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Abstract—Release planning for mobile apps has recently be-
come an area of active research. Prior research in this area
concentrated on the analysis of release notes and on tracking user
reviews to support app evolution with issue trackers. However,
little is known about the impact of user reviews on the evolution
of mobile apps. Our work explores the role of user reviews in app
updates based on release notes. For this purpose, we collected
user reviews and release notes of Spotify, the ‘number one’ app
in the ‘Music’ category in Apple App Store, as the research data.
Then, we manually removed non-informative parts of each release
note, and manually determined the relevance of the app reviews
with respect to the release notes. We did this by using Word2Vec
calculation techniques based on the top 80 app release notes with
the highest similarities. Our empirical results show that more
than 60% of the matched reviews are actually irrelevant to the
corresponding release notes. When zooming in at these relevant
user reviews, we found that around half of them were posted
before the new release and referred to requests, suggestions, and
complaints. Whereas, the other half of the relevant user reviews
were posted after updating the apps and concentrated more on
bug reports and praise.

Index Terms—User review, Release note, Release planning

I. INTRODUCTION

With the rapid progress on mobile techniques and smart
phones, the number of mobile applications (apps for short)
rises dramatically every year. As of the first quarter of 2021,
Android users were able to choose between 3.48 million
apps, making Google Play the app store with biggest number
of available apps. The Apple App Store was the second-
largest app store with roughly 2.22 million available apps
for iOS [1]. In these app repositories, users are free to post
praises, complaints, and requests as reviews or ratings to the
apps. Whereas, developers are responsible to provide apps
with descriptions as well as app updates as release notes. This
review-or-notes-posting activity makes app repositories now
become the main data source to construct app datasets for the
research on app development, evolution, and maintenance [2].

As the most common and widely used app data, user reviews
and ratings have been exploited to obtain user requirements
or app features for software evolution and maintenance [3]
[4] [5]. Although informative user reviews were reported
to have valuable information (e.g., feature requests and bug
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reports) for developers, there is still no clarity on whether
user reviews are actually taken into account by developers
and implemented in the new release. Some researchers traced
informative user reviews to source code changes to support
evolution of successful apps [6] [7]. However, these authors
focused their exploration on open source apps, rather than all
the mobile apps. In fact, it turns out that very few studies
explored the relation between app reviews and release notes
in practice.

Release notes are textual documents delivered to the clients
regularly, with the new release of a software product. These of-
ficial texts are usually written by developers in a standardized
way to present the main or important updates of the current
version of software applications. Unlike source code changes,
release notes are completely generated by developers, easier
to collect, and not limited to open source software. Thus,
release notes can be deemed good candidates to highlight those
characteristics of updated apps for exploring the factors that
influence app updates from app reviews.

To our best knowledge, very limited research examined the
influence of user reviews on app updates from the perspective
of developers, based on app release notes. This study makes a
first step towards bridging this gap of knowledge and intends
to explore the role that user reviews play in app updates,
according to app release notes. Specifically, we would like
to investigate whether developers consider user reviews when
updating mobile apps. If yes, how many and which types
of reviews contribute to or respond to the new releases?
The preliminary findings will reveal the characteristics of the
user feedback that got attention from developers. Plus, it can
help both researchers and practitioners understand the relation
between official release notes and personalized user feedback
for app maintenance and evolution in practice.

II. BACKGROUND AND RELATED WORK

In the past few years, many researchers (.e.g. [8]) have
contributed to the extraction and analysis of app review for
software maintenance and evolution. However, prior research
on app reviews mainly concentrated on the extraction of user
requirements and/or app features, in order to get the key
issues or topics for developers in updating apps. For example,
both AR-Miner [9] and Casper [10] were proposed to extract
user requirements from app reviews. Unlike these authors, the
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present work did not attempt to extract user needs from app
reviews, but to look into how user reviews support app updates,
based on app release notes.

On the other hand, existing studies on release notes in-
tend to explore the characteristics and development trends
of app updates, by analyzing the posting time and content
of release notes. For example, McIlroy et al. explored the
update frequency of 10,713 mobile apps across 30 mobile app
categories [11]. These authors indicate that 14% of the apps
are updated frequently, while 45% of these frequently-updated
apps do not provide users with any information about the
rationale for the new updates. Plus, McIlroy et al. observed that
frequently-updated apps are highly ranked by users. Compared
to these studies, our concerns are not only the release notes and
their attributes, but their relevance in regard to app reviews.

