make their way into
the code when implementing the diagram. That is, our model
must suitably generalize the information provided in the design
cutout. Roughly, what we do is model the concurrent objects
individually, according to the operations shown in their lifeline,
then parallel-compose the individual models. This way, many
more interleavings are feasible in the model than the one
particular interleaving that is specified in the sequence
diagram. We are aware that this approach can result in models
that may over-generalize, but we expect that these models are
useful for detecting potential concurrency issues.

In the following subsections, we describe our technique in
detail using the parallel compression program Bzip2 [15] as a
running example.

A. Design Input

In this paper, we focus on sequence diagrams as input. It is
more natural and easier for a developer to draw a familiar
sequence diagram for a concurrent scenario – marking objects
as active (thread) and using an additional type of arrow for
asynchronous calls – than to learn and use a parallel
specification language such as Petri nets. Synchronization can
be specified easily using the “critical”-construct in UML 2.4, or
by explicit calls to lock- and unlock-methods.

For example, Fig. 1 shows the core processing scenario in
Bzip2 as a sequence diagram. The diagram specifies the order
of method calls as intended by the developer.

Figure 1. Sequence diagram for processing in Bzip2

In Bzip2, the main thread puts data to be compressed in a
fifo and reserves slots for the compressed data in an output data
structure. Parallel to that, a “consumer” thread fetches data
blocks from the fifo, compresses the data, and puts them into
the reserved output slots. Yet another thread, “filewriter,”
concurrently reads compressed data from the slots and writes
them to the file system.

For synchronization, the three threads use a flag (“alldone”)
that gets set by the main thread to signal that processing should
stop; the flag is checked regularly by the other threads. After
setting the flag, the main thread waits for the filewriter thread
to end.

The Bzip2 sequence diagram is what one would typically
encounter during design. It visualizes the core classes, their
collaboration, and the main data flow in the software. It might
get augmented by class diagrams and state diagrams that
specify the behavior of individual objects in more detail.

B. Model Generation

We show step-by-step how to derive a formal CSP model
from the sequence diagram for Bzip2. The model captures the
behavior specified in the diagram, but also carefully
generalizes it in order to account for other scenarios of
operation that might be implicit in the design. Interleavings are
included that could lead to concurrency defects but have not
been taken into consideration by the designer when drawing the
diagram.

Each object in the diagram (including the data objects)
gives rise to one CSP process, named in uppercase letters by
CSP convention. Since the objects run concurrently, the
application modeled as a parallel composition (operator ǁ) of
these processes:

BZIP = MAIN ǁ FIFO ǁ OUTPUT ǁ ALLDONE ǁ CONSUMER ǁ FILEWRITER

Listing 1. Top-level CSP spec for Bzip2

Each process gets modeled separately now, basically
chasing the sequence of method calls to and from the object on
its lifeline in the diagram.

Method calls between objects are modeled as CSP events.
By CSP convention, event names begin with lower case letters.
In our modeling approach, events are prefixed to provide more
semantics of what the event means and where it originates in
the diagram. F.e., when the main thread calls the enqueue-
method in the fifo object, we model this as a CSP event
mc_MAIN_FIFO.enqueue, naming the caller and callee – that
is, the “channel” over which the call is being issued. In addition
to “mc” for method calls, we use the prefixes “mr” for method
returns, “oc” for object creation, “od” for object destruction,
and “oj” for joins. A self-call of a method within an object is
annotated slightly differently, because they are less relevant for
the communication between objects. F.e., the internal use of the
compress-method in the consumer thread is annotated as the
event compress_CONSUMER.

For the main thread we get the following CSP process
formula:

MAIN = (mc_MAIN_ALLDONE.inittounset  mc_MAIN_FIFO.init 
oc_CONSUMER  oc_FILEWRITER  producer_MAIN  MX)
MX = (mc_MAIN_OUTPUT.allocatechunk  mc_MAIN_FIFO.enqueue  MX П
mc_MAIN_OUTPUT.allocatechunk  mc_MAIN_ALLDONE.setflag 
oj_MAIN_FILEWRITER  mc_MAIN_FIFO.destroy  od_FIFO  SKIP)

Listing 2. CSP spec for the main thread (Bzip2)

The main thread initializes and creates some objects, then
enters its producer-method and internal loop. From the
sequence diagram, we cannot tell when the main thread will
leave this loop. Hence, we model this as a non-deterministic

choice (operator П) between two possible behaviors: One
branch allocates output slots, enqueues data, and loops; the
other branch leaves the loop, sets the flag, and joins the
filewriter thread. SKIP is a standard CSP process that doesn‟t
do anything anymore.

If more information were provided in the sequence diagram
about the loop exit condition we could include this in the
model. Otherwise, we found that modeling loops using non-
deterministic choice is adequate for our purposes.

