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Abstract—Static analysis tools are frequently used to detect po-
tential vulnerabilities in software systems. However, an inevitable
problem of these tools is their large number of warnings with
a high false positive rate, which consumes time and effort for
investigating. In this paper, we present DEFP, a novel method
for ranking static analysis warnings. Based on the intuition that
warnings which have similar contexts tend to have similar labels
(true positive or false positive), DEFP is built with two BiLSTM
models to capture the patterns associated with the contexts of
labeled warnings. After that, for a set of new warnings, DEFP can
calculate and rank them according to their likelihoods to be true
positives (i.e., actual vulnerabilities). Our experimental results
on a dataset of 10 real-world projects show that using DEFP,
by investigating only 60% of the warnings, developers can find
+90% of actual vulnerabilities. Moreover, DEFP improves the
state-of-the-art approach 30% in both Precision and Recall.

Index Terms—static analysis warnings, actual vulnerability,
false positive, warning context, representation learning

I. INTRODUCTION

In order to guarantee the quality of software, many tech-
niques such as code review, automatic static analysis, and test-
ing, etc. have been applied during the software development
life cycle. Especially, static analysis [1[], [2] plays an important
role in detecting vulnerabilities at the early phases. Without
executing programs, static analysis (SA) tools analyze the
source code to identify the violations of the pre-defined rules
and recommendations. These rules and recommendations are
often defined by coding standards such as SEI CERT Coding
Rule [3] or MISRA [4]].

However, SA tools often report a large number of warnings
(a.k.a. alarms) [S]]. In particular, a warning indicates the state-
ment containing the potential vulnerability, the vulnerability
type, and often the additional meta-information [[6]. In practice,
developers have to manually inspect all the reported warnings
and address them if necessary. However, due to the conser-
vative over-approximation of program behaviors/properties of
SA, many warnings are incorrectly reported by tools (i.e., false
positive warnings). Among the reported warnings, true positive
warnings or true positives (TPs) are actual vulnerabilities,
while false positive warnings or false positives (FPs) are the
positions which indeed do not violate the checking rules.
Investigating FPs consumes time and effort but does not bring
any benefit, therefore, the high FP rate reduces the productivity
of developers [7]], [8] and is bad for the usability of SA
tools [[7]], [9]. In consequence, it is necessary to reduce the
number of FPs that developers need to verify.

In previous studies, sophisticated techniques such as model
checking and symbolic execution have been applied to
eliminate FPs [10]-[12]. Although these approaches obtain
high precision in identifying FPs, they generally face non-
scalability and time consuming issues because of their state
space problems [[13].

With the growth in size and complexity of the source code,
recently machine learning (ML) techniques are leveraged to
build models for discovering patterns associated with TPs/FPs.
In general, detecting TPs/FPs among SA warnings can be
considered as a standard binary classification problem. To
build a SA waning classification model, there are two main
methods for extracting features from the warnings, one uses a
pre-defined set of features and the other encodes the features
by ML models. Then, from the extracted features, the ML
models need to predict whether the SA warning is a TP or FP.

In several existing studies [6], [[14], [15], the fixed sets
of the hand-engineered features based on static code metrics
and warning information have been derived from the source
code and then fed to classifiers. The effectiveness of these
approaches depends on the quality of the selected set of fea-
tures. Moreover, the features in these approaches are manually
defined by experts for certain kinds of warnings, therefore it
is difficult to extend for handling different ones.

Meanwhile, instead of using a fixed pre-defined set of
features, Lee et al. [[16] proposed a model to learn the lexical
patterns of the statements around the warnings at the source
code token level. They used Word2vec [17] to embed code
tokens into the vector form and then trained a Convolutional
Neural Networks (CNN) classifier. Specially, by investigating
their projects, they define the number of surrounding state-
ments that need to be extracted to reflect the contexts of the
warnings. These numbers of extracted statements are different
for their six proposed checkers. However, it is challenging
to apply this approach for different projects and/or different
kinds of warnings since it requires expert knowledge and
carefully manual investigation to decide how many statements
in each function are enough to capture the contexts of the
checking warnings. Moreover, not every statement surrounding
a warning is all related to its violation and equally important
for TP/FP detection. Also, warning unrelated statements would
negatively affect the performance of the ML models.

In this paper, we propose DEFP, a novel method to prioritize
SA warnings. Instead of classifying SA warnings, DEFP
predicts their likelihoods to be TPs and then ranks them with



the top entries are more likely to be TPs (actual vulnerabil-
ities), and the last entries are more likely to be FPs. Indeed,
ranking SA warnings rather than classifying them gives us
three following benefits.

First, for developers, DEFP helps shorten the cycle of devel-
oping and releasing products, especially for critical systems.
The reason is that critical systems are highly required to be
safe, secure, and reliable. Therefore, any potential vulnerabili-
ties (warnings) are all needed to be addressed. In other words,
if a warning is eliminated due to being falsely classified as
an FP, it would cause the system to be dangerously explored
in the future. Instead of directly eliminating any warnings
classified as FP, DEFP ranks SA warnings according to their
vulnerable likelihoods. With the pressure to release the high-
quality software on time, focusing on the top-ranked warnings
first helps developers to find more actual vulnerabilities in a
fixed duration. Then, they can spend time and effort on the
low-ranked warnings later.