Other researchers tried to match user reviews with bug
reports written by developers. For example, Häring et al. [6]
proposed an automatic approach DeepMatcher to match prob-
lem reports in app reviews to bug reports in issue trackers
by using deep learning algorithms. Palomba et al. proposed
CRISTAL [7] to trace informative crowd reviews into code
changes, in order to monitor the extent to which developers
accommodate crowd requests and follow-up user reactions as
reflected in their ratings. Their results indicate that developers
implementing user reviews are rewarded in terms of ratings.
However, the data sources of these two studies [6] [7] have
some limitation: the studies narrowed down their exploration
to bug reports in issues trackers and source code changes
from a few open-source projects. In addition, we found that
the reports in issue trackers are expressed as a set of issues
(e.g., bugs and feature requests) from various sources, and
it is difficult to know whether these issues are addressed by
developers. In contrast, we collected both release notes and
user reviews from the same apps in our study. It is easy to
identify which issues reported in user reviews got adopted or
resolved in app updates, based on app release notes.

Villarroel et al. [12] proposed an approach called CLAP
(Crowd Listener for release Planning) to categorize user
reviews, cluster together related reviews and prioritize the
clusters of reviews to suggest app release planning. In a
follow-up study, Scalabrino et al. [13] improved CLAP for
app developers to plan for the next release by selecting the
most important raised complaints in a particular issue type.
For evaluation, they used release notes as the basis, aiming to
verify whether the issues clustered and prioritized by CLAP
were resolved by the developers in subsequent updates. Unlike
these authors’ studies [12] [13], our work is based on the
release notes, trying to identify the most relevant reviews
to determine the degree of relevance and response between
release notes and user reviews.

III. MOTIVATION AND PILOT STUDY

To investigate whether and how developers respond to user
reviews based on app release notes, our work intends to
explore how many release notes report the same issues as
that mentioned in user reviews. For this purpose, we first

calculated the similarity between a certain release note and
the collected set of user reviews. Then, the user reviews are
sorted in a descending order of similarity. Let N be a number
that serves as a threshold for relevance in the ordered list
of app reviews: for a chosen N, it will mean that the top N
reviews are deemed to be relevant to this release note. Finally,
we manually evaluated the relevance between each of the top
N reviews and the specified release note in order to identify
and remove the False Positive reviews, and to get the actual
hit ratio of user reviews to a certain release note. However, we
note that some parts of release notes at the sentence level are
non-informative. To get a higher hit ratio of user reviews, we
first conducted a pilot study to explore whether the hit ratio
would be improved if the non-informative parts are removed
from the release notes to be matched before calculating the
similarity between release notes and user reviews.

To illustrate the process described above, we provide an
example of the release note – ‘ipad users you will find your
navigation menu at the bottom of the screen just like iphone’.
The top five most relevant user reviews are listed in the first
column of Table I. By removing the non-informative parts,
such as ‘just like iphone’, ‘users’, and stopwords, the pro-
cessed release note has the other top five relevant reviews, as
shown in the third column of Table I. After manual evaluation,
we found that the release note without non-informative parts
would have a higher hit ratio of user reviews. R and IR
in the second and fourth columns denote the results after
manual evaluation. Table I shows that after removing the
non-informative parts, the hit ratio of relevant user reviews
increases greatly. Because of this increase, later in Section V,
we will present results that are based only on the processed
release notes by removing non-informative parts manually.

IV. RESEARCH DESIGN

Our preliminary exploration intends to answer a single
research question (RQ): What are the roles that user re-
views play in app updates, according to app release notes?
Specifically, we want to know whether developers consider
user reviews when updating mobile apps. If yes, how many
and which types of reviews contribute to the new releases?
Answering this RQ would help us understand the value of
user reviews for app maintenance and evolution in practice.

A. Data Collection

The dataset of this study is composed of app reviews and
release notes of one mobile app, i.e., Spotify in the ‘Music’
category in Apple App Store [14]. The reason for choosing
this app is traceable to the fact that Spotify is the top free-
download app in ‘Music’ category in the region of US. As
the most popular mobile application for streaming music, it
has hundreds of thousands of reviews but not many pieces
of release notes. This makes it well suited for our preliminary
manual analysis. The data collection was performed in January
21, 2021, which returned 115 release notes and 450,381 user
reviews between January 1, 2015 and January 21, 2021, since
the first release note of Spotify was posted on May 20, 2015.



