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ABSTRACT
Software architectures usually are comprised of different views
for capturing static, runtime, and deployment aspects. What
is currently missing, however, are formal validation and veri-
fication techniques of multi-view architecture in very early
phases of the software development lifecycle. The main con-
tribution of this paper therefore is the construction of a single
formal model (in Promela) for certain stylized, and widely
used, multi-view architectures by suitably interpreting and
fusing sub-models from different UML diagrams. Possible
counter-examples produced by model checking are fed back
as test scenarios for debugging the multi-view architectural
model. We have implemented this algorithm as a plug-in for
the Enterprise Architect development tool, and successfully
used SPIN model checking for debugging some industrial
architectural multi-view models by identifying a number of
undesirable corner cases.
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1 INTRODUCTION
Software architectures usually are comprised of different views
for capturing static, runtime, and deployment aspects [1, 4].
The static/component view describes the logical decompo-
sition of the system into building blocks (e.g., packages,
components, classes), whereas the runtime view describes
the behavior and interaction of the building blocks as run-
time elements in the running system, using diagrams such
as sequence diagrams, activity diagrams, or state machines,
and the deployment view shows how software is assigned to
hardware processing and communication elements.
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In the current state-of-the-practice, architectural models
are analyzed in early phases in the software development
cycle, mainly by means of manual and resource-intensive re-
view frameworks such as the Architectural Trade-off Analysis
Method (ATAM) [4]. What is currently missing, however,
are formal analysis techniques of multi-view architectures for
early and automated detection of, say, unwanted behavior
due to under-specification.

In this paper, we therefore reconstruct a single model
of a multi-view architecture, which is suitable for formal
analysis, by fusing sub-models of different views in UML
diagrams [15], as provided, for example in architectural de-
velopment tools such as Enterprise Architect. Our fusion
algorithm proceeds by taking deployment views as skeletons
to offer basic communication structure over processes and
channels in the actual system. The concrete behavior of
each deployed software component — as documented in the
static view — is captured by run-time views. One notable
challenge is to cope with under-specification among views,
as dynamic architectural views often only capture certain
scenarios but not the complete component behavior and all
possible interactions. To this end, semantic extrapolation is
needed for constructing a model-checkable verification model
and we enumerate possible extrapolation strategies.

We have implemented our fusion algorithm as a plug-
in for Enterprise Architect (EA). This plug-in generates
verification models in the Promela language, which are used
as inputs to the SPIN model checker [6]. Counter-examples
generated by the model-checkers are used as test cases for
debugging the multi-view architectural model. We evaluated
this EA plug-in in early phases of developing two mission-
critical distributed software systems in industrial projects,
and successfully identified undesired corner cases due to
under-specification in the model.

(Related work) There is a rich literature on the verification
of UML-like diagrams. For example, refinement of activity di-
agrams has been based on LTL model checking [13], and state
machine diagrams have been translated to hierarchical au-
tomata as the basis for model checking [11, 14, 16]. Moreover,
sequence diagrams have a straightforward correspondence to
communicating processes and process algebras [3, 10, 17]. Use
case diagrams can be checked for consistency or containment
by means of viewing them as programs with constraints [7]
or by a translation into activity diagrams [8]. Lastly, using
annotations such as UML Marte profile [5], one may verify
extra-functional properties such as timing [12]. In contrast to
these approaches we are analyzing multi-view architectural
models, which include static, runtime, and deployment views,
being restricted to a certain stylized use and linking between
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Figure 1: Example of a stylized multi-view software architec-
ture model.
views. We therefore do not address or even try to solve the
general multi-view consistency problem for UML [9].

2 MULTI-VIEW SOFTWARE
ARCHITECTURE AND VIEW LINKING

Using architectural development tools such as Enterprise
Architect (EA), the designer may maintain links among mul-
tiple views by creating components in the static view, by
building runtime and deployment view using components
in the static view, and by associating each diagram with a
component or a sub-structure.

Figure 1 illustrates these concepts using a simple architec-
tural example.1 There are three software components SC1,
SC2, and SC3 in the static view. In the deployment view,
three devices Device1, Device2, Device3 are included in the
final deployed system, where for each device, the underlying
software components are created (using drag-and-drop in EA)
as an instantiation of components in the static view. For
example, for the Device2 in Figure 1, C2 is an instance of the
software component SC1 from the static view.

