
How Do Programmers Express High-Level
Concepts using Primitive Data Types?

1st Yusuke Shinyama
dept. name of organization (of Aff.)

Tokyo Institute of Technology
Meguro-ku, Tokyo, Japan
euske@sde.cs.titech.ac.jp

2nd Yoshitaka Arahori
dept. name of organization (of Aff.)

Tokyo Institute of Technology
Meguro-ku, Tokyo, Japan

arahori@c.titech.ac.jp

3rd Katsuhiko Gondow
dept. name of organization (of Aff.)

Tokyo Institute of Technology
Meguro-ku, Tokyo, Japan

gondow@cs.titech.ac.jp

Abstract—We investigated how programmers express high-
level concepts such as path names and coordinates using primitive
data types. While relying too much on primitive data types is
sometimes criticized as a bad smell, it is still a common practice
among programmers. We propose a novel way to accurately
identify expressions for certain predefined concepts by examining
API calls. We defined twelve conceptual types used in the Java
Standard API. We then obtained expressions for each conceptual
type from 26 open source projects. Based on the expressions
obtained, we trained a decision tree-based classifier. It achieved
83% F-score for correctly predicting the conceptual type for a
given expression. Our result indicates that it is possible to infer a
conceptual type from a source code reasonably well once enough
examples are given. The obtained classifier can be used for
potential bug detection, test case generation and documentation.

Index Terms—Program comprehension, Software maintenance,
Source code analysis, Dataflow analysis, Conceptual types

I. INTRODUCTION

Today, the benefits of type system in programming lan-
guages are well understood. Since a well-defined type sys-
tem can prevent a programmer from doing certain invalid
operations, it helps a programmer to achieve the correctness
and safety. In a statically typed language, proper typing also
helps maintenance as it indicates the programmer’s intention.
However, defining a domain-specific type system for every
concept in a program is cumbersome. At some point, a
programmer has to rely on a more primitive data type that
is closer to the runtime environment.

a) Program with “primitive obsession”:
String username = getCurrentUserName();
String path = "/home/"+username+"/user.cfg";
// Unsafe path: extra check is needed!
File config = new File(path);

b) Equivalent well-typed program:
User user = getCurrentUser();
Path path = Paths.get(

user.getHomeDirectory(), "user.cfg");
// Path is guaranteed to be safe.
File config = new File(path);

Fig. 1. Primitive obsession (Java)

In fact, programmers tend to use a lot of primitive data
types for a variety of purposes. In particular, string and

integer are among most commonly used data types in modern
programming languages. A string variable, for example, can
be used for storing any text content, such as user name,
address and phone number. Strings are so versatile that some
programming languages only support the string data type [1].
An integer is also versatile in that it can be used for a size,
counter, index, flag or other enumerable constants.

While using these primitive data types is often beneficial
to programmers, this tendency is sometimes accused as prim-
itive obsession [2] (Fig. 1), as it obscures the programmers’
intention and poses a threat to its safety and maintainability.
One of the major benefits of using a well-defined abstract type
system is its ability to check the correctness of its operations.
Relying on primitive data types means that programmers
are bypassing some of the necessary checks, resulting an
unreliable or undefined behavior of a program. For example, in
most operating systems, an arbitrary string cannot be used as a
file name because a file name cannot contain certain characters
(such as “/”).

While primitive obsession is known to be risky, program-
mers often rely on appropriate variable names and source code
comments in attempt to reduce its risk by reminding them-
selves its intended uses and the domain specific constraints.
It is known that programmers heavily rely on meaningful
identifier names (type/class names, function/method names
and variable/field names) to encode their intention [3].

We are interested in how programmers indicate the existence
of domain specific values in source code. In this paper, we
propose a novel way to identify the expressions for several
predefined concepts such as a path name or calendar year. We
applied our method to 26 well-known open source projects
and extracted the common expressions for each concept. We
then attempted to interpret the obtained results by developing
a decision tree-based classifier that infers the type of concepts
from a given expression. Our result indicates that there is a
widely used convention to express certain conceptual types
in source code. The potential applications of our technique
include additional type checking, test case generation and
documentation. In the example illustrated in Fig. 1, one can
insert an extra check to ensure the path is correct, knowing
the path String variable indeed specifies a file system path.

ar
X

iv
:2

20
3.

09
95

9v
1

 [
cs

.S
E

]
 1

8
M

ar
 2

02
2

A. Contribution of This Paper

In this paper, we attempted to answer the following research
questions:
RQ.1) What kinds of high-level concepts do programmers

commonly use in software projects?
RQ.2) How do programmers express such concepts in source

code?
RQ.3) Is it possible to accurately predict such concepts from

the source code appearance?
In the rest of this paper, we first define the concept of

“conceptual types (c-types)” in Section III-A. We then describe
how to extract conceptual types from source code in Section
III-B. Section IV presents the experiment setup for obtaining
conceptual type expressions and its results. In Section V, we
analyzed the obtained expressions for each conceptual type
by constructing a decision tree-based classifier. Finally, we
discuss our findings and the threats to its validity in Section
VI. The related work is described in Section II.