The other active objects in the diagram (consumer thread,
filewriter thread) get modeled analogously:

CONSUMER = (oc_CONSUMER  CX)
CX = (mc_CONSUMER_ALLDONE.check  mc_CONSUMER_FIFO.dequeue
 compress_CONSUMER  mc_CONSUMER_OUTPUT.writechunk  CX П
mc_CONSUMER_ALLDONE.check  od_CONSUMER  SKIP)

Listing 3. CSP spec for the consumer thread (Bzip2)

FILEWRITER = (oc_FILEWRITER  FX)
FX = (mc_FILEWRITER_ALLDONE.check 
mc_FILEWRITER_OUTPUT.getchunk  FX П
mc_FILEWRITER_ALLDONE.check  od_FILEWRITER 
oj_MAIN_FILEWRITER  SKIP)

Listing 4. CSP spec for the filewriter thread (Bzip2)

The other objects in the Bzip2 diagram are modeled
differently because they are “passive.” They gain control only
if one of their methods is called from outside. F.e., the fifo
object offers methods that are called by the main thread and
consumer thread. The fifo object has no control over when its
methods are being called, nor by whom. In particular, its
methods may be called concurrently from different threads,
with all implications and defect risks. Hence, we model this
passive object as a parallel composition of two sub-processes,
each of which covers the communication with one of the active
threads:

FIFO = FX1 ǁ FX2
FX1 = (mc_MAIN_FIFO.init  FX1 | mc_MAIN_FIFO.enqueue  FX1 |
mc_MAIN_FIFO.destroy  od_FIFO  SKIP)
FX2 = (mc_CONSUMER_FIFO.dequeue  FX2)

Listing 5. CSP spec for the fifo object (Bzip2)

In the diagram, the main thread can call fifo‟s init-,
enqueue-, or destroy-method. From the perspective of the FIFO

process, these are alternatives (deterministic choice); if the
methods should be called in a particular order, this must be
specified as part of the caller‟s logic. Note that this comment
also applies to the loop in the diagram, which is part of the
main thread, not of the fifo object. Modeling “passive” objects
this way complies with the usual behavior of procedural code.

The remaining objects in the diagram are modeled
accordingly:

OUTPUT = OX1 ǁ OX2 ǁ OX3
OX1 = (mc_MAIN_OUTPUT.allocatechunk  OX1)
OX2 = (mc_FILEWRITER_OUTPUT.getchunk  OX2)
OX3 = (mc_CONSUMER_OUTPUT.writechunk  OX3)

Listing 6. CSP spec for the output object (Bzip2)

ALLDONE = AX1 ǁ AX2 ǁ AX3
AX1 = (mc_MAIN_ALLDONE.inittounset  AX1 | mc_MAIN_ALLDONE.setflag
 AX1)
AX2 = (mc_FILEWRITER_ALLDONE.check  AX2)
AX3 = (mc_CONSUMER_ALLDONE.check  AX3)

Listing 7. CSP spec for the flag (Bzip2)

C. Generator Tool

We developed a prototype tool – the model generator – that
derives CSP formulas automatically from a sequence diagram.
The tool generates all processes, prefixes, events, etc. from the
sequence diagram; no manual intervention by the developer is
needed. It is ongoing work to extend the tool to handle state
diagrams and combine information from several diagrams. As
input for the model generator, we use an intermediate XML
representation of the diagram.

D. Generic Defect Patterns

Concurrency defects patterns are modeled after defects that
occurred in real applications, see [16] [2] [17]. We analyzed
these known defects in depth to extract their core ingredients.

The patterns are short CSP formulas whose events are
composed exactly the same way as the events in the formulas
of an application; the only difference is that the patterns use
generic process and method names. F.e., a (faulty) access to an
object O that has been destroyed can be formally modeled as an
object deletion event (od_O) followed by a method call
(mc_P_O), a read access (rd_P_O), or a write access (wr_P_O)
from some other process P to the destroyed object.

Table 1 lists our current catalogue of defect patterns. The
access-after-deletion pattern is adapted from [16],
asynchronous-wait from [2], multiple-initialization from [18],
and mutable-lock from [19]. The atomicity violation patterns
total to 14 (we show only an excerpt in the table) and are
adapted from [17]. They differ only in the number and order of
read-write accesses. Their applicability is discussed in detail in
[17] [20] [21]. We derived yet another set of defect patterns
from them in which the violation occurs indirectly when
accessing some data via method calls of an encapsulating
object. This helps detect certain defects, see, f.e., the MySQL
case study below.

