
HAL Id: hal-01888605
https://hal.science/hal-01888605

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge Based Optimization for Distributed
Real-Time Systems

Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem, Marius Bozga

To cite this version:
Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem, Marius Bozga. Knowledge Based Op-
timization for Distributed Real-Time Systems. 24th Asia-Pacific Software Engineering Conference,
APSEC 2017, Dec 2017, Nanjing, China. �hal-01888605�

https://hal.science/hal-01888605
https://hal.archives-ouvertes.fr

Knowledge Based Optimization for Distributed
Real-Time Systems

Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem and Marius Bozga
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France

Email: {mahieddine.dellabani, jacques.combaz, saddek.bensalem, marius.bozga}@univ-grenoble-alpes.fr
http://www.verimag.fr/rsd

Abstract—The design and the implementation of distributed
real-time systems has always been a challenging task. A central
question being how to efficiently coordinate parallel activities by
means of point-to-point communication so as to keep global con-
sistency while meeting timing constraints. In the domain of safety
critical applications, system predictability allows to pre-compute
optimal scheduling policies. In this paper, we consider a larger
class of systems represented as compositions of timed automata
subject to multiparty interactions, for which an implementation
method for distributed platforms and based on intermediate
model transformation already exists. To improve this approach,
we developed specific static analysis techniques that, combined
with local and global knowledge of the system, checks particular
conditions that enables to decrease the number of messages
exchanged in the system for executing each interaction, as well
as to remove unnecessary scheduling overhead in some cases.

I. INTRODUCTION

Nowadays, real-time systems are widespread and span
across several application domains. Such an evolution has
introduced a growing urge towards the development of more
sophisticated, and thus more complex, real-time systems such
as air traffic control and automotive systems, or even to
combine formerly isolated systems improving consequently
functionalities and reducing costs. This trend has sustained
a race for an increasing need of performance (availability,
concurrency, resources, etc.), which led to a shift from the use
of single processor based hardware platforms, to large sets of
interconnected and distributed computing nodes. On the other
hand, the emergence of some applications that are intrinsically
distributed, for instance networked embedded systems, or other
applications that have physical constraints which require the
use of several dedicated computing units in specific locations,
such as processing sensor data and controlling actuators,
corroborates the necessity of this expansion.

Model-based design is one promising approach to deal with
such complexity. This approach relies on the same semantics
rules used consistently through the flow, to reach a concrete
implementation. First, an application model flowing from the
specification is established. This high level model defines a
platform free abstraction of the application behavior. This
abstraction may use some high level primitives that are, in
practice, rarely part of the built-in primitives offered by dis-
tributed platforms. Then, intermediate model transformations
preserving the functional properties of the original model can
be progressively derived until reaching the code generation

phase. The big challenge being how to switch from a high
level model using particular primitives, to an intermediate
distributed model, where only messages-passing and internal
computations are allowed. In [1], [2], the author extensively
studied such transformation (send-receive model) for schedul-
ing multiparty interactions in a distributed real-time context.
We contribute to this research field by proposing a composi-
tional verification method for pre-computing local and global
knowledge aiming to enhance this method. In particular, we
leverage such information to minimize the number of message
exchanges and avoid unnecessary scheduling overhead in the
proposed protocols. Note that how execution times, commu-
nication delays and clocks skew may impact synchronization
protocols in the satisfaction of timing constraints is a related
topic, but is beyond the scope of this paper.

The rest of the paper is organized as follows. Section II
introduces the preliminary definitions of timed automata with
respect to multiparty interactions, as well as predicate defini-
tions needed for the rest of the paper. Then, we explain why
conflict detection between interactions is needed to reach a cor-
rect send-receive model (Section III). Thereafter, Section IV
first describes the existing method used to determine the set
of conflicting interactions, then presents our method based
on static analysis using compositional verification. Finally,
qualitative and quantitative experiments on various examples
are given to confirm the interest of the approach.

II. TIMED SYSTEMS AND PROPERTIES

In the framework of the present paper, components are timed
automata and systems are compositions of timed automata
with respect to multiparty interactions. The timed automata
we use are essentially the ones from [3], however, slightly
adapted to embrace a uniform notation throughout the paper.