Second, for SA tool builders, DEFP suggests case studies
that they can examine to improve the quality of their tools.
Indeed, to better serve the market, SA tool builders need to
frequently improve their tools by not only increasing the TP
rate, but also decreasing the FP rate. Among a huge number
of reported warnings in various projects, DEFP suggests an
effective order for investigation. Specially, SA tool builders
can directly concentrate on addressing warnings which are
more likely to be FPs, i.e., warnings at the last of the resulting
lists, to find the patterns which tends to be incorrectly reported.

Third, for researchers, to build the datasets of real-world
warnings, DEFP helps the data collection process be more ef-
ficient. In practice, in this field, it still lacks public datasets for
evaluating approaches and researchers often have to manually
investigate to label warnings. This process is extremely time-
consuming. From the ranked lists of DEFP, researchers can
effectively collect warnings by selectively labeling top-ranked
and last-ranked warnings.

Our key idea is based on the intuition that warnings which
have similar contexts tend to have similar labels (TP or FP).
For each warning, DEFP exploits both syntax and semantics
from the context of the warning and then determines its
likelihood to be TP. In order to capture the context of a
warning, DEFP extracts all of the statements in the program
which impact and are impacted by the statement containing
the warning (the reported statement). After that, to better rep-
resent the general patterns of warnings, identifiers and literals,
which are specific for functions/files/projects and could make
the ML models be biased by the training source code, are
replaced by abstract names. Next, the reported statements
and their contexts are vectorized and used to train neural
network models. One of the models represents the information
specifically included in the reported statements, while the other
extracts critical information in the warning contexts. Then,
the high-level features encoded from these models are utilized
to estimate the likelihoods to be TPs of the corresponding
warnings. Lastly, SA warnings are ranked according to their
predicted scores.

1. static const char *aoc_rate_ type_ str(enum
ast_aoc_s_rate_type value) {

2 const char *str;

3 switch (value){

4. default:

5. case AST AOC_RATE_TYPE_ DURATION:
6 str = "Duration";

7 break;

8. //..

9. }
10. return str;
11. }

13. static void aoc_s_event(const struct
ast_aoc_decoded *decoded, struct ast_str **msg){

14. const char *rate_str;

15. char prefix[32];

16. int 1i;

17. ast_str_append(msg, 0, "N:%d", decoded->aoc_s_count);

18. for (i = 0; i < decoded->aoc_s_count; ++i){

19. snprintf (prefix, sizeof(prefix), "R(%d)", 1i);

20. rate_str = aoc_rate_type_str(
decoded->aoc_s_entries[i].rate_type);

21. switch (decoded->aoc_s_entries[i].rate_type){

22. case AST AOC_RATE_TYPE_DURATION:

23. strcat(prefix, "/");

24. strcat(prefix, rate_str); // *Buffer Overflow

25. /7.

26. break;

27. //..

28. default

29. break;

30. }

31. }

32. }

Fig. 1: An FP reported by Flawfinder at line 24

To the best of our knowledge, it still lacks a public real-
world dataset for widely evaluating approaches post-handling
SA warnings. In existing studies [6], [14], [15], ML models
are often trained and tested on synthetic datasets, such as
Juliet [[18] and SARD [[19]. However, Chakraborty et al. [20]
has demonstrated that these datasets are quite simple for
estimating the performance of ML models on real-world data.
Thus, to address the limitation of data shortage, we propose a
dataset containing 6,620 warnings of 10 real-world projects.

Our experiments show that about 60% of actual vulnerabil-
ities are ranked by DEFP in Top-20% of warnings. Moreover,
+90% of actual vulnerabilities can be found by investigating
only 60% of the total warnings. Meanwhile, by using the state-
of-the-art approach [16]], with the same number of examined
warnings, developers can find only 46% and 82% TPs.

In summary, our contributions in this paper are:

e A novel approach to rank SA warnings, which does
not require feature engineering and could be flexible to
extend for different kinds of warnings.

e A public dataset of 6,620 warnings collected from 10
real-world projects, which can be used as a benchmark
for evaluating related work.

¢ An extensive experimental evaluation showing the perfor-
mance of DEFP over the state-of-the-art approach [|16].



II. MOTIVATING EXAMPLE AND GUIDING PRINCIPLES
A. Motivating Example

Fig. shows a simplified version of function
aoc_s_event in project Asteris the complete
version can be found on our website [21]]. In this example, a
warning related to Buffer Overflow (BO) is reported at line
24 by Flawfinder [22], a static analysis tool. The reason is
that strcat appends the string pointed by rate_str to
the end of prefix. This could cause the size of the resulting
string stored in prefix to be greater than 32 which is the
prefix’s size of allocated memory (line 15).

However, via inter-procedure analysis, we can conclude that
this warning is an FP. Specially, at line 19 in Fig.|l} prefix
is set to be R(i) where i is the index of the loop, and the
maximum size of prefix after this statement is 13, in the
case of i = INT _MAX (i.e., 2,147,483,647). At line 23,
prefix is appended a character (i.e., " /"), and then at line
24 it is appended a string pointed by rate_str, which has
length 8 (rate_str = "Duration", line 20 and line 6).
As a result, after line 24, the maximum length of prefix
is 22, which is still much smaller than 32. Therefore, in
order to determine whether a warning is a TP or FP, it need
to conduct not only intra-procedure analysis but also inter-
procedure analysis. In other words, simply approximating the
context of a warning by its surrounding statements or by its
containing function could be ineffective.