II. RELATED WORK

Identifying conceptual (abstract) types used in software
has been an active research topic in the field of program
comprehension and software maintenance. O’Callahan et al.
[4] performed type inference of a given program using static
data flow analysis and static point-to analysis. Their notion of
a type is solely based on data flow and close to an equivalence
class, in that two values can have the same type if their
values can be stored into the same memory location. Guo et
al. [5] took a similar approach using dynamic analysis. They
also used the data flow of a program as a main source of
abstract type identification. Since their method does not rely
on source code, their technique could be also applied to a
binary program. This line of research was further extended
by Dash et al. [6]. They combined the lexical information
of a program (variable names) with its data flow, forming
the notion of “name flow” that was used for clustering and
discovering abstract types. They also provided a facility to
rewrite a program in such a way that discovered types can be
automatically annotated. While it is not type inference per se,
invariant detection techniques [7] can also be used for type
identification, as it can discern different constraints (hence
different use cases) that each variable has.

The above approaches all aimed to discover user-defined
types and constraints. One of the difficulties in these problem
formulations is that they are all somewhat subjective; there
are a number of ways to design abstract types for a particular
application. The above three approaches all used some sort of
clustering technique and let the abstract types “emerge” from
a program. However, it is often hard to tell if the obtained
clustering was optimal for its user, as different programs have
slightly different requirements for its design. Our approach is
different in that our conceptual types are already well-defined
by the API specification and used by many applications. While
it is not directly competing with the above three, our technique
can be used as a foundation of more advanced analysis.

Our approach is also related to the studies about program
identifiers. The importance of names in a program code has
been emphasized by many researchers and practitioners [8],
[9]. Programmers generally prefer a long descriptive name
than single-letter variables [10]. Poor naming can lead to
misunderstanding or confusion among programmers, which
eventually result in poor code quality [11]. In some software
projects, inconsistent naming is actually considered as bugs
(naming bugs [12]). Alon et al. converted source code into
word embeddings [13] that correspond to a certain word in
natural language [14], which can be used for identifiers.

In numerical or business applications, there are similar
concepts to conceptual types that are called “dimensions”.
Dimensions are typically used for expressing physical units.
Jiang et al. proposed a way to add manual annotation of
physical units to C programs and verify their conversion to
different dimensions using predefined rules [15]. Hangal et al.
used a source code revision history to check if the dimensions
of each variable is consistent throughout the development [16].

III. METHODOLOGY

A. What is Conceptual Type?

Our basic idea is to use API specifications for capturing
domain specific values. Well-designed API specifications usu-
ally provide a clear definition of its inputs and outputs to each
function. Since programmers typically treat API functions as a
black box, they need to be aware of the function parameters.
More specifically, they need a precise understanding of the
type of data that is being passed and how they are going to
be used. Consider the following Java example:

String x = "foo/bar.txt";
var f = new java.io.File(x); // x is a path name.

In the above snippet, the first argument of the
java.io.File constructor is supposed to be of String
type, according to the Java API specification. However,
the programmer has to be aware that it has a more strict
requirement than just a string because it has to be a path
name. Therefore, the programmer is responsible to make
sure that the value of x is not just a string but it meets the
requirements of a valid path name (such as not containing
invalid characters). In this sense, the first argument of the
File constructor requires a more specific data type than
ones that are provided by the programming language.

Conceptually, API entry points presents a clear boundary
that translates primitive data types such as string to a more
specific domain. In contrast to data types provided by a
programming language, we call these data types a “conceptual
type” (or “c-type” in short).

We identified c-types that frequently appear in the Java
Standard API [17]. The principles we used in choosing these
c-types are the following:

1) It has a clearly defined concept that is well understood
by most programmers.

2) It is distinct enough that people do not mix up with other
concepts.

3) It is widely used in a variety of applications.
Table I lists the 12 c-types we chose. The domain of these

c-types can be divided into four different sections: file I/O,
networking, GUI (Java AWT) and date/time handling. These
domains are general enough that can be used in a variety of
software projects.

Note that XCOORD (X coordinate) and YCOORD (Y
coordinate) are treated as a separate type, as well as WIDTH
and HEIGHT. These types could be merged into one, as they
all represent a distance or length in a graphical device. How-
ever, programmers rarely treat these values interchangeably1.
Following the above principle 1, we consider them different
c-types.

After choosing the c-types, we identified the methods that
take one or more of the defined types as arguments. Table
II and Fig. 2 show the number of the method arguments
selected and the excerpt of these methods, respectively. In
total, we selected 218 methods including overlaps. Note that
some methods take multiple c-types as its arguments at once
(such as WIDTH and HEIGHT).

TABLE I
CONCEPTUAL TYPES (C-TYPES)

C-Type Actual Type Description
PATH String Path name
URL String URL/URI
SQL String SQL statement
HOST String Host name
PORT int Port number
XCOORD int X coordinate (for GUI)
YCOORD int Y coordinate (for GUI)
WIDTH int Width (for GUI)
HEIGHT int Height (for GUI)
YEAR int Year
MONTH int Month
DAY int Day of month

TABLE II
NUMBER OF METHODS FOR EACH C-TYPE

C-Type # Methods
PATH 14
URL 4
SQL 10
HOST 17
PORT 25
XCOORD 25
YCOORD 25
WIDTH 24
HEIGHT 24
YEAR 18
MONTH 14
DAY 18
Total 218

1While expressions like Point(x, x) or x+width*2 might be used in
some programs, we can hardly imagine a GUI program where operations like
x+y or Point(y, x) are meaningful.

• new java.io.File(PATH)
• new java.net.URI(URL)
• java.sql.Statement.execute(SQL)
• java.net.InetAddress.getByName(HOST)
• new java.net.Socket(HOST, PORT)
• new java.awt.Point(XCOORD, YCOORD)
• new java.awt.Dimension(WIDTH, HEIGHT)
• new java.util.Date(YEAR, MONTH, DAY)
• java.util.Date.setYear(YEAR)
• java.time.LocalDate.of(YEAR, MONTH, DAY)
• ...