Table 1. Concurrency defect patterns

Access after deletion
AD1
AD2
AD3

od_SD  mc_P1_SD.method  STOP
od_SD  rd_P1_SD  STOP
od_SD  wr_P1_SD  STOP

Asynchronous wait with flag
AW1

AW2

mc_MAIN_ASYNC.method  wr_ASYNC_FLAG 
wr_MAIN_FLAG  rd_MAIN_FLAG  STOP
oa_ASYNC  wr_ASYNC_FLAG  wr_MAIN_FLAG 
rd_MAIN_FLAG  STOP

Multiple initialization
MI rd_T1_REF  rd_T2_REF  oc_REF  oc_REF  STOP

Mutable lock
ML lock_REF  oc_REF  lock_REF  STOP

Atomicity violation with one variable
AV1
AV2
etc.

rd_P1_SD  wr_P2_SD  wr_P1_SD  STOP
rd_P1_SD  wr_P2_SD  rd_P1_SD  STOP

Atomicity violation with two variables
AV6

AV7

etc.

wr_P1_SD1  wr_P2_SD1  wr_P2_SD2  wr_P1_SD2 
STOP
wr_P1_SD1  wr_P2_SD2  wr_P2_SD1  wr_P1_SD2 
STOP

Indirect atomicity violation
IAV2

etc.

mc_P1_DELEGATE.method1  rd_DELEGATE_SD 
mc_P2_DELEGATE.method2  wr_DELEGATE_SD 
mc_P1_DELEGATE.method3  rd_DELEGATE_SD  STOP

Note that the defect patterns need to be specified only once;
they are stored in our tool.

E. Defect Detection

A concurrency defect in an application‟s CSP model
indicates a potential concurrency defect in the design. To check
whether one of the defect patterns matches, we use the CSP
model checker FDR2 [14]. Basically, we hand FDR the CSP
model and have it analyze whether the traces of the pattern are
observable as part of the traces of the application. A trace is a
sequence of CSP events; which event sequences can occur (or
not) is specified by the formulas in a model.

Before we can run any checks, we must instantiate the
defect patterns for the given application. That is, we
systematically substitute concrete object and method names
from the application for the generic ones in the patterns. Recall
that the events in the patterns are composed the same way as
the events in the process formulas of an application. F.e., the
access-after-deletion pattern “od_SD  mc_P1_SD.method 

STOP” contains the generic names SD for a “data” object, P1
for a “process” object, and method for an operation that is
called on the data object by the process object. A particular
instance of this pattern using Bzip2 names then is ”od_FIFO 

mc_MAIN_FIFO.enqueue  STOP”.

Not all combinations of concrete names make sense for a
given pattern; many can safely be left out. F.e., for an error-
prone overlapping read-write access, we need at least two
active processes. There are only a handful of such sanity
checks for each defect pattern, but they help cut down the
number of pattern instances that must be considered.

Each concrete pattern instance then is fed into the model
checker, together with the application model and some
additional code that programs the model checker to compare
the two trace spaces.

Let‟s look at an example. The design of Bzip2 contains a
concurrency bug which is not immediate from the sequence
diagram: After setting the flag, the main process waits for the
filewriter thread, assuming that the consumer process will exit
before the filewriter thread. If the consumer thread checks the
flag right before it is set by main and checked by filewriter, the
threads may exit in the reverse order, and consumer will try to
read from the queue that has just been freed by the main thread.

This bug was actually contained in an earlier version of
Bzip2 [16]. At the model level, this defect is visible as a
particular trace of CSP events:

mc_CONSUMER_ALLDONE.check,
mc_MAIN_ALLDONE.setflag, mc_MAIN_FIFO.destroy, od_FIFO,

mc_CONSUMER_FIFO.dequeue.

The defective trace is detected by the model checker when
checking the Bzip2 model against the catalogue of defect
patterns. The model actually allows for detecting the
concurrency defect hidden in the design diagram.

F. Detector Tool

We have fully automated the pattern instantiation and
model-checking process in a prototype tool – the defect

detector – that hooks up our model generator tool with FDR.
Since our CSP models tend to be slim, model-checking them
with FDR is very fast. Typically, we get a complete check of
all pattern instances within a few seconds. We provide exact
measurements for the case study examples in the next section.

At the model level, there are no false positives: If one of the
defect patterns matches, there definitely is a concurrency defect
in the model. Yet, there is not always a corresponding defect in
the application design. Since our CSP model might over-
generalize the design information to some extent, it may
happen that the defective trace actually is excluded in the
design. Our experiments show that the number of such false
positives tends to be small, though.

G. Frontends

The model generator takes an XML representation of the
design diagram as input. The XML schema is tailored to our
tool. Developers will create their diagrams using a common
UML modeling tool, though, such as Visual Paradigm,
StarUML, or Eclipse MDT. We provide frontends for these
UML tools that convert the XML/XMI exports from the
modeling tools into our own format, so that input is automated.