For each software component in the static view there is
a state machine or activity diagram in the behavioral view,
where each of the states provides behavioral scenarios for
different execution modes (for example, normal and error
modes). Behavior and interaction in each state (or mode)
are expressed in terms of scenarios expressed as sequence di-
agrams. In Figure 1, for example the behavior of component
SC1 is refined to StateMachine1, where internally, State1 is
further refined into SequenceDiagram1. Notice also that in
SequenceDiagram1, the actor act0 is surrounded by a dashed
component. This is often used in UML modeling as a mod-
eling trick to capture system boundary. Such a boundary
allows modeling the interaction of multiple instantiations
of the same component, as commonly seen in fault-tolerant
systems where redundancy and distributed voting are applied.

1 For the example in Figure 1, a model in Enterprise Architect (freely
available for model viewing) which maintains such symbolic links
can be downloaded at https://www.dropbox.com/s/hg8jiddxh6rs5xs/
NFM Model.eap. We also refer readers to https://youtu.be/9Mg
2UH5vDM for a video showing how the link of views are maintained
under Enterprise Architect, together with how our prototypical tool
automatically generates verification models in Promela form.

Elements Meaning Corresponding Promela con-
struct

Messages
{abc, def}

Set of message with con-
tents

mtype = {abc, def};

chan1
∈ Channels

Synchronous channel chan chan1 = [0] of
mtype;

chan2[3]
∈ Channels

Asynchronous channel
named chan2 with buffer
size 3

chan chan2 = [3] of
mtype;

Action
〈Label: S3〉

Program label ”S3”,
move to next action in
the process

S3:

Action
〈Goto{S3, S4}〉

Non-deterministically
jump to label S3 or S4

int i;
select (i : 0..1);
if
:: i != 1 -> goto S3
:: i == 1 -> goto S4
fi;

Action
〈chan1 !abc〉

Send message abc to
channel chan1

chan1 !abc;

Action
〈chan2 ?def〉

Receive message def from
channel chan2

chan2 ?def;

Table 1: Constructs in verification model and their corre-
sponding formulation in Promela.

We are now providing a formal signature for these multi-
view architectural concepts; hereby, A.B is used to denote the
projection of A with respect to B. A multi-view architectural
model Arch is a triple 〈ComponentView, RuntimeView,
DeploymentView〉. ComponentView consists of set of software
components where SCi ∈ ComponentView can again be re-
fined to a set of components; for expressing, for example, a
”uses” structure. For the purposes of this paper, such a hier-
archical component view can always considered to be in flat-
tened form. The DeploymentView is a pair 〈Devices, Network〉
of sets. First, every device Devicei ∈ Devices is a set itself of
instantiated software components, and for every Ci ∈ Devicei

is of type SCj where SCj ∈ ComponentView. We use Ci.type
to denote the typing information. Second, pairs of devices
Devicei, Devicej ∈ Network, where Devicei, Devicej ∈ Devices,
are interpreted as directed (from left-to-right) edges be-
tween devices. Finally, the RuntimeView is a quadruple
〈StateMachines, SequenceDiagrams, mapSC→State, mapState→Seq〉.

• StateMachines is the set of state machines with each element
SMi := statesi, s0i, trani having a set of states statesi, an
initial state s0i and the set of transitions strani. We use
SMi.s to denote a state s in state machine SMi.

• SequenceDiagrams is the set of sequence diagrams. Again
for simplifying formulation, let elements in sequence dia-
grams be variable-free, straight-line (i.e., no if-else or
while) programs. An element SeqDiagram ∈ SequenceDiagrams
is a tuple Act, act0, where Act is the set of actors and act0 is
the one that is in the system boundary (cf. act0 in Figure 1).
Each actor acti ∈ Act is a tuple 〈typei, Msgi〉 where typei ∈
ComponentView indicates the typing of the actor by refer-
encing the element in component view, and Msg is the finite
concatenation of messages msgi0msgi1 . . . msgik, where
forall j = 0, . . . , k, msgik ∈ {!, ?}×{syn, asyn}×Σ×Act. In
message msgik, {!, ?} indicates if the message is being sent

https://www.dropbox.com/s/hg8jiddxh6rs5xs/NFM_Model.eap
https://www.dropbox.com/s/hg8jiddxh6rs5xs/NFM_Model.eap
https://youtu.be/9Mg_2UH5vDM
https://youtu.be/9Mg_2UH5vDM
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Algorithm 1: View fusing algorithm
Input : Multi-view architecture model:

〈ComponentView,RuntimeView,DeploymentView〉
Output : Verification model: Processes,Channels,Messages