B. Guiding Principles

In order to determine whether a SA warning is a TP or FP,
analyzing only the reported statement is not enough. It requires
investigating the context of the warning as well. For example,
to conclude the warning at line 24 in Fig. |l|is an FP, not only
that statement but also the related statements such as lines
18, 19, 20, etc. need to be examined. Therefore, to build an
ML model which can effectively predict the likelihoods to be
TP/FP of the warnings, for each warning, we need to extract
its appropriate context in the program. From the extracted
contexts, the model can capture patterns associated with the
warnings. Also, statements unrelated to the warning, which
might cause noises and negatively affect the performance of
the model, should be excluded from the warning context. In
this paper, we propose the following principles for the problem
of ranking SA warnings by representation learning.

P1. The warning contexts can be semantically captured
by the statements in the program which can impact and be
impacted by the reported statements. In practice, to determine
whether a warning indicates an actual violation of a specific
vulnerability type or not, it is necessary to investigate all of the
feasible execution paths containing the reported statement. In
other words, we need to examine the control flows and data
flows of the program which contain the reported statement.
Besides, functions in a program do not work independently,
they often execute with the invocations of the others. Thus,
inter-procedural analysis is essential to effectively capture the

Thttps://github.com/asterisk/asterisk

contexts of the warnings. Simply, all the statements in the
functions/programs can be considered as the warning contexts,
however, this method can cause unnecessarily large contexts
and negatively affect the ML model’s predictive performance.
Also, not all of the statements in the functions/programs are
actually relevant to the warnings. For example, the statement
at line 17 in Fig. [I] does not affect the decision about TP
or FP of the warning at line 24. Including such irrelevant
statements may cause the ML model to falsely learn the actual
patterns associated with TPs/FPs. Therefore, inter-procedural
slicing techniques [23|] can be applied to effectively extract
the warning contexts by statements semantically related to the
reported statements and eliminate the irrelevant statements.

P2. The reported statements should be highlighted com-
pared to the other statements in the warning contexts. In-
tuitively, not all the statements in the program slices are
equally important regarding the considering warnings. The
reported statements are where the vulnerabilities are poten-
tially explored, thus, they should be highlighted compared to
the other statements in their contexts. For example in Fig. [I]
the statements at lines 19, 23, and 24, which all modify
the value of prefix, are all necessary for investigating the
warning. However, according to the report of Flawfinder, the
BO vulnerability is potentially explored at line 24, which
appends prefix by an unknown size string, i.e., a string is
returned by another function. Intuitively, the statement at line
24 should be emphasized compared to statements at lines 19
and 23. Moreover, in practice, a program slice could contain
several warnings, therefore to distinguish warnings, not only
the program slices (i.e. context of the warnings) but also the
reported statements need to be featurized.

P3. Identifiers should be abstracted. The reason is that iden-
tifiers such as variables, function names, constants are project-
specific (or even file-specific/function-specific) and consider-
ably vary regarding developers’ coding style. By learning such
specific information, the ML model could not capture general
patterns of the warnings. Also, this could make the models
simply learn the connections between specific identifiers and
warning labels (TP/FP). Consequently, the models accurately
predict the warnings of several training programs but their
performance might decrease dramatically on the different
programs. Therefore, to build a general ML model which can
work well and stably across programs, the identifiers should be
abstracted into symbolic names, for example, VAR1, FUNC1,
etc. Moreover, without abstraction, the number of identifiers
could be virtually infinite, so ML model could have to deal
with the vocabulary explosion problem.

III. STATIC ANALYSIS WARNING RANKING WITH
REPRESENTATION LEARNING

Fig. |2] illustrates our SA warning ranking approach. Par-
ticularly, from the source code and the set of warnings of the
analyzed program, we extract the reported statements and their
program slices associated with warnings. For each warning, the
reported statement and the corresponding program slice are
converted into vectors and then fed to the BiILSTM models to
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Fig. 2: Our proposed approach for ranking SA warnings

predict its likelihood to be TP. After that, all of the warnings
of the program are ranked according to their predicted scores.

A. Program Slice Extraction

In this work, to capture the context of each warning, we
extract all the statements in the program which impact and are
impacted by the corresponding reported statement. Specially,
starting from the reported statement, we employ Joern [24]] to
conduct both backward and forward inter-procedural slicing
in the program. For instance, the context of the warning at
line 24 in Fig. (1| is captured by the program slice shown in
Fig. 3] Therefore, by this approach, not only a large number
of irrelevant statements in the program are removed, but also
the warning contexts are precisely captured via control/data
dependencies relationship throughout the program.

B. Input Vectorization

Program slices and reported statements are lexical source
code tokens. Meanwhile, neural network models require their
inputs to be formalized as numeric vectors. Therefore, we need
to represent the model input data by a suitable data structure.
In this section, we show three steps to represent the program
slice and the reported statement of each warning: identifier
abstraction, tokenization, and vectorization.

1) Identifier Abstraction: In general, programs often con-
tain a huge number of identifiers, also their naming con-
ventions and styles are diverse. It could cause difficulties
for the ML models to capture the general patterns of the
warnings [20]. Besides, ML models would simply learn char-
acteristics of identifiers in certain projects, as well as simply
map specific identifiers with corresponding warning labels. In
order to avoid this problem, DEFP abstracts all the identifiers
before feeding them to the models. In particular, variables,
function names, and constants in the extracted program slices
are replaced by common symbolic names. For example, func-
tion name aoc_s_event is replaced by FUNC1, the array
prefix is replaced by VAR5, and its allocated size 32
is replaced by NUMBER_LIT. The details of our rules for
abstracting identifiers can be found on our website [21].