Similarly, we are working on backends that feed any
detected defects back into the UML modeling tool. Currently,
our tool reports any defect matches as the corresponding,
concrete CSP trace. Since the event names in our models carry
information about the objects and methods involved, we in
principle can trace this output back to the scenario in the initial
design diagram.

IV. EVALUATION

Evaluating a design-based defect detection approach faces
the difficulty that there is no established benchmark suite
containing design diagrams for real software applications.
Currently, we are working with our industry partners in the
QUALICORE research project to compile such a benchmark
suite for their industrial systems.

In this section, we provide an initial, explorative evaluation
of our approach. We analyze sequence diagrams that are
cutouts from the open-source applications Mozilla and
MySQL. The diagrams are similar to the Bzip2 diagram in
section 3. The diagrams describe concurrent collaboration
scenarios for which a concurrency bug report was filed. We use
the diagrams as input to our tool chain and ask whether we can
detect the hidden defect in the diagram automatically.

The examples in our study are named after the application
and the corresponding bug id, f.e., Mozilla 97866.

Due to a lack of proper documentation for the applications,
we had to create the sequence diagrams manually “in the
aftermath,” similar to what one would do when trying to
understand the code. Deriving the diagrams from the code was
not really an option for this study, since our approach aims at
the design phase of the development process, when code is not
yet available. We honestly tried to resemble the kind of
information and level of detail in the diagrams that would be
available in the analysis or design phase of the development
process.

We would like to point out that the sequence diagrams we
provide always specify a “positive” scenario, that is, a non-
defective sequence of operations, as the scenario should work.
Still, a concurrency defect is lurking in the background and will
pop up if the operations are scheduled in a different order.

For each example, we give the computing times for
generating the model and for defect-checking the model. The
measurements were taken on a standard laptop with a DualCore
Intel i7 at 2.8 GHz and 8 GB of RAM, running Win7-64.

A. Bzip2

Scenario. We described the processing scenario for Bzip2
in section 3, including a sequence diagram in Fig. 1. The
diagram shows the typical sequence of operations as intended
by the developer.

Defect Detection. Our model generator computes from the
sequence diagram the CSP formulas shown in Listings 1-7. The
CSP model generalizes the particular sequence of operations
provided in the diagram (we discussed this in section 3). The
resulting set of CSP traces includes this correct sequence, but
also other interleavings of the operations.

When checking the CSP model against our defect patterns,
the concurrency bug that is hidden in the diagram is detected:
The access-after-deletion pattern matches. Just 3 instances were
created for all patterns listed in Table 1, since most read-write
patterns don‟t apply to the diagram. The total computing time
was 2.1 seconds (0.6+1.5).

Discussion. The sequence diagram specifies the intended
operations for a core part of the software, and will occur
naturally during design. The level of detail is sufficient to
detect the concurrency defect hidden in the scenario.

One might argue that the diagram includes information
about how processing finalizes in the given scenario, and that
such information is not always included during design; or, it
might be part of a separate design artifact. We take this as an
indication that we need to merge information from several
design diagrams. This is clearly within reach of our technique
and can be achieved at both the diagram and the CSP model
level. We are working on this.

B. Mozilla 97866

Scenario. Our second example is taken from Mozilla. In the
scenario, the main thread issues an asynchronous read call to
some system library, then enters a loop for a busy wait on the
results. The asynchronous call signals that it has finished by
setting a flag (“io_pending”) that is checked by the main thread
inside the wait loop. Fig. 2 shows a sequence diagram that
specifies the intended behavior.

Figure 2. Busy wait on async operation (Mozilla 97866)

Defect Detection. Listing 8 shows the CSP formulas that
are generated automatically by our tool from the diagram:

MOZILLA97866 = (MAIN || IOPENDING || MACOS)
MAIN = (readwriteproc_MAIN  mc_MAIN_MACOS.pbreadasync 
wr_MAIN_IOPENDING.prtrue  waitonthisthread_MAIN  MAINXL)
MAINXL = (rd_MAIN_IOPENDING  MAINXL П rd_MAIN_IOPENDING 
SKIP)
IOPENDING = (IOPENDINGXS1 || IOPENDINGXS2)
IOPENDINGXS1 = (wr_MACOS_IOPENDING.prfalse  IOPENDINGXS1)
IOPENDINGXS2 = (wr_MAIN_IOPENDING.prtrue  IOPENDINGXS2 |
rd_MAIN_IOPENDING  IOPENDINGXS2)
MACOS = (mc_MAIN_MACOS.pbreadasync  asynciocompletion_MACOS 
donewaitingonthisthread_MACOS  wr_MACOS_IOPENDING.prfalse 
MACOS)

Listing 8. CSP spec for Mozilla 97866

When checking this model with our defect detector, the
asynchronous-wait pattern and two atomicity-violation patterns
match, making apparent that the way in which the flag is used
is not safe: For certain (rare) schedules, the asynchronous call
might return and set the flag before the main thread has had a
chance to reset it before entering its loop. As a result, the main
thread will loop forever. This bug was actually present in
Mozilla and caused the browser to hang. Our tool generated 7
pattern instances. The total computing time was 0.8 seconds
(0.5+0.3).