Fig. 2. Excerpt of Methods used for Identifying C-Types

B. Extracting Conceptual Type Expressions

With the list of methods that define c-types, we scan
the source code and identify all the calls for the selected
methods or constructors. Each method call has one or more
arguments that specify a predefined c-type. We then extract
the expressions for each argument as a c-type expression.

In this paper, we use Java as our target language. First, we
identify all the methods (including overloaded methods) and
assign a unique identifier to each. We keep a list of method
identifiers (the names and signatures) that we selected and
check if each method call can match those identifiers.

In a case of virtual method call (dynamic dispatching),
there are multiple method implementations that has the same
signature. Note that we are only interested in the arguments
of each method call; we do not need to know which method is
actually invoked. When a method call can potentially invoke
multiple implementations, we collect its arguments if one of
its possible destinations is defined in our method list.

C. Implementation

We implemented a static analyzer for Java source code. The
analyzer takes the following steps for the given set of files:

1) Parse all the source codes. We used Eclipse JDT [18] for
the Java parser.

2) Enumerate all the classes and name spaces defined in the
target source code. We maintain a hierarchical symbol
table for registering Java packages.

3) Process import statements in each file to resolve the
references to external classes.

4) Scan all the method signatures and assign a unique
identifier to each method. For example, a method which
has a signature:

package foo.bar;
class Config {

int findString(String s[], int i)
}

can be encoded as a unique identifier:
foo.bar.Config.findString([LString;I)I

5) In addition to source codes, compiled Java class files and
jar files are also scanned and its method signatures are
collected.

6) Construct a symbol table that includes all the variables
and field names defined in each method. The symbol table

has mappings from a variable (field) name to its data type.
The symbol table is used for method resolution in the next
step.

7) For every method or constructor call, find the most
precise method that matches the calling signature.

8) If the callee method is one of the selected methods (i.e. its
method identifier is in our list), extract the corresponding
arguments that specify one of the predefined c-types.

Note that Step 3 above typically requires complete type
information for imported classes. In our case, however, since
we only need to identify the calls of the methods that we
selected, not all the references need to be resolved. Since
all the methods we chose are included in the Java Standard
API, we simply ignored unresolved method calls. This allows
us to process a variety of Java projects without needing its
dependencies.

IV. EXPERIMENTS

We extracted c-type expressions from 26 open source
projects. First we listed top 1,000 Java projects in the number
of stars in GitHub. We then performed string search through
their source code and selected ones that uses one or more of
the Java APIs listed in Table II. We chose projects of a variety
of sizes. The size of each project ranges from 1.8mLoC to
3kLoC. Table III shows the projects and their sizes.

We used a standard PC (Intel Xeon 2.2GHz, 40 core,
64G bytes memory, running Arch Linux) for running our
experiment. Extracting method calls and c-type expressions
for the all 26 projects took less than 2 hours in total.

TABLE III
PROJECTS AND SIZES (LOC WAS COUNTED WITH [19])

Project Description LoC
hadoop 3.3.1 distributed computation 1,789k
ghidra 10.0 binary analyzer 1,588k
ignite 2.10.0 distributed database 1,165k
jetty 11.0.5 web container 441k
kafka 2.7.1 stream processing 384k
tomcat 8.5.68 web server 349k
jitsi 2.10 video conference 327k
binnavi 6.1.0 binary analyzer 309k
netty 4.1.65 network library 303k
libgdx 1.10.0 game framework 272k
alluxio 2.5.0-3 data orchestration 228k
plantuml 1.2021.7 UML generator 210k
grpc 1.38.1 RPC framework 195k
jenkins 2.299 automation 177k
jmeter 5.4.1 network analyzer 145k
jedit 5.6.0 text editor 125k
gephi 0.9.2 graph visualizer 120k
zookeeper 3.7.0 distributed computation 114k
selenium 3.141.59 browser automation 91k
okhttp 4.9.1 HTTP client 36k
jhotdraw 7.0.6 graph drawing 32k
arduino 1.8.15 development environment 27k
gson 2.8.7 serialization framework 25k
websocket 1.5.2 network framework 15k
picasso 2.8 image processing 9k
jpacman action game 3k
Total 8,480k

Table IV shows the number of extracted c-type expressions
for each project. The “OTHER” column shows not an actual
c-type, but the number of expressions that are passed in
arguments that does not specify any predefined c-type. For
example, some API method takes a path name and an extra
boolean flag as arguments. Since this extra argument does not
specify any predefined c-type, we count them as OTHER. The
OTHER expressions are later used for training the decision tree
algorithm and measuring its performance2.

We collected frequently used expressions in each project.
Table V shows the most frequent expressions for four c-
types (PATH, URL, XCOORD and WIDTH) in each project.
Constant expressions such as "localhost" are excluded.
While shorter and more common expressions are relatively
straightforward, a long expression with multiple operators can
be complex for programmers. Table VI shows the length of
expressions for each c-type, in the number of components
included in each expression3. Table VII shows compound
expressions that include binary operators (such as + or *).

We also obtained frequently used words for each c-type by
using the word segmentation algorithm shown in Section V-B.
The results are shown in Table VIII.