2) Tokenization: To represent in numeric vectors for feed-
ing to the neural network models, both the extracted pro-
gram slices and the reported statements are tokenized into
sequences of tokens. In this work, we use lexical analy-
sis to break down each code statement into code tokens,
which including identifiers, keywords, punctuation marks,
and operators. For instance, the statement at line 24 in
Fig. strcat (prefix, rate_str);, is abstracted

1. static const char *aoc_rate type str(enum
ast_aoc_s_rate_type value) (

3. swi

6.

10.

13. static X

ast_aoc_decoded *decoded, struct ast_str **msg) {

ic void ao

_event (const struct

18. for (i = 0; i < decoded->aoc_s_count; ++i) {

19. snprintf (prefix, sizeof (prefix), "R(2d)", i);

20. rate_str = aoc_rate_type_str(
decoded->aoc_s_entries[i].rate_type);

21. switch (decoded->aoc_s entries[i].rate type) {
23. strcat (prefix, "/");
strcat (prefix, rate_str);

....> Control dependence
— Data dependence 24.

Fig. 3: The program slice of the warning at line 24 in Fig.

as strcat (VAR8, VAR11l); and then it is tokenized
into seven separated tokens: “strcat”, “(”, “VAR8”, “,”,
“VAR11”, “)” and ;7.

3) Padding and Truncation: In practice, the number of
sequence tokens in different slices could be significantly
different. For example, in our experiment, the sequence lengths
can vary from 5 to 9,566 code tokens. Therefore, to ensure that
all the sequences have the same length, L, before inputting to
the neural network, we use padding and truncation techniques.
To achieve the best performance, the fixed length L is carefully
selected via multiple experiments.

Particularly, for sequences having lengths smaller than L,
we add one or more special tokens (<pad>) at the end of
these sequences. For the sequences whose lengths are greater
than L, we truncate them to fit the fixed length.

In practice, the positions of the reported statements in their
corresponding slices significantly vary. They can appear at the
beginning of the slices or at the end of the slices. Thus, trun-
cating from either the beginning or the end of the sequences
could lead to the cases that the statements containing warnings
are missed in the truncated sequences. Therefore, in order
to guarantee that the truncated sequences always contain the
reported statements, we take these statements as the center for
truncating. Specially, from the reported statements, we extend
to both sides of the sequences. until reach the fixed length
L. Importantly, to capture the correct semantics of each code
statement, we ensure that a statement will be fully included in
the truncated sequences. It means that when only some tokens
of a statement are included in the truncated sequences and the
remaining is left due to the length limitation, we will replace
all of the tokens of that statement in the truncated sequence
by (<pad>) token.

4) Vectorization: In this step, the token sequences are em-
bedded into numeric fixed-length vectors. In practice, besides
the structural information of the sequences which need to be
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Fig. 4: The proposed LSTM-based representation learning model for ranking SA warnings

encoded, relationships between the tokens are also important.
The reason is that code tokens have to appear together in a
certain order to make the program grammatically and syntac-
tically correct [25]]. For this purpose, in the vectorization step,
we use Word2vec model [17] with Continuous Bag-of-Words
(CBOW) architecture.

C. Representation Learning and Warning Ranking

The DEFP’s model architecture is shown in Fig. 4] Espe-
cially, to effectively learn contextual information that is crucial
for revealing TP/FP code patterns, two Bidirectional Long
Short-Term Memory networks (BiLSTM) [26] are employed
to train on the embedding vectors of the program slices and
the reported statements. Afterwards, DEFP extracts the mean-
ingful characteristics of related warnings by concatenating
the outputs from these BILSTM models and feed into Fully
Connected layers. In particular, we consider the final layer’s
output of the model as the likelihood to be TP/FP of each
input warning. All these scores are finally gathered by DEFP
and ranked accordingly.

1) Representation Learning: In this work, the warning
contexts (i.e. program slices) and the reported statements
are encoded by two BiLSTM networks. In the case of pro-
gram slices containing multiple statements distributed across
functions, LSTM architecture might essentially apprehend the
relationships between code tokens. Additionally, by utilizing a
gated mechanism, LSTM can handle long-term dependencies
and also focus on the most significant parts of the sequences.

However, the information in LSTM is expressed one way
through continuous time steps in sequential order. Meanwhile,
the occurrence of a code token is usually related to either the
previous or the subsequent tokens, or even both. Thus, addi-
tionally applying the bidirectional implementation of LSTM
can assist the model to build dependencies in both forward
and backward directions, which efficiently captures the general
pattern of warnings.

DEFP also employs the Global Max Pooling (GMP) layer
to accumulate the output of each BiLSTM network. Especially,
GMP layer computes maximum values over LSTM’s time
steps, which help to reduce output dimension and only keep

the most important elements from LSTM cells. As a result,
DEFP has two GMP layers following each BiILSTM network,
and then they are concatenated into a unified one to represent
a whole feature map (Fig. [).

2) Warning Ranking: After obtaining the learned repre-
sentations of the warnings, DEFP distinguishes their patterns
by feeding them into three Fully Connected (Dense) layers
behind. Particularly, the final layer has only two hidden
units activated by the Softmax function, which produces two
scores whose total is 1.0. These two values correspond to the
likelihoods of each warning to be TP and FP, respectively.

In the training phase, DEFP’s neural network enhances its
predictions by finding the best hidden weights through esti-
mating its errors. In other words, an objective function, cross-
entropy, is applied to calculate the model’s loss and update the
weights towards minimizing this error value. Consequently, in
the case of a TP warning, the model tends to converge its TP
score towards 1.0 and its FP score closes to 0.0, and vice versa
for an FP warning. In the ranking phase, by inputting a list of
warnings, DEFP directly calculates their TP scores and sorts
them in descending order.