Definition 1 (Component): A component is a tuple B =
(L, `0,A, T ,X , tpc) where L is a finite set of locations, `0 ∈
L is an initial location, A a finite set of actions, T ⊆ L ×
(A×C×2X)×L is a set of transitions labeled with an action,
a guard, and a set of clocks to be reset, X is a finite set of
clocks, and tpc : L → C assigns a time progress condition,
tpc(`) to each location ` ∈ L, where C is the set of clock
constraints defined by the following grammar:

C := true | x ∼ ct | x− y ∼ ct | C ∧ C | false,

with x, y ∈ X , ∼ ∈ {<,≤,=,≥, >} and ct ∈ Z. Time
progress conditions are restricted to conjunctions of constraints
of the form x ≤ ct with ct ∈ Z≥0.
Throughout the paper, we assume components that are deter-
ministic timed automata, that is, at a given location `, for a
given action a, there is up to one outgoing transition from `
labeled by a. Given a timed automaton (L, `0,A, T ,X , tpc),
we write `

a,g,r−−−→ `′ if there exists a transition τ =(
`, (a, g, r), `′

)
∈ T . Let V be the set of all clock valuation

functions v : X → R≥0. For a clock constraint C, C(v)
is a boolean value corresponding to the evaluation of C on
v. For a valuation v ∈ V , v + δ is the valuation satisfying
(v + δ)(x) = v(x) + δ, while for a subset of clocks r, v[r]
is the valuation obtained from v by resetting clocks of r, i.e.
v[r](x) = 0 for x ∈ r, v[r](x) = v(x) otherwise. We also
denote by C + δ the clock constraint C shifted by δ, i.e. such
that (C + δ)(v) iff C(v + δ).

Definition 2 (Semantics): A component B =
(L, `0,A, T ,X , tpc) defines the labeled transition system
(LTS) (Q,A ∪ R>0,→) where Q ⊆ L × V(X) denotes the
states of B, and →⊆ Q× (A ∪ R>0)×Q denotes the set of
transitions between states according to the rules:
• (`, v)

a−→ (`′, v[r]) if `
a,g,r−−−→ `′, and g(v) is true.

• (`, v)
δ−→ (`, v + δ) if tpc(`)(v + δ) for δ ∈ R>0.

An execution sequence of B from a state (`, v) is a path in
the LTS starting at (`, v) and that alternates action steps and
time steps, that is:

(`, v)
σ1−→ . . .

σi−→ (`n, vn), n ∈ Z>0, σ ∈ A ∪ R>0.

We say that a state (`, v) is reachable if there is an ex-
ecution sequence from the initial state (`0, v0) leading to
(`, v), where v0 assigns 0 to all clocks. In this paper, we
always assume components with well-formed guards, that is,
transitions `

a,g,r−−−→ `′ satisfy g(v)⇒ tpc(`)(v) ∧ tpc(`′)(v[r])
for any v ∈ V . This ensures that the reachable states always
satisfy the time progress conditions, i.e. if (`, v) is reachable
then we have tpc(`)(v). Notice that the set of reachable states
is in general infinite, but it can be partitioned into a finite
number, J ∈ Z>0, of symbolic states [4], [5], [6]. A symbolic
state is defined by a pair (`, ζ) where, ` is a location of B, and
ζ is a zone, i.e. a set of clock valuations defined by a clock
constraint (as defined in Definition 1). Efficient algorithms
for computing symbolic states and operations on zones are
described in [5]. Given symbolic states {(`j , ζj)}j∈J of B, the
predicate Reach(B) characterizing the reachable states can be
formulated as: Reach(B) =

∨
j∈J at(`j)∧ ζj , where at(`j) is

true on states whose location is `j , and clock constraint ζj is
applied to clock valuation functions of states.