Discussion. In the sequence diagram, read and write access
to the common flag is specified using stereotypes («read» and
«write»). This helps our tool to understand the semantics of the
access. We are aware of the fact that designers in practice
might be more sloppy when specifying such operations in a
diagram. F.e., the stereotypes might be missing, or, operations
such as get and set might be used whose semantics are
implicitly understood.

A designer might also leave out the explicit lifeline for the
flag altogether and specify that the flag is being set and reset in
some other way, typically by providing more annotation at
certain arrows in the diagram. Fig. 3 shows an example, where
access to the flag appears as a self-call within the active object,
with the annotation including some assignment statement, such
as “io_pending=PR_FALSE”. We are extending our parser to
handle such cases properly.

Figure 3. Alternative sequence diagram for Mozilla 97866

C. MySQL 3596

Scenario. A central data structure (“proc_info”) is
managed exclusively by a specific thread. Access to the data is
tunneled through this manager thread. Several threads use the
manager concurrently. Fig. 4 shows a sample sequence
diagram where one thread asks for the data on several
occasions; later, another thread resets (part of) the data.

Figure 4. Indirect read/write access (MySQL 3596)

Defect Detection. Listing 9 contains the CSP model for the
MySQL sequence diagram. Clearly, the problem is that read
and write accesses are caused indirectly by different threads
and may overlap; this cannot be seen by the clients. The
manager thread must provide for proper synchronization.

To detect this kind of defect, we extended our pattern
catalogue to cover read/write conflicts that are caused
indirectly by concurrent external method calls. In the MySQL
example, our defect detector created 6 pattern instances, and
one of the indirect-atomicity-violation patterns matched. The
defect can also be detected if the trailing «write» is substituted
with a «destroy». The total computing time was 0.8 seconds
(0.5+0.3).

MYSQL3596 = (INNODBHANDLER || INPUTTHREAD || SQLPARSER ||

PROCINFO)

INNODBHANDLER = (mc_INNODBHANDLER_INPUTTHREAD.check 

mc_INNODBHANDLER_INPUTTHREAD.get  SKIP)

INPUTTHREAD = (INPUTTHREADXS1 || INPUTTHREADXS2)

INPUTTHREADXS1 = (mc_SQLPARSER_INPUTTHREAD.reset 

wr_INPUTTHREAD_PROCINFO  INPUTTHREADXS1)

INPUTTHREADXS2 = (mc_INNODBHANDLER_INPUTTHREAD.check 

rd_INPUTTHREAD_PROCINFO  INPUTTHREADXS2 |

mc_INNODBHANDLER_INPUTTHREAD.get  rd_INPUTTHREAD_PROCINFO

 INPUTTHREADXS2)

SQLPARSER = (mc_SQLPARSER_INPUTTHREAD.reset  SKIP)

PROCINFO = (rd_INPUTTHREAD_PROCINFO  PROCINFO |

wr_INPUTTHREAD_PROCINFO  PROCINFO)

Listing 9. CSP spec for MySQL 3596

Discussion. This synchronization problem may not be
obvious at design time. From the perspective of the client
threads, simply a few methods are called on the manager
thread. This shouldn‟t cause a problem; after all, delegation is a
normal thing in object-oriented software. Hence, it wouldn‟t
make sense to mark all concurrent method calls on an object as
error-prone without having additional information on the
semantics.

The problem occurs indirectly here, as the manager thread
fails to properly synchronize the reads and writes on the data
triggered by the method calls. The defect can be detected
automatically only if these internals are visible in the design.
Similar to previous examples, this might require combining
several diagrams in our model.

D. Mozilla 73291 Synchronized

We also studied examples in which a known concurrency
defect was repaired by introducing proper synchronization. The
corresponding CSP model then includes locking events and
does not exhibit any defective traces; hence, no defect pattern
matches, and our tool handles the repaired diagram correctly.
Mozilla bug 73291 provides an example.

Scenario. When layouting text, the Mozilla browser uses
three distinct variables (content, length, offset) to specify which
text segment to access. Several active objects may access the
text storage concurrently. The three variables logically belong
together; non-atomic concurrent updates would leave the text
storage in an inconsistent state. In the original Mozilla code,
this scenario caused a concurrency bug that was reported to
crash the browser. Fig. 5 shows a sequence diagram in which
the bug is repaired: the read accesses are enclosed in a UML
2.4 critical-construct, and so are the write accesses.