V. INFERRING C-TYPES BY EXPRESSIONS

In this section, we describe our attempt to develop a decision
tree-based classifier that predicts the c-type from a given
expression. Since the expressions obtained for each c-type
contain several words that are commonly used across many
projects, we expected that we could construct a relatively
straightforward model (if any) to infer the c-type of a given
expression.

A decision tree is a relatively simple machine learning
model that is equivalent to a sequence of if-then statements.
It is efficient and suitable for handling discrete values such as
symbols or words. One of the major advantages of a decision
tree is that it is human readable. We used a ID3 algorithm
[20] to construct a decision tree.

In the rest of this section, we first describe how to de-
compose an expression to a set of features used for inferring
conceptual types. Our classifier uses both lexical and data
flow-centric information of an expression. Then we describe
a word segmentation algorithm used in feature extraction. A
word segmentation is needed to split identifiers that are made
up with multiple words (such as getPath). We then show
its predictive performance and an excerpt of obtained rules.

A. Converting Expression into Features

In this experiment, a c-type is specified by an argument in a
method call. Each argument is a Java expression that consists
of the following terms: Variable (field) accesses, method calls
and constants. To use a decision tree classifier, the syntax tree
of each expression needs to be converted as discrete features.

2In theory, all the arguments of all the method calls that we are not
interested in should be counted as the OTHER type. For practical reasons,
however, we ignored method calls that clearly have nothing to do with c-types.

3Note that field access (a.b) and method call (a.b()) are considered as
two components instead of one.

TABLE IV
EXTRACTED C-TYPE EXPRESSIONS BY PROJECT

Project LoC PATH URL SQL HOST PORT XCOORD YCOORD WIDTH HEIGHT YEAR MONTH DAY OTHER All
alluxio 228k 72 12 0 22 26 0 0 0 0 15 15 15 51 228
arduino 27k 39 5 0 12 9 6 6 42 42 0 0 0 1 162
binnavi 309k 42 7 1 2 1 23 23 67 67 1 0 0 1 235
gephi 120k 5 0 2 0 0 28 28 66 66 0 0 0 0 195
ghidra 1,588k 369 25 0 10 8 320 320 511 511 13 13 13 13 2,126
grpc 195k 33 16 0 68 71 0 0 0 0 0 0 0 75 263
gson 25k 0 4 0 2 0 0 0 0 0 6 6 6 7 31
hadoop 1,789k 978 634 9 288 259 0 0 0 0 2 2 2 124 2,298
ignite 1,165k 168 85 666 106 111 0 0 0 0 12 12 12 101 1,273
jedit 125k 130 19 0 3 3 50 50 112 112 0 0 0 3 482
jenkins 117k 82 28 0 6 6 1 1 1 1 102 102 102 237 669
jetty 441k 72 216 9 163 104 0 0 0 0 0 0 0 37 601
jhotdraw 32k 6 5 0 1 1 96 96 50 50 0 0 0 1 306
jitsi 327k 22 18 1 8 31 78 78 234 234 0 0 0 30 734
jmeter 145k 112 62 2 31 28 7 7 62 62 0 0 0 28 401
jpacman 3k 0 0 0 0 0 0 0 1 1 0 0 0 0 2
kafka 384k 37 1 0 85 72 0 0 0 0 14 14 14 44 281
libgdx 272k 83 7 0 4 5 7 7 36 36 0 0 0 0 185
netty 303k 38 24 0 54 130 0 0 0 0 1 1 1 117 366
okhttp 36k 2 24 0 6 7 0 0 0 0 0 0 0 3 42
picasso 9k 1 0 0 0 0 0 0 0 0 0 0 0 0 1
plantuml 210k 29 4 0 5 11 4 4 11 11 2 2 2 2 87
selenium 91k 44 66 0 15 12 1 1 0 0 1 1 1 21 163
tomcat 349k 207 64 22 38 52 0 0 10 10 0 0 0 47 450
websocket 15k 9 44 0 5 43 0 0 1 1 0 0 0 1 104
zookeeper 114k 88 4 0 126 192 0 0 1 1 0 0 0 47 459
Total 8,480k 2,668 1,374 712 1,060 1,182 621 621 1,205 1,205 169 168 168 991 12,144

Our basic idea is to focus on each identifier in an expression
in the order of significance. When an expression consists of
only one variable reference (such as path), we call this
variable a primary identifier. When an expression consists of
two references where one variable belongs to another (such
as a.b), we choose the most significant reference (b) as a
primary identifier as the other (a) as a secondary identifier.
This strategy can be formalized by using the idea of data
dependency graph (data flow graph) which has been commonly
used in compiler optimization [21].

We first construct the data dependency graph of an expres-
sion by traversing each term in its syntax tree. For each term in
the (sub-) expression, the rules shown in Table IX are applied
recursively. The obtained graph forms a lattice structure whose
node is either a variable access, method call, constant, or
one of Java operators. We then traverse the dependency graph
from the top and extract features at each node. Operator and
constant nodes are skipped. The most significant node that
is close to the top is marked as a primary identifier, and the
second degree ones are marked as secondary identifiers, and so
on. As we move away from the top node in the dependency
graph, we obtain ternary or fourth-degree identifiers. Fig. 3
illustrates the primary and secondary identifiers that appears
in a method call new File(config.getPath(i)); The
primary identifier of this expression is getPath(). The
secondary identifier is config and i.