We define the predicate Enabled(a) characterizing states
(`, v) at which an action a is enabled, i.e. such that (`, v) a−→
(`′, v′). It can be written:

Enabled(a) =
∨
`∈La

at(`) ∧ g.

where La is the set of locations enabling action a, i.e.
La = {` ∈ L|` a,g,r−−−→ `′}. In our framework, components

communicate by means of multiparty interactions. A mul-
tiparty interaction is a rendez-vous synchronization between
actions of a fixed subset of components. It takes place only if
all the participants agree to execute the corresponding actions.
Given n components Bi, i = 1, . . . , n, with disjoint sets of
actions Ai, an interaction is a subset of actions α ⊆ ∪1≤i≤nAi
containing at most one action per component, i.e. α ∩ Ai is
either empty or a singleton {ai}. We denote by part(α), the set
of components participating in α, that is, part(α) = {Bi}i∈I .

In practice, we do not explicitly build compositions of com-
ponents. We interpret their semantics at runtime by evaluating
enabled interactions based on current states of components.

Definition 3 (Semantics of a Composition): Given a set of
components Bi = (Li, `i0,Ai, Ti,Xi, tpci) and an interaction
set γ. The semantics of the composition S = γ(B1, · · · , Bn)
w.r.t. the set of interactions γ, is the LTS (Qs, γ ∪ R>0,→γ)
where:
• Qs = L × V(X) is the set of global states, where L =
L1 × · · · × Ln and X =

⋃n
i=1 Xi.

• →γ is the set of labeled transitions defined by the rules:
– (`, v)

α−→γ (`′, v′) for α = {ai}i∈I ∈ γ, if ∀i ∈
I. (`i, vi)

ai−→ (`′i, v
′
i) and ∀i /∈ I. (`i, vi) = (`′i, v

′
i).

– (`, v)
δ−→γ (`, v + δ) for δ ∈ R>0 if ∀i ∈

{1, · · · , n}. tpc(`i)(vi + δ).
For an interaction α ∈ γ, we denote by Enabled(α) the
predicate characterizing states (`, v) from which α can be
executed. It is defined as follow:

Enabled(α) =
∧
i∈I

Enabled(ai)

The definitions of execution sequences and reachable states
are trivially extended to compositions of components.

`10

`11

C

init0
z > 25

start0
z := 0

`20 `21

`22

x ≤ 30

T1

`23x ≤ 4

init1

start1
x := 0

process1
10 ≤ x ≤ 30

x := 0

end1
x ≤ 4

`31`30

`32 y ≤ 30

T2

`33

y ≤ 4

init2

start2
y := 0

process2
10 ≤ y ≤ 30

y := 0

end2
y ≤ 4

`40

R

`41

take

free

init2 start2

end2process2

init1start1

end1 process1

take

free

init0 start0

α5α6

α1α2

α3α4

α7α8

Fig. 1: Task Manager

Example 1 (Running Example): Let us consider as a running
example the composition of four components C, T1, T2,
and R of Figure 1. Component C represents a controller
that initializes then releases tasks T1 and T2. Tasks use the
shared resource R during their execution. To implement such
behavior, we consider the following interactions between C,

R, and T1: α1 = {init0, init1}, α3 = {start0, start1},
α5 = {take, process1}, α7 = {free, end1}, and similar
interactions α2, α4, α6, α8 for task T2, as shown by connec-
tions on Figure 1. The controller is responsible for firing the
execution of each task. First, it non-deterministically initializes
one of the two tasks, i.e. executes α1 or α2, and then releases
it through interaction α3 or α4. Tasks perform their processing
independently of the controller, after being granted an access
to the shared resource (α5 or α6). When finished, a task
releases the resource (interactions α7 or α8) and go back to
its initial location.

III. SEND-RECEIVE MODEL FOR DISTRIBUTED
REAL-TIME SYSTEMS

In the previous section, we introduced timed automata
model that describes a high level representation of systems
execution. However, this type of model does not provide any
details on how an implementation of multiparty interactions
can be derived in a distributed context. In this section, we ex-
plain how, from a high level model, a concrete implementation
of systems with multiparty interactions can be achieved.