Figure 5. Mozilla 73291 Synchronized

Defect Detection. Listing 10 contains the corresponding

CSP model. Our model generator automatically includes a
mutex process MUTEX, and the thread processes THREAD1 and
THREAD2 call the lock- and unlock-operations on the mutex:

MOZILLA73291SYNC = (THREAD1 || THREAD2 || MCONTENT ||

MCONTENTOFFSET || MCONTENTLENGTH || MUTEX)

THREAD1 = (nstextframepaintasciitext_THREAD1  lck_THREAD1_MUTEX 

rd_THREAD1_MCONTENT  rd_THREAD1_MCONTENTOFFSET 

rd_THREAD1_MCONTENTLENGTH  unl_THREAD1_MUTEX  SKIP)

THREAD2 = (lck_THREAD2_MUTEX  nsplaintexteditorcut_THREAD2 

nstextframereflow_THREAD2  wr_THREAD2_MCONTENT 

wr_THREAD2_MCONTENTOFFSET  wr_THREAD2_MCONTENTLENGTH

 unl_THREAD2_MUTEX  SKIP)

MCONTENT = (MCONTENTXS1 || MCONTENTXS2)

MCONTENTXS1 = (rd_THREAD1_MCONTENT  MCONTENTXS1)

MCONTENTXS2 = (wr_THREAD2_MCONTENT  MCONTENTXS2)

MCONTENTOFFSET = (MCONTENTOFFSETXS1 || MCONTENTOFFSETXS2)

MCONTENTOFFSETXS1 = (wr_THREAD2_MCONTENTOFFSET 

MCONTENTOFFSETXS1)

MCONTENTOFFSETXS2 = (rd_THREAD1_MCONTENTOFFSET 

MCONTENTOFFSETXS2)

MCONTENTLENGTH = (MCONTENTLENGTHXS1 || MCONTENTLENGTHXS2)

MCONTENTLENGTHXS1 = (wr_THREAD2_MCONTENTLENGTH 

MCONTENTLENGTHXS1)

MCONTENTLENGTHXS2 = (rd_THREAD1_MCONTENTLENGTH 

MCONTENTLENGTHXS2)

MUTEX = (lck_THREAD2_MUTEX  unl_THREAD2_MUTEX  MUTEX |

lck_THREAD1_MUTEX  unl_THREAD1_MUTEX  MUTEX)

Listing 10. CSP spec for Mozilla 73291 synchronized

The synchronization in the CSP model prevents traces that
exhibit a concurrency defect. Hence, no defect pattern
matches, as expected. Our tool creates 42 pattern instances;
the total computing time is 2.4 seconds (0.5+1.9).

Discussion. This example illustrates that specifying
synchronization in a sequence diagram is straightforward, and
that our tool handles synchronization correctly. Alternatively
to the critical blocks, the designer might include a lock object
and lock/unlock operations in the diagram, but these calls are
more difficult to get right than the critical blocks.

In addition, one might well argue that the scenario is low-
level, so that there might be no design diagram showing the
three variables explicitly. If any, one might see a sequence
diagram that specifies the order in which a single client should
use the variables when accessing text, but this is not sufficient
to detect the defect. There seem to be concurrency defects that
are so closely tied to the actual code that we cannot expect to
see them at the design level. We would guess that many
atomicity violations fall into this category. Fortunately, race
detectors are good at detecting simple atomicity violations,
although one has to wait until coding.

V. CONCLUSIONS

We presented an automated approach for detecting
concurrency defects in software designs. Our tool automatically
infers formal parallel specifications from standard UML
sequence diagrams. We automatically search for concurrency
defects in the specifications using generic defect patterns. Any
match corresponds to a defective trace at the model level and,
hence, points to a potential concurrency defect in the design.

Compared against existing work, our approach is novel in
several respects, including: using sequence diagrams as a
natural, interaction-centric design input; inferring a formal
specification that generalizes the design scenario suitably;
checking against generic defect patterns instead of application-

specific properties; allowing for checking incomplete design
models; producing small models that can be checked fast.

The concurrency defect patterns were adapted from
empirical studies of known concurrency defects in large open-
source applications. We formally model both the design
diagrams and the defect patterns in CSP calculus. Our
automated defect detection tool employs the FDR model
checker.

We also presented three case studies to provide an initial
evaluation of our approach. We modeled and analyzed
sequence diagrams for parts of Mozilla, MySQL, and Bzip2. In
the examples studied, the concurrency defect that is hidden in
the design diagram is detected automatically by our tool,
although the diagram only shows a positive scenario, that is, a
correct sequence of operations.

More often than not, a design view is incomplete and leaves
room for a concurrency defect. The capability of our tool to
detect defects in positive scenarios is achieved by generalizing
the given scenario carefully when generating the CSP model,
as explained in section 3.