Note that the chain of data dependency becomes longer as
we obtain a broader range of a dependency tree, i.e. the value
represented at each node has a more indirect influence to the
entire expression. For the sake of simplicity, we discard fourth-

degree or further identifiers.

new File()

config i

getPath()

Secondary identifiers

Primary identifier

Fig. 3. Dependency Graph of “new File(config.getPath(i))” and
Its Primary and Secondary Identifiers

B. Word Segmentation

To give the prediction model more flexibility, we treat
identifiers not as a single feature but a set of features based
on its tokens. For example, “getConfigPath” is segmented
into three distinct tokens: “get”, “config” and “path”.
Other than tokenization, the classifier does not have any
prior knowledge about the natural language used in program
identifiers.

We used a simple regex-based word tokenizer. For a
given string, we search a longest substring that matches with
([A-Z][a-z]+|[A-Z]+) pattern. We chunk each matched
substring as individual tokens. Since the extent of each match
is limited to consecutive alphabets, both “getConfigPath”
and “get_config_path” can be segmented to the same
tokens. Each tokens is normalized to lower case letters.

TABLE V
TOP EXPRESSIONS FOR PATH, URL, XCOORD AND WIDTH C-TYPES

(CONSTANTS EXCLUDED)

PATH Top Expressions
alluxio path, mLocalUfsPath+ufsBase, base
arduino path, PreferencesData.get("runtime.ide.path")
binnavi filename, directory, pathname
gephi System.getProperty("netbeans.user")
ghidra getTestDirectoryPath(), path, filename
grpc uri.getPath()
hadoop GenericTestUtils.getRandomizedTempPath()
ignite path, U.defaultWorkDirectory(), fileName
jedit path, dir, directory
jenkins System.getProperty("user.home"), war
jetty file.getParent()
jhotdraw prefs.get("projectFile", home)
jitsi path, localPath
jmeter filename, path, file
kafka storeDirectoryPath, argument
libgdx name, sourcePath, imagePath.replace(’\\’,’/’)
netty getClass().getResource("test.crt").getFile()
plantuml filename, newName
selenium System.getProperty("java.io.tmpdir"), logName
tomcat pathname, path, docBase
zookeeper path, KerberosTestUtils.getKeytabFile()

URL Top Expressions
alluxio journalDirectory, folder, inputDir
arduino contribution.getUrl(), packageIndexURLString
binnavi url, urlString
ghidra ref, getAbsolutePath(), url.toExternalForm()
grpc target, TARGET, oobTarget
gson nextString, urlValue, uriValue
hadoop uri, url, s
ignite GridTestProperties.getProperty("p2p.uri.cls")
jedit path, str, fileIcon
jenkins url, site.getData().core.url, plugin.url
jetty uri, inputUrl.toString(), s
jitsi url, imagePath, sourceString
jmeter url, LOCAL_HOST, requestPath
kafka config.getString(METRICS_URL_CONFIG)
libgdx url, URI, httpRequest.getUrl()+queryString
netty URL, request.uri(), server
selenium url, baseUrl, (String)raw.get("uri")
tomcat url, location, path
websocket uriField.getText(), uriinput.getText()
zookeeper urlStr

XCOORD Top Expressions
arduino noLeft, cancelLeft
binnavi x, m_x
gephi currentMouseX, x, bounds.x
ghidra x, center.x+deltaX, filterPanelBounds.x
jedit x, event.getX(), leftButtonWidth+leftWidth
jhotdraw evt.getX(), x, e.getX()
jitsi x, button.getX(), dx
jmeter graphPanel.getLocation().x, cellRect.x, x
libgdx upButtonX, getWidth()-buttonSize.width-5, x
plantuml e.getX()

WIDTH Top Expressions
arduino width, imageW, Preferences.BUTTON_WIDTH
binnavi COLORPANEL_WIDTH, TEXTFIELD_WIDTH, width
gephi w, constraintWidth, DEPTH
ghidra width, center.width, filterPanelBounds.width
jedit width, buttonSize.width, colWidth
jhotdraw frameWidth, r.width, bounds.width
jitsi MAX_MSG_PANE_WIDTH, WIDTH, width
jmeter graphPanel.width
libgdx width, buttonSize.width
plantuml newWidth
tomcat WIDTH

TABLE VI
EXPRESSION LENGTH (NUMBER OF COMPONENTS)

C-Type n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n ≥ 7
PATH 49.6% 22.8% 7.0% 6.3% 4.8% 2.2% 7.3%
URL 31.6% 18.5% 13.7% 13.5% 10.2% 5.8% 6.8%
SQL 47.5% 12.1% 8.7% 3.1% 4.4% 5.5% 18.8%
HOST 59.2% 11.5% 3.0% 22.1% 2.0% 0.1% 2.1%
PORT 68.4% 27.5% 2.1% 1.2% 0.3% 0.4% 0.0%
XCOORD 54.1% 24.6% 9.8% 6.4% 1.6% 2.1% 1.3%
YCOORD 52.5% 22.4% 10.1% 9.0% 2.6% 1.9% 1.4%
WIDTH 71.0% 15.2% 6.3% 2.5% 1.5% 1.8% 1.7%
HEIGHT 71.4% 15.4% 6.4% 3.1% 1.5% 1.3% 1.0%
YEAR 96.4% 2.4% 1.2% 0.0% 0.0% 0.0% 0.0%
MONTH 79.8% 19.6% 0.6% 0.0% 0.0% 0.0% 0.0%
DAY 99.4% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0%

C. ID3 Algorithm

ID3 is a recursive algorithm that produces an optimal deci-
sion tree in terms of its total entropy. Our ID3 implementation
is fairly straightforward. The way that the decision tree learner
works is following: it scans all the input instances and searches
a test that split the given instances the best. This means that
a split with the minimal average entropy is chosen (Fig. 4).
The average entropy of a split S is calculated as:

Havg(S) = −
∑
si∈S

si
|S|

log
si
|S|

where si is the number of equivalent items in the set. The
overall procedure of ID3 is shown in Fig. 5.