In a distributed context, components communicate through
asynchronous message passing. Consequently, components are
able to either send a message, to wait for a notification
message or to execute an internal computation. In order to
obtain such behavior, we follow the approach of [1], [2], in
which an intermediate transformation is applied on the initial
model, aiming to explicitly express the ongoing communica-
tion mechanism. The resulting send-receive model describes
the execution of each interaction as a two-way handshake pro-
tocol involving asynchronous messages exchange between the
transformed components and a third party coordinator called
scheduler. Moreover, to avoid centralized coordination, which
is often inefficient, this approach has been extended to the
use of several schedulers [1], [2], each one being responsible
of a subset of interactions, named an interaction partition
(Figure 2). The purpose behind this practice is to: (i) spread the
workload across independent and concurrent schedulers, and
(ii) to map schedulers as close as possible to components that
they effectively handle (w.r.t. to their interactions partition),
which brings back the communication overhead between the
components to the same magnitude. Interaction partitioning
is not addressed here but is a crucial concern for load-
balancing and for tuning the system to achieve a desired level
of performance. This transformation describes the following
protocol. Once they complete the execution of transitions,
components inform schedulers about their current state (i.e.
enabled transitions and timing constraints) via offer messages.
When a scheduler gathers enough offers to determine the
execution of an interaction, it sends notification messages to
components participating in the selected interaction, informing
them thus, about the transitions to be executed.

Example 2: Figure 2 depicts a send-receive model for
Example 1 with two schedulers. Scheduler S1 (resp. S2) han-
dles the interactions {α1, α3, α5, α7} (resp. {α2, α4, α6, α8}).
Each component sends information about its current state

to its corresponding scheduler through offers (oi with i ∈
{1, · · · , 4}) and receive a notification from the latter (nj with
j ∈ {1, · · · , 4}). Moreover, schedulers may rely on a third-
party arbiter when scheduling conflicting interactions. In this
case, they emit a request (reqk with k ∈ {1, · · · , 2}) and wait
for a notification granting (resp. denying) them the execution
of an interaction (okk resp. failk).

TSR1 CSR RSR TSR2

S1{α1, α3, α5, α7} S2{α2, α4, α6, α8}

ConflictResolution

o1n1 o2 n2 o3 n3 o4n4

o1n1 o2n2 o3n3

ok1 fail1 req1

ok1 fail1 req1

o2n2 o3n3 o4n4

ok2 fail2 res2

ok2 fail2 res2

: send port
: receive port

: notification
: offer

Fig. 2: Send-Receive Model for Example 1 (Two Schedulers)

Conflict Resolution

Decentralizing the schedulers generates situational conflict
between interactions, that is, if two interactions handled in
separate schedulers share a component, they cannot execute
in parallel since they share at least one component. We call
such interactions, conflicting interactions. A simple solution
to resolve such conflicts is to enforce a conflict-free parti-
tioning of interactions, which consists in grouping conflicting
interactions together in a scheduler that, internally, will solve
the conflict between the interactions as described in [2], and
separate only the conflict-free interactions. In spite of that, this
solution will restrict the choice for distributing interactions
across schedulers. Thus, another method [7] is to use an
extra component called conflict resolution protocol (CRP).
This component implements an algorithm based on the idea
of message-count technique [8]. This technique is based on
counting the number of times that a component participates
in an interaction. Conflicts are then resolved by ensuring that
each participation number is used only once. Effectively, this
is achieved by counting the number of the interaction offer for
each component. Then, conflict resolution is simply achieved
by comparing the offer numbers of participating components
with numbers of their last execution.

In what follows, we give a formal definition of conflicts.
After that, we explains how the set of conflicting interactions
is over-approximated in [2], and propose a compositional
verification based method aiming to enhance the conflict
detection computation.

IV. CONFLICT DETECTION

As explained in previous section, two interactions α and β
sharing a subset of components cannot execute concurrently.