IV. EMPIRICAL METHODOLOGY

In order to evaluate DEFP, we seek to answer the following
research questions:

e« RQ1: How accurate is DEFP in ranking SA warn-
ings? and how is it compared to the state-of-the-art
approach [16]]?

o« RQ2: How does the extracted warning context affect
DEFP’s performance? (P1)

e« RQ3: How does the highlighting reported statement
impact the performance of DEFP? (P2)

¢« RQ4: How does the identifier abstraction component
impact the performance of DEFP? (P3)

A. Dataset

In order to train and evaluate an ML model ranking SA
warnings, we need a set of warnings labeled to be TPs or FPs.
Currently, most of the approaches are trained and evaluated by
synthetic datasets such as Juliet [[18]] and SARD [19]. However,



TABLE I: Overview of DEFP’s dataset

Null Pointer
No. | Project Buffer Overflow Dereference
#W #TP #FP #W | #TP | #FP
1 Asterisk 2049 63 1986 133 0 133
2 FFmpeg 1139 387 752 105 37 68
3 Qemu 882 396 486 72 39 33
4 OpenSSL 595 53 542 9 2 7
5 Xen 388 15 373 23 6 17
6 VLC 288 20 268 16 2 14
7 Httpd 250 45 205 17 0 17
8 Pidgin 250 13 237 242 0 242
9 LibPNG 83 9 74 2 0 2
10 LibTIFF 74 9 65 3 3 0
# Total 5998 | 1010 | 4988 622 89 533

#W, #TP and #FP are total warnings, true positives and false positives.

they only contain simple examples which are artificially cre-
ated from known vulnerable patterns. Thus, the patterns which
the ML models capture from these datasets could not reflect
the real-world scenarios [20]]. To evaluate our solution and the
others on real-world data, we construct a dataset containing
6,620 warnings in 10 open-source projects [27], [28]. Table [l
shows the overview of our dataset.

In these 10 real-world projects, functions are previously
manually labeled as vulnerable and non-vulnerable [27]], [28]].
Then, our dataset is constructed by the following steps:

1) Collecting warnings: We pass the studied projects
through three open-source SA tools, Flawfinder [22],
CppCheck [29], RATS [30] to collect a set of warnings.
In practice, this set contains warnings in multiple kinds
of vulnerabilities. However, we only collect the warn-
ings related to Buffer Overflow (BO) and Null Pointer
Dereference (NPD) since for the other kinds, the number
of reported warnings are too small for training and
evaluating an ML model.

2) Labeling warnings in the non-vulnerable functions:
Since, these functions are already marked as clean
regarding BO and/or NPD, thus all the corresponding
warnings in these functions are annotated as FPs.

3) Labeling warnings in the vulnerable functions: Although
these functions are marked containing BO and/or NPD
vulnerabilities, we do not know exactly how many
vulnerabilities each function contains and the positions
of the vulnerabilities in the source code. Therefore, for
each of the warnings in these functions, we manually
investigate to label whether it is a TP or FP.

B. Evaluation Setup, Procedure, and Metrics

1) Experimental Setup: We implemented neural network
models using Keras together with TensorFlow backend (ver-
sion 2.5.0). The tokenizer was built upon NLTK library
(version 3.6.2) and Word2vec embedding model was provided
by the gensim package (version 3.6.0). All experiments were
computed by a server running Ubuntu 18.04 with an NVIDIA
Tesla P100 GPU.

We adopt cross-validation to train several neural networks
and select the best parameter values corresponding to the
effectiveness of predicting likelihoods to be TP warnings in
the proposed dataset. Specially, for DEFP, embedding size
are set to 96, the maximum length of each slice and reported
statement is fixed to 600 and 40, respectively, and they are
learned by two BiLSTM networks which each has 256 hidden
nodes. During the training phase, the dropout, batch size, and
number of epochs is set to 0.1, 64 and 60, respectively. Also,
the minibatch stochastic gradient descent ADAMAX optimizer
is selected with the learning rate of 0.002.

Besides, the data is sampled into stratified 5 folds, while 4
folds are picked for training and 1 remaining fold for testing
(ratio of 8:2). We then run 5 different experiments on 5 pairs
of training and testing data and aggregate average results for
the final assessment of the corresponding experiment.

2) Empirical Procedure:

RQ1. We compare the performance of DEFP and the CNN
model proposed by Lee et al. [[16] for ranking warnings in the
proposed dataset.

RQ2. We study the impact of the warning contexts on the
performance of DEFP. Specially, we compare the performance
of DEFP in four scenarios of the warning contexts: (1) the raw
code of the program, (2) the program slices on control depen-
dencies, (3) the program slices on data dependencies, and (4)
the program slices on both control and data dependencies.

RQ3. We study the impact of highlighting the reported
statements on DEFP’s performance. We compare the ranking
results of DEFP in two scenarios when the reported statements
are and are not encoded for training the BiLSTM model.

RQ4. We study the impact of the identifier abstraction
component by comparing the performance of DEFP when the
inputs are embedded with and without this component.