As discussed in the evaluation section, our approach can
detect a potential concurrency defect only if sufficient
information is visible in the design. The necessary information
could emerge from combining two or more diagrams, each
highlighting part of the picture, such as a sequence diagram and
a state diagram from different phases of design. We are
currently working on automating the merging of diagrams and
of the corresponding formal models.

Developers can support defect detection at the design level
in several ways: including initialization and finalization in
usage scenarios; modeling central data objects explicitly as
separate lifelines; and designing safe concurrent access to data
objects explicitly, using locks or the UML critical-construct.
This will make the design more complete, easier to understand,
and easier to evaluate automatically.

From a development process perspective, our findings
provide additional motivation for practitioners to invest more
time and effort into designing the concurrent parts of their
software. Learning and applying a parallel calculus such as
CSP or Petri nets is somewhat difficult. For the purpose of
defect detection, there seems to be an easier way for developers
than to develop formal specifications manually: With an
automated approach, they can start from their familiar design
diagrams, generate the formal specs automatically from the
diagrams, and search for typical concurrency defects
automatically.

Clearly, our automated approach cannot be expected to find
all concurrency defects hidden in a design. Some defects are
simply too low-level to be visible in the design. Yet, from an
in-depth analysis of concurrency defects in real applications
that we performed previously, we expect that many defects are
being introduced already at the design stage and can be
detected from the information available from standard
diagrams. It would save substantial development and
maintenance effort if the majority were detected before they
turn into code.

 ACKNOWLEDGMENT

We would like to thank our industry partners GPP
Communications, Acellere, and petaFuel for the joint work in
the QUALICORE project. QUALICORE is supported by research
grant no. 01|S11011 from the German Federal Ministry of
Science and Education BMBF.

REFERENCES

[1] Fonseca, P., Li, C., Singhal, V., and Rodrigues, R., “A study of the
internal and external effects of concurrency bugs,” Int. Conf. on
Dependable Systems and Networks (DSN „10), 221-230.

[2] Lu, S., Park, S., Seo, E., and Zhou, Y., “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
13th Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS‟08), 329–339.

[3] Engler, D. and Ashcraft, K., “RacerX: effective, static detection of race
conditions and deadlocks,”. 19th ACM Symp. on Operating Systems
Principles (SOSP‟03), 237–252.

[4] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T.,
“Eraser: a dynamic data race detector for multithreaded programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4 (1997), 391–411.

[5] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., and
Stata, R., “Extended static checking for Java,” ACM Conf. on Pro-
gramming Language Design and Implementation (PLDI‟02), 234–245.

[6] Flanagan, C. and Freund, S.N., “FastTrack: efficient and precise
dynamic race detection,” ACM Conf. on Programming Language Design
and Implementation (PLDI‟09), 121–133.

[7] Bond, M. D, Coons, K. E., and McKinley, K. S., “PACER: proportional
detection of data races,” ACM Conf. on Programming Language Design
and Implementation (PLDI‟10), 255-268.

[8] Serebryany, K., Potapenko, A., Iskhodzhanov, T., and Vyukov, D.,
“Dynamic Race Detection with LLVM Compiler - Compile-Time
Instrumentation for ThreadSanitizer,” Runtime Verification (RV‟11)
110-114.

[9] Xu, D. et al., “Model Checking UML Activity Diagrams in FDR,” 8th
Int. Conf. on Computer and Information Science (ICIS‟09), 1035–1040.

[10] Davies, J. and Crichton, C., “Concurrency and Refinement in the
Unified Modeling Language,” Formal Aspects of Computing. vol. 15,
no. 2-3 (2003), 118–145.

[11] Möller, M., Olderog, E.-R., Rasch, H., and Wehrheim, H., “Linking
CSP-OZ with UML and Java: A Case Study,” 4th Int. Conf. on
Integrated Formal Methods (IFM‟04), 267-286.

[12] Shousha, M. et al., “A UML/MARTE Model Analysis Method for
Uncovering Scenarios Leading to Starvation and Deadlocks in
Concurrent Systems,” IEEE Trans. on Softw. Eng., vol. 38, no. 2 (2012),
354–374.

[13] Hoare, C.A.R: Communicating Sequential Processes. Prentice Hall,
1985

[14] Formal Systems Software, fsel.com/software.html

[15] Gilchrist, J.: Parallel BZIP2 (PBZIP2) – Data Compression Software,
compression.ca/pbzip2/

[16] Yu, J. and Narayanasamy, S., “A case for an interleaving constrained
shared-memory multi-processor,” 36th Int. Symp. on Computer
Architecture (ISCA‟09), 325–336.

[17] Hammer, C., Dolby, J., Vaziri, M., and Tip, F., “Dynamic detection of
atomic-set-serializability violations,” 30th Int. Conf. on Softw. Eng.
(ICSE‟08), 231–240.