However, we consider that they are not conflicting if the
composition cannot reach a state from which both can poten-
tially execute. Clearly, such interactions do not require conflict
resolution as they cannot be scheduled based on common
offers. Conflicts are defined as follows:

Definition 4 (Conflicting Interaction): Let
S = γ(B1, . . . , Bn) be a composition. Two interactions
α and β of γ are conflicting, if part(α) ∩ part(β) 6= ∅ and
there exists a reachable state from which both α and β are
enabled, i.e. a state satisfying:

Conf(S, α, β) = Reach(S)∧Enabled(α)∧Enabled(β) (1)

As explained earlier, conflicts arising from distributing the
execution of interactions across multiple independent sched-
ulers require a third party arbiter (CRP), resulting in additional
exchange of messages and calculation overhead.

In general, conflicts as presented in Definition 4 can be
very hard to characterize for real life case studies since they
depend on the reachability of particular states. In [2], the
computation of the conflicting interactions set relies on over-
approximation. It depends on a notion of potential conflicts
that can be detected by simple syntactic pre-checks, and
are used to quickly exclude conflicts based on the fact that
when two interactions are not potentially conflicting, they
are also not conflicting. Particularly, the following syntactic
characterization of conflicts is used:

Definition 5 (Potential Conflict): Two interactions α and β
are potentially conflicting if part(α) ∩ part(β) 6= ∅ and for
each shared component Bi ∈ part(α) ∩ part(β) there exists
a location `i of Bi, and two transitions `i

ai,gi,ri−−−−−→ `′i and

`i
bi,g

′
i,r

′
i−−−−→ `′′i from `i, such that ai ∈ α and bi ∈ β.

Hereinafter, false conflicts refer to potential conflicts as de-
fined in Definition 5 but that are not conflicts w.r.t Definition 4.

A syntactic characterization of (potential) conflicts can be
safely used for scheduling interactions. However, it may lead
to unnecessary resolution of (false) conflicts, inducing thus,
unnecessary messages exchange and conflict resolution com-
putation. Thus, we propose a more advanced method for de-
tecting conflicts between interactions. Our technique includes
two main steps: the first step (i) consists of constructing the
set of potentially conflicting interactions based on Definition 5.
Then, the second step (ii) calculates then combines local and
global knowledge of the system on the form of invariants. The
latter will represents an over-approximation of the reachable
states of the system. After that, by replacing Reach(S) by
its over-approximation Reach(S)
∼

in Equation 1, it verifies
whether potentially conflicting interactions are conflicting or
not by checking the following pre-condition:

Conf(S, α, β)
∼

= Reach(S)
∼

∧Enabled(α)∧Enabled(β) (2)

Notice that since Reach(S)⇒ Reach(S)
∼

, we obtain that
Conf(S, α, β)⇒ Conf(S, α, β)
∼

.
A potential conflict of two interactions is a false conflict

either: (i) because the system cannot reach a global location

enabling both interactions, or (ii) because both interactions are
not enabled at the same time due to timing constraints. In the
following, we show how to compute invariants for removing
false conflicts of types (i) and (ii). This invariants combined
with individual reachable states of components will represent
our over-approximation.

A. Removing False Conflicts using Linear Invariants

Locations reachable in a composition S = γ(B1, . . . , Bn)
are necessary combinations of reachable locations of individ-
ual components Bi. However, in general not all combinations
are reachable since components are not fully independent,
as they synchronize through interactions in the composition.
A typical example of this can be found in example of
Figure 1. Components T1 (resp. T2) may reach location `21
(resp. `31) by executing action init1 (resp. init2), but in the
composition T1 and T2 cannot be simultaneously at locations
`21 and `31. This is due to interactions α1 = {init0, init1}
and α2 = {init0, init2} with component C: executing α1

disables α2, and vice versa. That is, the potential conflict
between interactions α3 and α4 can be excluded if we consider
reachable locations of the composed system.

Following [9], we use linear invariants to characterize
reachable locations of compositions. They are formalized as
follows.