TABLE I
TOP 5 RELEVANT REVIEWS OF AN EXEMPLARY RELEASE NOTE WITH/WITHOUT NON-INFORMATIVE PARTS (R=RELEVANT, IR=IRRELEVANT)

Top 5 relevant user reviews for the raw release note R/IR Top 5 relevant user reviews for the processed release note R/IR
Navigation Menu was better off on the left side of the screen IPad R Navigation Menu was better off on the left side of the screen

IPad
R

Before the update I could pull up a menu by swiping up from the bottom
on my iPhone screen to access my camera flashlight etc

IR Static menus at the bottom of the screen EFFICIENCY R

I have an iPhone s and I don t have a very big screen and now that there are
two bars at the bottom one for the tabs and one that has the song controls
it makes my screen seem so small that I may as well be using an iPhone

IR Love the menu on the bottom of the screen R

The control panel is usually on the left side but then it R Bring back the static menus at the bottom of the screen R
Static menus at the bottom of the screen EFFICIENCY R When I open the app the navigation menu on the bottom of

the screen are missing
R

B. Pre-processing

To facilitate the automatic analysis in this study, the col-
lected 450,381 app reviews and 115 release notes of Spotify
were pre-processed by means of the following steps.

Step 1: Cut app reviews and release notes into sentences.
To facilitate the analysis on app data at the sentence level,
the collected 450,381 app reviews and 115 release notes were
decomposed into 937,768 review sentences and 105 release
note sentences, respectively, without duplicates.

Step 2: Pre-process app reviews and release notes
at sentence level. In this step, multiple Natural Language
Processing (NLP) techniques were applied to the textual
contents of app reviews and release notes at sentence level.
Specifically, Natural Language Toolkit (NLTK) was used to
remove stopwords and punctuation and perform lemmatization
on app reviews and release notes at sentence level.

Step 3: Filter informative app reviews and release notes.
In this step, Logistic Regression (LR) and Linear Support
Vector Machine (SVM) were applied to filter informative app
reviews and release notes, respectively, according to their
performance on 4,000 labelled app release notes in [15] and
4,000 labeled app reviews in [16]. This led to 50 informative
release notes and 237,655 informative user reviews at the
sentence level as the input of our analysis.

Step 4: Remove non-informative parts of release notes.
As mentioned in Section III, removing non-informative parts
of the release notes can significantly improve the hit ratio of
user reviews that are relevant to specified release note.

C. Matching user reviews to release notes

In this study, sentence similarity calculated by Word2Vec
[17] is introduced to measure the degree of correlation between
app reviews and release notes at the sentence level. The main
reason for choosing this method [17] is that the other widely
used similarity measures for text documents, such as Jaccard
similarity coefficient, Edit Distance (Levenshtein Distance)
[18], and TF-IDF [19] coefficient, are all based on statistics,
and cannot support semantic similarity matching in this work.

In particular, this study performs the calculation of sentence
similarity in the most regular and common manner. That is, we
first get the vector representation of each word in a sentence
from Word2Vec. Then, the average of all the word vectors
of this sentence is generated to get a representation of this

sentence, by using Formula (1). Finally, the cosine similarity
algorithm, as defined in Formula (2), is used to calculate the
similarity between two sentences.

sentenceV ector =
Σ

i=wordNum
wordV ectori

wordNum
(1)

where wordNum is the number of words in a sentence and
wordVector is the word vector value of a word.

similarity =
sentenceV ectori · sentenceV ectorj
|sentenceV ectori| · |sentenceV ectorj |

(2)

where sentenceVector is the calculation result of the average
word vector for each sentence.

Note that in this study, the calculation of sentence simi-
larity was employed without any extension or improvement.
However, the calculation of sentence similarity can be adapted
to meet various purposes. Therefore, this study could also
help identify the weakness of Word2Vec in the calculation
of sentence similarity as well as the possible ways to improve
similarity calculation between sentences.

D. Manual selection on the most relevant reviews

Since the number of user reviews is much greater than
the number of release notes, it is not feasible to review each
of the user reviews and evaluate its relevance to the release
notes manually. Inspired by the work of Haering et al. [6], we
calculated the similarity between each user review and each
of the 35 pre-processed release notes, and then took the top
N reviews for manual labeling of relevance. In this study, we
assigned N to be equal to 80. This means, we selected the top
80 matched reviews of each release note for manual validation
of relevance.