For evaluation, we have two experimental settings as widely
adopted in related studies [27], [28], [31]: within-project
setting and combined-project setting. First, in within-project
setting, warnings from the same project are split into training
and testing sets. Second, in combined-project setting, we
collect the warnings from all 10 projects and then split them
into training and testing sets. In practice, in several projects,
the number of warnings is quite small for training and testing
an ML model, and it could cause overfitting or underfitting
problems. Thus, we only select three projects which have the
largest number of BO warnings for evaluating RQ1 in the
corresponding vulnerability type in the within-project setting.
RQI in the NPD vulnerability and the other research questions
are only evaluated in the combined-project setting.

3) Evaluation Metrics: In order to evaluate DEFP and
compare its performance with the state-of-the-art approach, we
applied Top-k% Precision (P@K) and Top-k% Recall (R@K).
These two metrics are widely used in related studies [28]],
[32], especially when the dataset is severely imbalanced. In
this paper, P@K denotes the proportion of actual TP warnings
in the Top-k% of warnings ranked by the model, and R@K
refers to the proportion of correctly predicted TP warnings in
Top-k% among the total actual TPs warnings. In particular,



TABLE II: Performance of DEFP and CNN model proposed by Lee et al. [[16] in ranking SA warnings

# TP warnings found in top-k% warnings

WN Project Method Top-5% Top-10% Top-20% Top-50% Top-60%
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Qemu CNN 71.11% 8.09% 53.33% | 12.13% 46.86% | 20.72% 44.32% | 49.25% 43.02% | 57.57%
DeFP 82.22% 9.34% 67.78% | 15.40% 65.14% | 28.78% 52.27% | 58.08% 50.38% | 67.43%
FFmpeg CNN 30.91% 4.40% 31.30% 9.30% 33.24% | 19.64% 32.46% | 47.80% 33.04% | 58.39%
BO DeFP 67.27% 9.56% 61.74% | 18.34% 52.43% | 31.00% 38.95% | 57.37% 37.72% | 66.66%
Asterisk CNN 11.00% | 17.56% 8.78% | 28.59% 7.56% | 49.36% 449% | 72.95% 3.82% | 74.49%
DeFP 34.00% | 53.97% 18.54% | 60.26% 10.73% | 70.00% 5.18% | 84.10% 4.56% | 88.97%
COMBINED CNN 43.00% | 12.77% 39.67% | 23.56% 34.25% | 40.69% 25.40% | 75.45% 23.46% | 83.56%
DeFP 66.00% | 19.60% 56.00% | 33.27% 43.92% | 52.18% 27.50% | 81.68% 24.82% | 88.42%
NPD COMBINED CNN 63.33% | 21.37% 43.33% | 29.15% 38.40% | 53.99% 21.29% | 74.25% 19.62% | 82.09%
DeFP 80.00% | 26.93% 65.00% | 43.66% 47.20% | 66.14% 25.81% | 89.74% 22.58% | 94.25%

P@K and R@K are calculated using the following formulas,
where {Actual TPs} is the set of actual TP warnings,
{Predicted TPs}QK is the list of Top-k% of warnings
ranked first by the model.

[{Actual TPs} N {Predicted TPs}QK]|
|[{ Predicted TPs}QK|

PAQK =

{Actual TPs} N {Predicted TPs}QK|

|
K =
ha |[{ Actual T Ps}|

V. EXPERIMENTAL RESULTS
A. Performance Comparison (RQI)

Table [T} shows the performance of DEFP and the CNN
model proposed by Lee et al. [[16] in Top-5%—Top-60% warn-
ings of the ranked lists. Overall, DEFP improves their model
by nearly 30% in Precision and Recall for both BO and NPD
warnings. For example, in FFmpeg, Qemu, and Asterisk with
the Top-20% of warnings returned by DEFP, developers can
find 23/79, 24/77, and 9/13 actual vulnerabilities. Meanwhile,
by using the CNN model [16], the corresponding figures are
only 16/79, 15/77, and 6/13, respectively. When the warnings
of all the projects are combined, by investing 20% of the
warnings in the top of the ranked list, 105/202 actual BO
vulnerabilities and 12/18 actual NPD vulnerabilities can be
found by DEFP, while these figures for the CNN model
are only 82/202 and 10/18, respectively. Interestingly, with
the results of DEFP, developers can find +90% of actual
vulnerabilities by investigating only 60% of the total warnings,
which is 8% better than the CNN model.

Indeed, DEFP obtains better results because it concentrates
on statements which semantically describe the contexts of
the warnings and DEFP is not negatively affected by the
statements which are unrelated to the warnings. For example,
the warning in Fig. DEFP captures its context by the
statements which impact and are impacted by the reported
statement at line 24 as shown in Fig [3] These statements are
essential for semantically capturing the context of the warning
because they show when and how the value of prefix, which
is reported to potentially overflow, is changed. Additionally,

unlike the CNN model [16], DEFP ignores statements at
lines 17 and 26, which do not play any role in reflecting the
violation of the reported statement, although they are near it.
Therefore, they could cause noises if they are encoded as the
context of the warning.

In addition, by inter-procedural analysis, DEFP does not
miss important information to validate the violation of the
reported statements. Specially, there are statements, which are
essential for validating the warnings, could be in multiple
functions. For example in Fig the statement at line 6
specifying the concatenated string to prefix is extremely
important to determine whether the BO vulnerability could
occur at line 24 or not. However, this statement is not in
the same function with the reported statement, yet in another
function aoc_rate_type_str. This statement is captured
by DEFP, but it will be missed if only intra-procedural
analysis is considered.