Definition 6 (Linear Invariant): Let S = γ(B1, . . . , Bn) be
a composition and L =

⋃
1≤i≤n Li all components locations,

Li being the locations of Bi. A linear invariant of S is a
linear equality constraint of the form:

∑
`∈L u` · at(`) = u0,

where u`, ` ∈ L, and u0 are integers, in which predicates
at(`), ` ∈ L, are interpreted as 0 for false and 1 for true,
and holding on all reachable states, i.e. such that Reach(S)⇒∑
`∈L u` · at(`) = u0.

Using linear invariants for verification of systems is not a
new idea. They corresponds to the notion of S-invariant in
the Petri net community [10], which is determined to be
appropriate for proving non-coverage of subsets of individual
locations, thing that corresponds exactly to what needed to
prove that two interactions cannot be enabled from the same
location. To compute linear invariants for a composition S =
γ(B1, . . . , Bn), we consider its untimed version S̃ abstracting
all timing aspects of S (i.e. obtained from S by relaxing
guards and time progress conditions of components). Note that
linear invariants for S̃ are also a linear invariants for S, since
reachable locations of S are necessary included in reachable
locations of S̃. We can directly apply results of [9] to S̃, in
which linear invariants are characterized by a system of linear
equations solved using standard techniques such as Gauss-
Jordan elimination or LU-factorization, to compute a finite
set of linear invariants I(S) =

∧
k∈K

∑
`∈L u

k
` · at(`) = uk0 .

A potential conflict between interactions α and β is a false
conflict if the following formula is not satisfiable:∧

1≤i≤n

Reach(Bi) ∧ I(S) ∧ Enabled(α) ∧ Enabled(β) (3)

In practice we use untimed versions of Enabled . Checking
only locations as linear invariants do not involve clocks, which
is illustrated below considering the running example.

Example 3: Let us reconsider the example of Figure 1.
Among the linear invariants computed using the method of [9],
we focus on following:{

1 · at(`21) + 1 · at(`31)− 1 · at(`11) = 0 (4)
1 · at(`23) + 1 · at(`33)− 1 · at(`41) = 0. (5)

We deduce from Equation (4) that at(`21) and at(`31) cannot be
true simultaneously, that is, components T1 and T2 cannot be
simultaneously at the corresponding locations. Consequently,
we can directly infer that interactions α3 and α4 are not con-
flicting, even though they are potentially conflicting. Likewise,
with (5) we exclude the conflict between α7 and α8.

B. Removing False Conflicts using History Clocks

As they completely abstract time, linear invariants capture
only partially the system dynamics. For example, a global
location may be not reachable because component locations
having disjoint time progress conditions, or an interaction
may not be enabled from a state because of an empty timing
constraint. Such properties require extra relationships relat-
ing clocks of different components that are not available in
Reach(Bi) as it is is restricted to clocks of a single component.

We follow the approach of [11] for reinforcing our ap-
proach with global invariants on clocks. They are induced
by simultaneity of transitions execution when executing an
interaction and the synchrony of time progress. To compute
such invariants, additional history clocks are first introduced
in components. History clocks are associated to actions of
components and to interactions, and reset upon their execution.
They do not modify the behavior since they are not involved
in timing constraints. They only reveal local timing of compo-
nents, relevant to the interaction layer, which allows to infer
further properties referred as history clocks inequalities in [11],
expressing the fact that history clock of an interaction are nec-
essary equal to history clocks of its actions after its execution
and until the execution of another interaction involving these
actions. Our method combines history clocks inequalities E(S)
and symbolic states of components to identify false conflicts
where the following is not satisfiable:∧
1≤i≤n

Reach(Bi) ∧E(S) ∧ Enabled(α)∧ Enabled(β) (6)

Example 4: We illustrate the application of (6) for checking
conflicts by considering again the example of Figure 1. It can
be shown that the potential conflict between α5 and α6 cannot
be removed using (only) linear invariants. In the following, we
prove that these interactions are actually not conflicting using
history clocks inequalities.