E. Manual labeling of relevance

Manual labeling for relevance on the top 80 reviews of
each of the release notes was conducted by two coders
independently, both of which are bachelor students major in
software engineering. To make sure the two coders did the
labeling in a consistent way, they compared their results.
Whenever they had different labels, they discussed why there
was a difference. The discussion was used to consolidate their
understanding and arrive at a consensus on the label to be



put. More specifically, for any given review, the label relevant
indicates that the content of this review reflects the release
note, including users’ praise, criticism and feedback on the
update, users’ requests, suggestions or complaints adopted by
the developers, as well as users’ reports on the bugs fixed by
the developers. Whereas, irrelevant means that the user review
is mismatched.

F. Types of relevant reviews

Furthermore, we intended to investigate what types of rele-
vant user reviews either catch developers’ eyes that contribute
to app updates, or respond to app updates, according to
app release notes. In this study, we defined six types of
relevant reviews, i.e., praise, dispraise, bug report, request
and suggestion, complaint, as well as others. These six types
are adapted from [20] and their detailed descriptions are
provided in Table II. The manual labeling was conducted by
the same two coders in a way similar to what is described in
Section IV-E.

TABLE II
DESCRIPTION OF SIX TYPES OF RELEVANT USER REVIEWS.

# Label Description
1 praise expresses appreciation
2 dispraise opposite of praise
3 bug report bug report or crash report
4 request and

suggestion
asks for certain things, e.g. feature or improvement,
and suggests acquisition

5 complaint feels discontent about certain things, e.g. missing
feature or annoying bugs

6 others none of above

V. RESULTS AND DISCUSSION

A. Experimental data

By following the four steps of data pre-processing in Sec-
tion IV-B, 15 out of the 50 release notes could not find matched
user reviews through Word2Vec, since all the words in those
release notes, such as fix, stability, security and issue, are
too general. Therefore, the final experimental dataset consists
of 35 release notes and the corresponding 2800 user reviews
(i.e., top 80 reviews per release note) that are automatically
generated by Word2Vec.

B. Roles of user reviews

By implementing the manual labeling for relevance defined
in Section IV-C, we found that among these 2,800 highly
similar user reviews, a total of 1,042 were labeled as relevant,
and the remaining 1,758 were labeled as irrelevant. For an
overall, the hit ratio is 37.21%. Figure 1 summarizes the
distribution of the 35 release notes and their corresponding
hit ratio*. We observed that 6 of the 35 release notes (i.e.,
R2, R9, R11, R14, R18, and R25) actually have no relevant
user reviews and their hit ratios are 0%. Whereas, 12 of the
remaining 29 release notes are with a higher hit ratio (greater

*Details are available at: https://github.com/Leolty/Shared Data/blob/main/
35 release notes.xlsx

than 50%) for matching relevant reviews. In addition, the hit
ratio of the 35 release notes was distributed on average in
the three intervals (divided with red dotted lines in Figure 1):
[0,10%), [10%,50%) and [50%,100%], each accounting for
around one-third of the 35 release notes.

Fig. 1. Distribution of the 35 release notes with their hit ratio.

Furthermore, considering the posting time of both the 1,042
relevant reviews and their corresponding release notes, we
found that the posting time of 550 user reviews were earlier
than that of the corresponding release notes. Whereas, 492
reviews were posted after the corresponding release notes.
Therefore, we identified two roles of user reviews in app
updates. Pre-released reviews (52.78% of the 1,024 release
notes) contributed to app updates, because they got developers’
attention and even got implemented in the new releases. Post-
released reviews (47.22%) serve as the feedback to the new
releases and encourage the latest updating of this app.

Discussion: There are around 37.2% of the 2,800 matched
user reviews (1042 reviews) actually relevant to the corre-
sponding release notes. This indicates that although the most
matched user reviews mentioned similar issues or topics to
the release notes, only a small percentage of matched reviews
actually got developers’ attention and contributed to app
updates. Plus, these 1,042 relevant reviews did not actually
respond to all the 35 release notes. This makes us think
that it is worthwhile to further investigate how to improve
the matching rate between app reviews and release notes. In
addition, more than a half of the relevant user reviews were
posted before the corresponding new release of the app. This
indicates that developers did take user reviews into account to
some extent when updating the mobile apps.