The algorithm starts with the most significant test, and then
repeatedly splits the subtrees until it meets a certain predefined
cutoff criteria; an important test tends to appear at the top of
the tree, and as it descends to its branches a less significant
test appears. In general, setting the cutoff threshold too small
causes a tree over-fitting problem, while setting it too large
makes it under-fitting. In our experiment, we found that setting
the minimum threshold to 10 instances produced the best
results. The more detailed mechanism is described in [20].

Once the decision tree is built, it can be treated as a
sequence of if-then clauses. The classification process begins
with the top node of the tree; it performs a test at each branch
and decides the corresponding branch to descend. Each branch
also has an associated value (prediction). When it reaches at
a leaf or there is no corresponding branch, the process stops
and the value associated with the current branch is returned.

Table X shows the list of ID3 features we used. The test at
each branch checks if a certain word is included in one of the
features. Fig. 6 shows an excerpt of the obtained rules.

Entropy = 1.0

Entropy =

(7×0.86 + 5×0.72) ÷ 12

Fig. 4. Splitting Tree with Minimal Average Entropy

TABLE VII
COMPOUND EXPRESSIONS WITH OPERATORS

C-Type Expressions
PATH mLocalUfsPath + ufsBase

selectedFile.getAbsolutePath() + PREFERENCES_FILE_EXTENSION
dir.getPath() + DIR_FAILURE_SUFFIX
U.defaultWorkDirectory() + separatorChar + DEFAULT_TARGET_FOLDER + separatorChar

URL url.toExternalForm().substring(GhidraURL.PROTOCOL.length() + 1)
str + KMSRESTConstants.SERVICE_VERSION + "/"
newOrigin(getScheme(),getHost(),getPort()).asString() + path
base + configFile

XCOORD center.x + center.width
leftButtonWidth + leftWidth
evt.getX() - getInsets().left
prefs.getInt(name+".x", 0)

WIDTH Math.max(contentWidth, menuWidth) + insets.left + insets.right
TITLE_X_OFFSET + titlePreferredSize.width
width + insets.left + insets.right + 2
(int)(bounds.getWidth() * percent)

TABLE VIII
TOP WORDS USED IN C-TYPE EXPRESSIONS

C-Type Top words (# Projects)
PATH get (21), path (21), file (20)
URL url (19), get (18), string (18)
SQL get (6), query (5), create (3)
HOST host (21), get (17), address (17)
PORT port (22), get (18), local (10)
XCOORD width (9), x (9), get (9)
YCOORD height (9), y (9), get (8)
WIDTH width (13), get (11), size (10)
HEIGHT height (12), get (11), size (10)
YEAR year (4), get (2), int (2)
MONTH january (3), month (3), december (3)
DAY day (3), int (2), parse (2)

TABLE IX
DEPENDENCY GRAPH RULES

Expression Dependency
(constant)
A (variable access) A
A() (method call) A()
A.B (field access) A→ B
A.B() (instance method call) A→ B()
op A (applying a unary operator) A→ op
A op B (applying a binary operator) A→ op, B → op
B = A (assignment) A→ B

TABLE X
ID3 FEATURES

Feature Description
PrimaryFirstWords First Words of Primary Identifiers
PrimaryLastWords Last Words of Primary Identifiers
SecondaryFirstWords First Words of Secondary Identifiers
SecondaryLastWords Last Words of Secondary Identifiers

Features = [...]
MinItems = 10

def buildTree(items):
if len(items) < MinItems:

default = getDefaultValue(items)
return Leaf(default)

else:
bestSplit = None
for f in Features:

split = splitItemsByFeature(items, f)
if calcEntropy(split) < calcEntropy(bestSplit):

bestSplit = split
nodes = []
for s in split:

nodes.append(buildTree(s))
return Tree(nodes)

Fig. 5. ID3 Algorithm (Python)

if "port" in PrimaryLastWords:
if "get" in SecondaryFirstWords: ctype = PORT
elif "host" not in PrimaryFirstWords: ctype = PORT
...

elif "height" in PrimaryLastWords:
if "y" in PrimaryLastWords: ctype = YCOORD
else: ctype = HEIGHT

elif "path" in PrimaryLastWords:
if "host" in PrimaryLastWords:
if PrimaryFirstWords == "host": ctype = HOST
else: ctype = PATH

elif "address" in PrimaryLastWords: ctype = OTHER
...

Fig. 6. Obtained Rules (Python)

D. Classification Results

To measure the performance of our method, we conducted
leave-one-project-out cross validation; For each project, we
use all other 25 projects as the training data and use the one
project as the test data. After repeating this project for 26
times, we took the average of the precision and recall for each
project across different c-types. Table XI shows the average
precision and recall as well as its F-score. The average F-score
for all 12 c-types was 83%.