1 foreach SeqDiagram ∈ RuntimeView.SequenceDiagrams do
2 for acti = SCi,Msgi ∈ SeqDiagram.Act do

Messages := Messages ∪Msgi ;
3 foreach Devicei,Devicej ∈ DeploymentView.Network do
4 Channels = Channels ∪ {chanDevicei→Devicej

}
5 foreach Devicei ∈ DeploymentView.Device do
6 for Cj ,Ck ∈ Devicei do Channels = Channels∪{chanCj→Ck

};
7 foreach Devicei ∈ DeploymentView.Device do
8 foreach Cj ∈ Devicei do
9 let SMj = mapSC→SM Cj .type;

10 let Prj := 〈Goto{s0}〉, where s0 be the initial state of SMj ;
11 foreach State s ∈ SMj .states do
12 Prj := Prj · 〈Label: s〉 ;
13 let SeqDiagramj = Actj , act0j := mapState→Seqs;
14 foreach message κ, syn, σ, act′ ∈ act0j .Msg,

κ ∈ {“!”, “?”} do
15 if κ = “!” then
16 Prj := Prj · 〈chanCj→Ck

!σ〉, where Ck ∈ Devicei s.t.
Ck.type = act′.type;

17 Prj := Prj · 〈chanDevicei→Devicek
!σ〉, where

Ck ∈ Devicek s.t. i , j and Ck.type = act′.type;
18 else
19 Prj := Prj · 〈chanCk→Cj

?σ〉, where Ck ∈ Devicei s.t.
Ck.type = act′.type;

20 Prj := Prj · 〈chanDevicek→Devicei
?σ〉, where

Ck ∈ Devicek s.t. i , j and Ck.type = act′.type
/* Jump to successor in state-machine

diagram. */

21 Prj := Prj · 〈Goto{ s′ | s′ ∈ SMj .trans }〉;
22 Processes := Processes ∪ {Prj}

(!) or received (?), {syn, asyn} indicates synchronous/asyn-
chronous message passing, Σ is used to capture all possible
message contents, and the last item is the entity being
communicated. Consider act0 in Figure 1, it is represented
as 〈SC1, !, syn, abc, act2?, syn, def, act2〉.

• mapSC→SM maps an element in ComponentView to a state
machine in StateMachines. For the example in Figure 1,
mapSC→SM SC1 = StateMachine1.

• mapState→Seq maps a state in a state machine to zero
or one sequence diagram, where if mapSC→StateSCi =

SMj and if for state sj in state machine SMj we have
mapState→Seqsj = SeqDiagramk = 〈Actk, actk = typek, Msgk〉,
then typek = SCi. For the example in Figure 1,
mapState→SeqStateMachine1.State1 = SequenceDiagram1.

3 MULTI-VIEW FUSION

Based on signatures for multi-view architectural models as
defined above, we are now describing the process of providing
a behavioral semantics based on fusing multiple views. A
verification model is a triple Messages, Channels, Processes,

1 mtype = { abc, def }; // By line 1-2
...
2 chan Network1_Device2toDevice1Channel = [0] of {mtype};
3 chan Network1_Device2toDevice3Channel = [0] of {mtype};
4 chan Network1_Device1toDevice2Channel = [0] of {mtype};
5 chan Network1_Device3toDevice2Channel = [0] of {mtype};
...
6 active proctype Device2_C2(){ // By line 7,8,22
7 /* Jump to initial state*/
8 goto State1; // By line 10
9 State1: // By line 12
10 /* Contents from sequence diagram */
11 Network1_Device2toDevice1Channel!abc; // By line 17
12 Network1_Device2toDevice3Channel!abc;
13 Network1_Device1toDevice2Channel?def; // By line 20
14 Network1_Device3toDevice2Channel?def;
15 /* Implement the transition*/
16 goto State2; // By line 21
17 State2:
18 /* ... (details omitted) ... */
19 goto State1;
20 }

Figure 2: Verification model in Promela form, by running
Algorithm 1 over the example in Figure 1.

where Messages is the set of messages, Channels is the set
of (synchronous or asynchronous-with-fixed-buffer) channels,
and Processes is a set of processes. Hereby, each process
Process is a sequence of atomic actions, including labels, non-
deterministic goto primitives, and message send/receive. The
semantics of a verification model is based on Promela [6].
For the purpose of reference, however, we are listing some
correspondence of constructs in the architectural model and
corresponding verification models in Table 1.