Since action start0 of C is synchronized with either start1
of T1 or start2 of T2, and since history clocks ha of an action
a is reset whenever a is executed, by [11] the history clock
inequalities for start0 are: (hstart0 = hstart1 ≤ hstart2 −
25)∨ (hstart0 = hstart2 ≤ hstart1 − 25). This equation states

that hstart0 is equal to the history clock corresponding to
the last synchronization, i.e. either hstart1 or hstart2 , and is
lower than history clocks of previous synchronizations. Value
25 is obtained considering separation constraints computed
from symbolic states of components and interactions [11]: two
occurrences of start0 are separated by at least 25 time units
because of timing constraints of C, and so too occurrences
of start1 or start2 which can only execute jointly with
start0. To relate history clocks with components clocks, we
simply include history clocks when computing symbolic states
of components (i.e. Reach for components), which is used
to establish here that x = hstart1 and y = hstart2 when
components T1 and T2 are respectively at locations `22 and
`32. We obtain then: x ≤ y − 25 or y ≤ x− 25.

By definition of Enabled we have Enabled(α5) = at(`22)∧
(10 ≤ x ≤ 30). Similarly, Enabled(α6) = at(`32) ∧ (10 ≤
y ≤ 30). We obtain then: Enabled(α5) ∧ at(`32) ⇒ y ≤ 5 ∧
Enabled(α6) ∧ at(`22) ⇒ x ≤ 5. This proves that α5 and α6

are not conflicting.

V. IMPLEMENTATION AND EXPERIMENTS

The described methods have been implemented using our
framework BIP [12]. BIP is a component-based and model-
based framework for constructing systems by superposing
three layers of modeling: Behavior, Interactions and Priori-
ties. It is intended for the design and analysis of complex,
heterogeneous embedded applications, where components are
modeled as timed automata and synchronize by means of
multiparty interactions. Our implementation is integrated as a
filter in the middleend of the real-time BIP compiler. The filter
compiler implements all the methods described in this paper.
The BIP compiler takes as inputs a real-time BIP model and a
file expressing the interactions partitioning. First, the frontend
builds a system representation of the input model. Then, based
on the interaction partition, the middlend computes first the
set of potentially conflicting interactions. Thereafter, reachable
states of individual components are computed, as well as the
linear invariants and the history clocks inequalities. Additional
enabledness predicates are calculated since they are needed
in Equation 2. Finally, for each two potentially conflicting
interactions we check the satisfiability of:

∧
1≤i≤n

Reach(Bi) ∧ I(S) ∧ E(S) ∧ Enabled(α) ∧ Enabled(β)

This verification is achieved using the Yices solver [13].
If the result is unsatisfiable, then the two interactions are
not conflicting. Otherwise, if the result is satisfiable, Yices
generates a counter-example that may or not be a false-positive
counter-example. The experiments have been conducted on a
HP machine with Ubuntu 12.04, an Intel R© Core

TM
i5-4300U

processor of frequency 1.90GHz×4, and 7.7GiB memory.

A. Benchmarks

In order to attest that conflict detection is a matter of concern
that should not be neglected during the implementation of

distributed real-time systems, we first performed several mea-
surements on the Task Manager model in different settings:
(i) we used 6 variants (including the initial model) each one
respectively involves 2, 10, 20, 30, 40 and 50 tasks, and for
each model (ii) we used several partitions of interactions (the
more partition we have the higher is the risk of conflicts).
Finally, we used the two following benchmarks to test our
conflict detection method:

a) Train Gate Controller: This example defines a system
composed of a controller, a gate and a couple of trains [3].
The controller lowers and raises the gate when a train is
approaching, respectively exiting the gate.

b) Gear Controller: The Gear controller system de-
scribes the control system responsible for the gear change
inside a vehicle. The used model encompasses the formal
models of the gear controller and its environment. The hole
system includes five components: an interface, a controller, a
clutch, an engine and a gear-box. The case study [14] was
initially designed in UPPAAL and has been translated to BIP.

B. Results

Table I summarizes for each experiment the number of com-
ponents (n), interactions (i), partitions (p), potential conflicts
(c), false conflicts (f), and gives also the total verification time
of our methods combined.