[18] Bradbury, J.S. and Jalbert, K., “Defining a Catalog of Programming
Anti-Patterns for Concurrent Java,” 3rd Int. Workshop on Softw.
Patterns and Quality (SPAQU‟09), 6–11.

[19] Luo, Z. Da, Nir-Buchbinder, Y., and Das, R., “Java concurrency bug
patterns for multicore systems - Six lesser known Java concurrency bug
patterns,” 2010.

[20] Vaziri, M., Tip, F., and Dolby, J., “Associating synchronization
constraints with data in an object-oriented language,”.33rd ACM Symp.
on Principles of Programming Languages (POPL‟06), 334–345.

[21] Lu, S., Tucek, J., Qin, F., and Zhou, Y., “AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants,” 11th Int. Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS‟06), 37–48.

[22] Park, S., Vuduc, R.W., and Harrold, M. J., “Falcon: Fault Localization in
Concurrent Programs,” 32nd Int. Conf. on Softw. Eng. (ICSE ‟10), 245–
254.

[23] Cordeiro, L., and Fischer, B., “Verifying Multi-threaded Software using
SMT-based Context-Bounded Model Checking Categories and Subject
Descriptors Exploring the Reachability Tree,” 33rd Int. Conf. on Softw.
Eng. (ICSE ‟11), 331–340.

[24] Wang, C., Chaudhuri, S., Gupta, A., and Yang, Y., “Symbolic pruning
of concurrent program executions,” 7th European Softw. Eng. Conf.
(ESEC/FSE ‟09), 23-32.

[25] Bowles, J., and Meedeniya, D., “Formal Transformation from Sequence
Diagrams to Coloured Petri Nets,” 17th Asia Pacific Softw. Eng. Conf.
(APSEC ‟10), 216–225.

[26] Uchitel, S., Kramer, J., and Magee, J., “Incremental Elaboration of
Scenario-Based Specifications and Behaviour Models Using Implied
Scenarios,” ACM Trans. Softw. Eng. and Methodology, vol. 13, no. 1
(2004) 37-85.

[27] Uchitel, S., Brunet, G., and Chechik, M., “Behaviour Model Synthesis
from Properties and Scenarios,” 29th Int. Conf. Softw. Eng. (ICSE‟07),
34-43.

[28] Mitchell, B., “Characterizing Communication Channel Deadlocks in
Sequence Diagrams,” IEEE Trans. on Softw. Eng., vol. 34, no. 3 (2008)
305–320.

[29] Zhang, W.E.I., Sun, C., Lim, J., Lu, S., and Madison, W., “ConMem:
Detecting Crash-Triggering Concurrency Bugs through an Effect-
Oriented Approach,” ACM Trans. on Softw. Eng. and Methodology,
vol. 22, no. 2 (2013), 1–33.

[30] Campbell, L.A., Cheng, B.H.C., McUmber, W.E., and Stirewalt, R.E.K.,
“Automatically detecting and visualising errors in UML diagrams,”
Requirements Eng., vol. 7, no. 4 (2002), 264–287.

[31] Thierry-Mieg, Y. and Hillah, L.-M., “UML behavioral consistency
checking using instantiable Petri nets,” Innovations in Systems and
Softw. Eng., vol. 4, no. 3 (2008), 293–300.

[32] Baresi, L., and Pezze, M., “On Formalizing UML with High-Level Petri
Nets,” in Springer LNCS 2001, Concurrent Object-Oriented
Programming and Petri Nets, ed. G.A. Agha, F. Cindio, and G.
Rozenberg, Springer Verlag (2001), 276–304.

[33] Liu, S., Liu, Y., Choppy, C., Sun, J., Wadhwa, B., and Dong, J.S., “A
Formal Semantics for Complete UML State Machines with
Communications,” Integrated Formal Methods (IFM‟13), 331–346.

[34] Evans, A., France, R., Lano, K., and Rumpe, B., “The UML as a formal
modeling notation,” Computer Standards & Interfaces, vol. 19, no. 7
(1998), 325–334.

[35] Gagnon, P., Mokhati, F., and Badri, M., “Applying Model Checking to
Concurrent UML Models,” Journal of Object Technology, vol. 7, no. 1
(2008), 59-84.

[36] Sinha, N., and Wang, C., “Staged concurrent program analysis,” 18th
ACM Int. Symp. on Foundations of Softw. Eng. (FSE‟10) 47-56.

[37] Dan, L., “QVT Based Model Transformation from Sequence Diagram to
CSP,” 15th Int. Conf. on Eng. of Complex Computer Systems
(ICECCS‟10), 349-354

http://www.jot.fm/contents/issue_2008_01/article1.html
http://www.jot.fm/contents/issue_2008_01/article1.html