TABLE XI
CLASSIFICATION RESULTS FOR EACH C-TYPES

C-Type Precision Recall F-score
PATH 68.9% 91.8% 78.8%
URL 61.3% 53.0% 56.8%
SQL 70.4% 80.6% 75.2%
HOST 70.0% 73.8% 71.8%
PORT 84.6% 87.5% 86.0%
XCOORD 95.7% 82.1% 88.3%
YCOORD 97.5% 79.4% 87.5%
WIDTH 92.0% 92.5% 92.2%
HEIGHT 90.4% 93.4% 91.9%
YEAR 100.0% 83.7% 91.1%
MONTH 100.0% 77.0% 87.0%
DAY 100.0% 61.1% 75.9%
Average 85.9% 79.6% 82.7%

VI. DISCUSSIONS

As shown in Section V-D, the average F-score of our
classifier was about 80% for most c-types, except “URL” c-
type, whose F-score was less than 60%. There are several
reasons for this: First, URL expressions tend to be long and
has a number of components, as shown in Table V. Most of
these expressions are a concatenation of multiple strings with
+ operator, which is exemplified in Table V. Also, since a
URL typically consists of a host name or path name, a URL
expression tends to include many PATH or HOST-associated
expressions as its constituents, which confuses the classifier.
Indeed, this confusion is exhibited in the confusion matrix
shown in Table XII 4; a lot of URL expressions were mistaken
as PATH, HOST or PORT expressions.

Now, let us go back to our research questions:

RQ.1) What kinds of high-level concepts do programmers
commonly use in software projects?

RQ.2) How do programmers express such concepts in source
code?

RQ.3) Is it possible to accurately predict such concepts from
the source code appearance?

First, we have observed that a different set of c-types
appeared in different projects as shown in Table IV. Unlike
general-purpose data types, the use of c-types depends on
the domain of the project. This somewhat agrees with our
intuition; since c-types are closer to application-specific types,
its uses also depends on the application domain.

The second and third questions are related. We have seen
that a decision tree-based classifier with simple features like
Table X performed reasonably well for most c-types we tested.
This indicates the following: there are certain conventions
about how these c-types should be expressed and many pro-
grammers tend to follow them. Therefore, for conceptual types
that are as common and well-defined as ours, it is relatively
easy to identify them from the surface features of the source
code. We think that our methodology can be extended to

4This matrix is obtained by applying the classifier to its own training set.
Note that this is not to show the performance of the classifier. Rather, it shows
the limit of its discerning ability.

a wider range of concepts in other third-party libraries and
frameworks.

One of the possible ways to improve the classification
accuracy is to exploit a longer data flow between method
calls and other statements. In this paper, we treated individual
method calls separately. However, when a method call is
chained with another method call or statement, we could take
advantage of this additional restriction to further refine the
prediction result.

A. Threats to Validity

Here we discuss the threats to validity of our findings:
• An incomplete method list. To extract a c-type expression,

we need a list of API methods that specify the corre-
sponding c-type. We manually searched the Java Standard
API documentation to find the appropriate methods for
each c-type, but we might have missed some methods.

• Some c-types are rarely used in real world and we might
not find enough examples. This is a classic data sparse-
ness problem. Identifying some c-types might simply not
be practical.

• Open source selection bias. Our choice of the 26 open
source projects might not be representative.

• Some c-types cannot be well-defined. A primary example
of this is the “URL” c-type. Technically, URL (Uniform
Resource Locator) and URI (Universal Resource Iden-
tifier) are two different things [22]. URI is a broader
concept which includes URL but can be used for offline
entities such as book. In this paper, we treated them
interchangeably because these two concepts are almost
identical in the context of network applications. However,
certain c-type can be more confounding and we might not
be able to distinguish them in a consistent way. Another
example would be “file name” and “path name”. We are
yet to know how many such c-types exist.

• Potentially there are significantly more “OTHER” c-type
expressions that we missed. In this paper, we assigned
a hypothetical “OTHER” c-type only to arguments in
certain methods. However, this should not be limited
to method calls only. If we are to identify the c-type
of all expressions in a program, there will be many
more OTHER expressions. Training for all these OTHER
expressions might confuse the classifier and end up with
a much lower performance.

VII. CONCLUSION

In this paper, we set out to examine how programmers
express a high-level concept such as path name or coordinates
in source code. We proposed a method to identify such
concepts by using standard API calls. We defined 12 c-types
that are commonly used in many software projects. Each
c-type can be seen as an argument for the corresponding
API methods. We conducted experiments and obtained c-type
expressions from 26 open source projects. We constructed a
decision tree-based classifier that predicts the c-type from a
given expression by combining its lexical and data flow-centric

TABLE XII
CONFUSION MATRIX OF C-TYPES

C-Type PATH URL SQL HOST PORT XCOORD YCOORD WIDTH HEIGHT YEAR MONTH DAY

PATH 2274 28 1 2 3 0 0 0 0 0 0 0
URL 82 737 2 17 54 0 0 0 0 0 0 0
SQL 2 1 287 0 4 0 0 0 0 0 0 0
HOST 7 5 0 424 2 0 0 0 0 0 0 0
PORT 2 2 2 0 755 0 0 0 1 0 0 0
XCOORD 0 0 0 0 0 478 0 6 0 0 0 0
YCOORD 0 0 0 0 0 6 486 0 7 0 0 0
WIDTH 0 0 0 0 0 3 0 597 10 0 0 0
HEIGHT 0 0 0 0 0 0 4 17 569 0 0 0
YEAR 0 0 0 0 0 0 0 0 0 18 0 0
MONTH 0 0 0 0 0 0 0 0 0 0 43 0
DAY 0 0 0 0 0 0 0 0 0 0 0 7

features. We introduced the notion of primary and secondary
identifier. Our classifier achieved 83% average F-score for 12
c-types.