Interestingly, among the studied projects, DEFP achieved
the highest results in Qemu and the lowest results in Asterisk.
Specially, for Top-20% warnings of Qemu, DEFP obtained
65.14% in Precision, whereas this figure of Asterisk is only
10.73%. The reason is that the models are impacted by the
imbalance of the dataset. For instance, the numbers of TPs
and FPs in Qemu are quite balanced, while they are greatly
imbalanced in Asterisk. Moreover, Asterisk only contains 63
TPs, which is extremely small compared to its 1986 FPs.

B. Impact of the Warning Context (RQ2)

Fig. [5]shows the performance of DEFP when the contexts of
the warnings are captured by different kinds of dependencies.
DEFP obtains the best performance when the warning contexts
are captured by both control and data dependencies on the
PDG. The reason is that, by using slicing techniques on both
of these dependencies, unrelated statements are removed from
the warnings’ contexts and only related statements are encoded
and fed to the BiLSTM models. Therefore, the models can
better capture the patterns of warnings without being affected
by noises caused by the statements which are semantically
unrelated to the warnings. In particular, when program slices
are conducted on both control and data dependencies, the
performance of DEFP in two studied vulnerability types is
16% and 19% better than when the warning contexts captured
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Fig. 5: Impact of the extracted warning contexts on DEFP’s perfor-
mance. RAW, CD, DD, and CD && DD denote the warning contexts
which are captured by raw source code, program slices on control
dependencies, program slices on data dependencies, and program
slices on both control and data dependencies, respectively.

by the raw code of the containing functions. Interestingly, by
slicing on both control and data dependencies, the performance
of DEFP is significantly improved in the warnings which
are ranked at the top of the lists. Specially, compare to the
raw code, for the Top-1%-Top-50% of the ranked warnings,
DEFP’s performance with this kind of program slices is
improved 42% for NPD warnings and 34% for BO warnings.
In other words, among Top-20% of warnings (243 warnings
for BO and 25 warnings for NPD) in the resulting lists,
DEFP correctly ranks 105/202 and 12/18 actual BO and
NPD vulnerabilities. Meanwhile, when the warning context
is captured by raw code of the whole functions, these figures
are only 79/202 and 9/18, respectively.

Importantly, for both BO and NPD vulnerabilities, program
slices on only data dependencies capture the warning contexts
better than the raw code of functions, however, the program
slices on only control dependencies do worse. The reason is
that for these two kinds of vulnerabilities, the information
about data dependencies, which illustrates how the values of
the variables are propagated, is more informative for reasoning
the warnings. For example in Fig. [I] to determine whether the
warning (line 24) is an FP, it is essential to analyze the state-
ments which have data-dependent on, such as lines 6, 15, 19,
etc. Although the raw code may contain noises and unrelated
statements, it still contains all of this information. However,
this important information is missed in the program slices
on control dependencies only. Therefore, the performance of
DEFP with raw code is worse than the program slices on data
dependencies, yet better than the program slices on control
dependencies. Specifically for Top-1%—Top-60% of warnings,
compared to the raw code, DEFP’s results with program slices
on the data dependencies is 7% and 29% better for BO and
NPD. Also, compared to the program slices on the control
dependencies, these figures are 8% and 46%, respectively.

In practice, for different kinds of vulnerabilities, it could
require control or data dependencies or both of these two

A With Reported Statement = Without Reported Statement

Fig. 6: Impact of highlighting the reported statements on the perfor-
mance of DEFP

kinds of information for validating the warnings. Therefore,
to guarantee the best performance of DEFP, program slices
on both control and data dependencies should be leveraged to
capture the warning contexts.

C. Impact of the Reported Statements (RQ3)

As seen in Fig [6| the performance of DEFP is slightly
improved by 4% and 7% for BO and NPD vulnerabilities
when the reported statements are highlighted by being encoded
as an input of the BILSTM model. For example, in Top-
20% of ranked warnings, by encoding the reported statements,
developers can find 7 more actual BO vulnerabilities and 1
more actual NPD vulnerabilities. More details about the per-
formance of DEFP on P@K can be found on our website [21]].

Indeed, highlighting the reported statements can help the
neural network model not only capture the patterns associated
with the warning contexts, but also explicitly emphasize the
positions of warnings. Consequently, this would be consider-
ably helpful when several warnings having similar contexts
but labeled (TP and FP) differently. However, our dataset is
built from the set functions which are already classified as
vulnerable or non-vulnerable. Thus, most of the warnings in
a vulnerable function tend to have the same TP labels. Also,
all of the warnings in a non-vulnerable function are labeled as
FPs. That is the reason why the DEFP’s performance is just
slightly improved when the reported statements are encoded
as an input of the representation model.

D. Impact of the Identifier Abstraction Component (RQ4)

Fig. [/| shows that by abstracting identifiers, DEFP can
capture the general patterns associated with the warnings
better. Specially, with identifier abstraction, DEFP achieves
about 7% and 12% better in two kinds of studied vulner-
abilities for Top-1%-Top-60%. For instance, in Top-20% of
warnings, DEFP can find 105 actual BO vulnerabilities and
12 actual NPD vulnerabilities, which is about 52% and 66% of
their total actual vulnerabilities. Meanwhile, without identifier
abstraction, these numbers are only 96 and 11 vulnerabilities,



Buffer Overflow Warnings

Null Pointer Dereference Warnings

100% 100%

80%

80%

60% 60%

Recall

40% 40%

20% 20%

i
0% 4+—"F—"F—"F—"F—"F—"F+—"F—"+—"F+— 0%
1% 20%  40% 60% 80%  100% 1% 20%  40% 60% 80%  100%
Top-k% Top-k%
A With Identifier Abstraction == Without Identifier Abstraction
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respectively. More details about the performance of DEFP on
P@K can be found on our website [21]].