C. Types of relevant user reviews

Figure 2 shows the percentages of 1,042 relevant user
reviews over the six types defined in Section IV-F and the
two roles (pre-released and post-released reviews). We found
that bug report, request and suggestion, and complaint are
the top 3 most popular review types, covering 256, 237, and
236 reviews, respectively. Then, 158 user reviews refer to

https://github.com/Leolty/Shared_Data/blob/main/35_release_notes.xlsx
https://github.com/Leolty/Shared_Data/blob/main/35_release_notes.xlsx


praise, and 92 refer to dispraise. others reviews have relatively
moderate proportion, covering 63 reviews.

Fig. 2. The percentage of 1,042 relevant user reviews over the six types and
two roles (pre-released and post-released reviews).

From the perspectives of two roles of user reviews in
app updates, we found that in the 550 pre-released reviews,
request and suggestion, complaint, and bug report are the
three most popular types, covering 176, 146, and 113 reviews,
respectively. Only a few user reviews mentioned dispraise
and others, accounting for 22 and 29 reviews, respectively.
Regarding the 492 post-released reviews, bug report (143
reviews), praise (94 reviews) and complaint (90 reviews)
dominated over the other types.

Moreover, as shown in Figure 2, it is obvious that pre-
released reviews focus more on request and suggestion and
complaint, while the post-release reviews are mainly with
praise and dispraise. Regarding the remaining two types,
i.e., bug report and others, the percentages have very little
difference in pre-released and post-released user reviews.

Discussion: Regarding the distribution of 1,042 relevant
reviews over the six types, we found that bug report, request
and suggestion, and complaint are the three most mentioned
types in the app reviews responded by developers. Moreover,
we found that the focuses of pre-released and post-released
reviews differ. This is also consistent with our understanding
that users often express their needs as complaints or requests
and suggestions in pre-released user reviews. However, it is
also realistic to expect that the introduction of new features
may bring new bugs. This, in turn, is likely to lead to the
largest number of bug reports in the post-released reviews.
Plus, as users’ feedback on new releases, dispraise and praise
mainly occur in the post-release reviews.

VI. LIMITATIONS

This study has some limitations. First, regarding the gen-
eralizability [21] of our findings, this work only included
one mobile app, i.e., Spotify. Although our results are not
generalizable to all apps available in the market, we might
possibly observe similar findings in the apps similar to Spotify.
The similarities of these apps, for example, could be with
similar services and functionalities, a similar user base with a
similar culture, attitude and expectations on quality of other
Music apps.

Second, the release notes of Spotify are concise. The pro-
posed methods for data pre-processing and analysis may not be
applicable for those apps with overly simple or overly detailed
release notes.

Finally, although Word2Vec outperformed most of the other
similarity measures in this study, its performance was not good
enough as expected because 22 out of the 50 release notes
are reported to have no actual relevant reviews. Particularly,
when applying Word2Vec to calculate the similarity between
user reviews and release notes, we observed a high jargon
barrier between these two app data sources. That is, some
key words or jargon in app release notes, such as timestamp
or VoiceOver, are not in the corpus of the Word2Vec model.
This results in failed matching of relevant reviews to release
notes. Therefore, more similarity measures or improvements
on existing measures are highly desirable and are expected to
provide solutions for polysemy and sequentiality in textual
documents of mobile apps. In addition, in this work, we
averaged the vectors of all the words in a sentence to calculate
the cosine similarity between two sentences. This may lead
to match few similar app review sentences, if there are lots
of non-informative words in the sentences to be matched. In
order to achieve a high matching accuracy, weighted average
of the word vectors can be introduced by assigning a higher
weight to the same or similar words and/or phrases (including
synonyms and antonyms) in two sentences, when calculating
the similarity between them.

VII. CONCLUSIONS AND FUTURE WORK

This study sheds light on the role that user reviews play in
updating mobile apps, based on app release notes. We found
that (1) for the investigated app, i.e., Spotify, user reviews are
indeed taken into account by the developers when updating
the apps. However, only 37.2% of the hit user reviews are
actually relevant to the corresponding release notes; and (2)
52.78% of these relevant user reviews were posted before
the corresponding release notes and focused on requests,
suggestions and complaints, whereas 47.22% are post-released
reviews, paying more attention to bug reports and praise.

The next steps of this preliminary study are as follows: (1) to
expand the size of the experimental dataset, (2) to improve the
similarity calculation method according to our research need,
(3) to minimize the jargon barrier between official release
notes and personalized user reviews, and (4) to give guidance
on how to write valuable user reviews.
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