We can notice from the Task Manger experiments that
increasing the number of interactions partitions will increase
the number of potential conflicts, that is, the more distributed
the system is the more conflicts it contains. It also gives an
indication on how much conflict resolution will be needed
during execution. On the other hand, increasing the number
of tasks increases the number of interactions in the system,
and thus, the number of potential conflicts, especially when
involving the same components as in our case the shared
resource (R) and the controller (C). Nevertheless, conflict
detection highly depends on the model and is highly coupled
with its determinism degree. The other experiments showed
also interesting results in terms of conflict reduction rate and
execution time on real life case studies.

VI. CONCLUSION

We presented an advanced method for conflict detection,
allowing the generation of enhanced distributed implemen-
tations from model described using multiparty interactions.
The proposed method leverages components and system in-
formation to avoid unnecessary invocation of the CRP during
the scheduling of interactions, which would induce additional
exchange of messages and an overhead computation, meaning
additional latency. The implementation of the presented ap-
proach is fully automated and has been encompassed in the
middleend filter of the real-time BIP compiler. Several tests
were conducted on models of different size and with various
distributed settings (interactions partitioning). There are still
many challenging open problems in the implementation of
distributed real-time systems. An immediate direction is to
extend this method to systems with data variables. Another

TABLE I: Experimental results

Model n i p c f t

Task Manager

4 8 2 4 3 60.55ms

12 40
2 40 30 367.19ms
5 64 48 521.45ms

10 68 51 545.34ms

22 80
2 80 60 2.14s

10 144 108 3.41s
20 148 111 3.69s

32 120 30 228 171 8.41s
42 160 40 308 231 20.72s

52 200

2 200 150 22.56s
5 320 240 34.78s

10 360 270 37.72s
25 384 288 41.69s
50 388 291 45.35s

Train Gate
Controller 22 45 20 74 37 813,62ms

Gear
Controller 5 32 4 8 3 5,94s

interesting aspect is to study the effect of clock drifts on the
scheduling of interactions and conflict resolution. In real life
clocks are not perfect and are subject to drifts, which may
introduce anomalies during system execution.

REFERENCES

[1] A. Triki, “Distributed implementations of timed component-based sys-
tems.” Ph.D. dissertation, Grenoble Alpes University, France, 2015.

[2] A. Triki, B. Bonakdarpour, J. Combaz, and S. Bensalem, “Automated
conflict-free concurrent implementation of timed component-based mod-
els,” in NASA Formal Methods - 7th International Symposium, 2015.

[3] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., 1994.

[4] S. Tripakis, “The analysis of timed systems in practice,” Ph.D. disser-
tation, Joseph Fourier University, 1998.

[5] J. Bengtsson and W. Yi, “On clock difference constraints and termination
in reachability analysis of timed automata,” in ICFEM, 2003.

[6] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model
checking for real-time systems,” Inf. Comput., 1994.

[7] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis,
“A framework for automated distributed implementation of component-
based models,” Distributed Computing, 2012.

[8] R. Bagrodia, “Process synchronization: design and performance evalua-
tion of distributed algorithms,” Software Engineering, IEEE Transactions
on, 1989.

[9] S. Bensalem, M. Bozga, B. Boyer, and A. Legay, “Incremental gen-
eration of linear invariants for component-based systems,” in 13th
International Conference on Application of Concurrency to System
Design, 2013.

[10] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, 1989.

[11] S. B. Rayana, L. Astefanoaei, S. Bensalem, M. Bozga, and J. Com-
baz, “Compositional verification for timed systems based on automatic
invariant generation,” Logical Methods in Computer Science, 2015.

[12] A. Basu, L. Mounier, M. Poulhies, J. Pulou, and J. Sifakis, “Using
bip for modeling and verification of networked systems – a case study
on tinyos-based networks,” in Sixth IEEE International Symposium on
Network Computing and Applications (NCA 2007), 2007.

[13] B. Dutertre and L. de Moura, “The yices smt solver,” SRI International,
Tech. Rep., 2006.

[14] M. Lindahl, P. Pettersson, and W. Yi, “Formal Design and Analysis of a
Gearbox Controller,” Springer International Journal of Software Tools
for Technology Transfer (STTT), 2001.