Moreover, identifier abstraction decreases Word2vec vocab-
ulary size on BO and NPD datasets from 37,170 to 512 and
4,094 to 259 tokens, respectively. This helps the model deal
with the vocabulary explosion problem, better generalize rare
identifiers, and avoid out-of-vocabulary. As well, Word2vec
might also beneficially reduce vector dimension to represent
each code token, thus improve memory usage and shorten the
training/prediction time.

VI. THREATS TO VALIDITY

There are three main threats to validity in this paper, they
are external validity, internal validity, and construct validity,
respectively, which are illustrated as follows.

1) External validity: Our dataset contains 10 open-source
programs and warnings in only two vulnerability types. There-
fore, our results may not be general for all software projects
and other kinds of vulnerabilities. To reduce the threat, we
chose the programs which are widely used in the related
work [27]], [28] and the top most popular vulnerabilities [33]].
Also, we plan to collect more data for the future work.

2) Internal validity: For this paper, the internal validity
mainly lies in the data used for learning process. We manually
labeled for the warnings based on the labels of the functions,
which are assigned by Zhou et al. [27]] and Lin et al. [28].
The threat may come from their incorrect labels at function
level or our misleading labels at warning level. To minimize
this threat, we carefully investigate to label the warnings.

3) Construct validity: In this study, we adopt P@K and
R@K for evaluating the performance of the ranking models.
However, with the problem of handling SA warnings, evalu-
ation in terms of other metrics may also require in practice.
We will conduct experiments using more evaluation measures
in our future work.

VII. RELATED WORK

There are various approaches have been applied to detect
source code vulnerabilities in the early phases of the software
development process. Specially, using SA tools is an automatic

and simple way to detect various kinds of vulnerabilities
without executing the programs [1]], [2]. Baca et al. [34] has
demonstrated that SA tools is better than average developers in
detecting warnings, especially the security ones. However, the
generated warnings of SA tools often contain a high number
of FP rate [7], [8]. Therefore, developers still need to waste a
lot of time and effort for investing such FP warnings.

In order to improve the precision of SA tools, sophisti-
cated program verification techniques such as model checking,
symbolic execution, or deductive verification, etc., have been
applied to reduce the number of FPs [10]-[12], [35], [36].
For instance, Muske et al. [35]], [36] uses model checking
to eliminate FPs. Specially, for each warning, they generate
appropriate assertions and then use model checking to verify
whether those assertions hold. Nguyen et al. [[12]] also generate
proper annotations to describe the verified properties of the
warnings and then prove them by deductive verification. These
approaches can precisely discard a number of FPs. However,
not all of the generated warnings can be formally proved to be
FPs or TPs by these approaches. Additional, model checking
approaches also suffer from the enormous states space, which
affect their performance and lead them to be non-scalable.

In addition, several studies applied ML models to address
SA warnings. Specially, some research [6]], [14], [[15] propose
sets of features about statistic information of the warnings and
then build a model which learn these features to classify SA
warnings. However, these features are manually defined based
on the dataset and the used SA tools. This process is error-
prone even for experts. Meanwhile, instead of using a fixed set
of features, Lee et al. [16] trained a CNN model classifying
warnings based on features which are learned from lexical
patterns in source code. However, they manually defined
different contexts for different kinds of warnings based on their
dataset. This limits the adaptation of their approach for other
kinds of vulnerabilities and different dataset. In this paper, we
propose an approach which can be fully automated and easily
to adapt for handling different warnings in different projects.
Specially, our models are trained to capture the patterns
associated with the warnings in their corresponding contexts,
which are extracted by inter-procedural slicing techniques.

Moreover, ML are also actively adopted in vulnerabilities
detection. Particularly, to leverage the syntax and semantics
information presented in the Abstract Syntax Tree, Dam et
al. [31]] proposed a deep learning tree based model to predict
whether a source file is clean or defective. Besides, there are
multiple studies also propose token-based models [37], [38] or
graph-based models [20], [27] to predict whether a function
containing vulnerabilities. However, these research focuses on
detecting vulnerabilities at the file level or function level,
which are quite coarse-grained in granularity. Developers still
need to investigate the whole source code in the detected files
or functions to localize the vulnerabilities. In this research,
our objective is more fine-grained in granularity. We focus on
ranking the warnings which are reported by SA tools. With
the resulting lists, developers can decide which vulnerabilities
should be investigated and fixed in a given a amount of time.



VIII. CONCLUSION

SA tools have demonstrated their usefulness in detecting
potential vulnerabilities. However, these tools often report a
large number of warnings containing both TPs and FPs, which
causes time-consuming for post-handling warnings and affects
the productivity of developers. In this paper, we introduce
DEFP, a novel method for ranking SA warnings. Based
on the reported statements and the corresponding warning
contexts, we train two BiLSTM models to capture the patterns
associated with the TPs and FPs. After that, for a set of
new warnings, DEFP can predict the likelihood to be TP of
each warning and then rank them according to the predicted
scores. By using DEFP, more actual vulnerabilities can be
found in a given time. In order to evaluate the effectiveness
of DEFP, we conducted experiments on 6,620 warnings in 10
real-world projects. Our experimental results show that using
DEFP, developers can find +90% of actual vulnerabilities by
investigating only 60% of the total warnings.
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