Now, the workflow presented in Algorithm 1 translates
a multi-view architecture into a formal verification model.
For ease of explanation assume all message passing to be
synchronous for now. Lines 1 and 2 in Algorithm 1 collect
all messages by scanning all actors in the given sequence
diagrams. Next, lines 3 and 4 define device-to-device channels
by scanning through the given network element, and lines 5
and 6 define point-to-point channels within a device. Lines 7
to 11 start instantiating processes for every deployed software
component in the deployment view, where the process starts
by moving to the initial state (line 10). The for-loop in Line 11
traverses through the state-machine diagram, establishes a
label for entry (line 12), and creates outgoing transitions to
successor states (line 21). Internally, the algorithm jumps
to the corresponding sequence diagram (line 13), and tries
to parse each message being sent or received (line 14) into
the corresponding channel (line 16-20), where, by probing
the deployment view, messages are communicated in the
internal channel if the source and destination components
are located in the same device (line 16, 19). Otherwise,
intra-device channels are used for communication (line 17,
20). Notice that the algorithm simply communicates with
all the components having the same type, provided that
they are supported by the communication architecture in the
deployment view. This provides the basis for the so-called
extrapolation in standard UML semantics, as discussed below.

For the example in Figure 1, we use the generated ver-
ification model in Figure 2 to explain the concept, where
comments in Figure 2 indicates corresponding actions done
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in Algorithm 1. Notice that the presentation of the trans-
lation algorithm is simplified in that it does not support
variables, branches and loops. These kinds of extensions
are straightforward and are also supported in our prototype
implementation.

Most interestingly, lines 16-20 in Figure 1 make various
assumptions about the architectural model under considera-
tion, and semantic extrapolation is used to determine choices
being made during the translation. Such a semantic extrapo-
lation, due to lack of proper semantics in (combining) UML
and sometimes due to underspecification in modeling, can be
explicitly stated and controlled. Table 2 enumerates some
important cases and corresponding strategies for semantic
extrapolation in order to complete translation.

4 EVALUATION AND CONCLUDING
REMARKS

We have implemented a plug-in for the Enterprise Architect
development tool based on the presented translation. We
summarize our findings on using this tool in the architectural
design and analysis for two industrial developments.
• The first case study is a modular adaptive automotive

runtime environment. Since this platform has been de-
signed to be fault-tolerant, we annotate possible faults in
the deployment view, such as power-outage of a device
(fail silent) or lost communication messages. Our tool
translates these faults annotation by non-deterministically
injecting faults into the generated verification model. In
one deployment scenario, a counter-example generated by
the SPIN model checker demonstrates that the overall sys-
tem does not function correctly whenever there are certain
faults during start-up, thereby preventing consensus to be
reached between computing nodes.

• Our second case study is a control automation architec-
ture based on the concept of micro-services and a cloud
platform. Again, test cases as generated from SPIN model
checking of the fused Promela model were instrumental in
debugging and improving the design at an early phase in
the development.

On the other hand, we have also been experiencing a
number of ”automation surprises” due to implicit assumptions
on the architecture and the generated fused model. For
example, the fused model does not capture the fact that
service handlers may be viewed as a non-terminating while-
loop program that can handle various requests using switch
statements, even though (at least) some designers made such
an implicit assumption. These kinds of automation surprises
might be hard to avoid when applying formal analysis to
architectural notations with ambiguous semantics.

It would be most interesting to specify some of the encod-
ings presented here also in a theorem proving environment
such as PVS, and to experimentally compare the proposed
semantic extrapolation of the behavior of architectural de-
signs with logic- and constraint-based approaches for partially
specified systems.

Under-specification scenarios Mitigation strategies
In the deployment view, allow compo-
nents within a device to communicate
with each other?

Allow / Disallow / Trigger
the designer for actions

Operation over variables both in a state
of a state-machine diagram and in the
refinement sequence diagram of that
state?

Variable operations over vari-
ables in a state should appear
{before, after} actions in se-
quence diagram

Unclear requirement in communication
buffer size, for asyn. communication?

Use pre-defined value / Trig-
ger the designer for actions

An actor sends to one entity in the
sequence diagram, while multiple re-
ceivers exists in the deployment view?

Send to all entities / Send to
one randomly selected entity
/ Trigger exception

Table 2: Semantic extrapolation for handling under-
specification in diagrams; the underlined items are strategies
used in creating the Promela model in Figure 2.
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