VIII. FUTURE WORK

There are several ways to extend our work. A straightfor-
ward extension is to support more c-types found in the Java
Standard API or other third-party APIs. Since a return value
of API is typically also well-defined, it is possible to extend
the notion of c-type to return values.

To improve the classification performance, one can take
advantage of more advanced data flow. For example, an inter-
procedural data flow between different functions or bidirec-
tional data flow between multiple statements can provide extra
information to the classifier. We could also use an advanced
inference algorithm such as graph neural network.

REFERENCES

[1] J. K. Ousterhout and K. Jones, Tcl and the Tk Toolkit (2nd ed.). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2009.

[2] A. Shvets. (2021) Primitive obsession. [Online]. Available: https:
//refactoring.guru/smells/primitive-obsession

[3] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
a study of identifiers,” in Proceedings of the 14th IEEE International
Conference on Program Comprehension, ser. ICPC ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 3–12. [Online]. Available:
https://doi.org/10.1109/ICPC.2006.51

[4] R. O’Callahan and D. Jackson, “Lackwit: A program understanding
tool based on type inference,” in Proceedings of the 19th International
Conference on Software Engineering, ser. ICSE ’97. New York,
NY, USA: Association for Computing Machinery, 1997, p. 338–348.
[Online]. Available: https://doi.org/10.1145/253228.253351

[5] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst, “Dynamic
inference of abstract types,” in Proceedings of the 2006 International
Symposium on Software Testing and Analysis, ser. ISSTA ’06. New
York, NY, USA: Association for Computing Machinery, 2006, p.
255–265. [Online]. Available: https://doi.org/10.1145/1146238.1146268

[6] S. K. Dash, M. Allamanis, and E. T. Barr, “Refinym: Using names
to refine types,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
107–117. [Online]. Available: https://doi.org/10.1145/3236024.3236042

[7] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1–3,
pp. 35–45, Dec. 2007.

[8] B. W. Kernighan and R. Pike, The Practice of Programming. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[9] S. McConnell, Code Complete, Second Edition. Redmond, WA, USA:
Microsoft Press, 2004.

[10] G. Beniamini, S. Gingichashvili, A. K. Orbach, and D. G.
Feitelson, “Meaningful identifier names: The case of single-letter
variables,” in Proceedings of the 25th International Conference
on Program Comprehension, ser. ICPC ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 45–54. [Online]. Available: https:
//doi.org/10.1109/ICPC.2017.18

[11] E. Avidan and D. G. Feitelson, “Effects of variable names on
comprehension an empirical study,” in Proceedings of the 25th
International Conference on Program Comprehension, ser. ICPC ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 55–65. [Online]. Available:
https://doi.org/10.1109/ICPC.2017.27

[12] E. W. Høst and B. M. Ostvold, “Debugging method names,” in
Proceedings of the 23rd European Conference on ECOOP 2009
— Object-Oriented Programming, ser. Genoa. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 294–317. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-03013-0 14

[13] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” CoRR,
vol. abs/1310.4546, 2013. [Online]. Available: http://arxiv.org/abs/1310.
4546

[14] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. ACM Program. Lang.,
vol. 3, no. POPL, pp. 40:1–40:29, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3290353

[15] L. Jiang and Z. Su, “Osprey: A practical type system for validating
dimensional unit correctness of c programs,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
262–271. [Online]. Available: https://doi.org/10.1145/1134285.1134323

[16] S. Hangal and M. S. Lam, “Automatic dimension inference and checking
for object-oriented programs,” in 2009 IEEE 31st International Confer-
ence on Software Engineering, 2009, pp. 155–165.

[17] (2021) Java ®platform, standard edition & java development kit
version 11 api specification. Oracle. [Online]. Available: https:
//docs.oracle.com/en/java/javase/11/docs/api/index.html

[18] (2021) Eclipse java development tools (jdt). Eclipse Foundation.
[Online]. Available: https://www.eclipse.org/jdt/

[19] D. A. Wheeler. Sloccount. [Online]. Available: https://dweeler.com/
sloccount/

[20] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., 1993.

[21] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987. [Online]. Available:
http://doi.acm.org/10.1145/24039.24041

[22] T. Berners-Lee. (2021) Uniform resource identifier (uri): Generic syntax.
W3C. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc3986

https://refactoring.guru/smells/primitive-obsession
https://refactoring.guru/smells/primitive-obsession
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1145/253228.253351
https://doi.org/10.1145/1146238.1146268
https://doi.org/10.1145/3236024.3236042
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1109/ICPC.2017.27
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://doi.acm.org/10.1145/3290353
https://doi.org/10.1145/1134285.1134323
https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://www.eclipse.org/jdt/
https://dweeler.com/sloccount/
https://dweeler.com/sloccount/
http://doi.acm.org/10.1145/24039.24041
https://datatracker.ietf.org/doc/html/rfc3986

	I Introduction
	I-A Contribution of This Paper

	II Related Work
	III Methodology
	III-A What is Conceptual Type?
	III-B Extracting Conceptual Type Expressions
	III-C Implementation

	IV Experiments
	V Inferring C-Types by Expressions
	V-A Converting Expression into Features
	V-B Word Segmentation
	V-C ID3 Algorithm
	V-D Classification Results

	VI Discussions
	VI-A Threats to Validity

	VII Conclusion
	VIII Future Work
	References

