arXiv:2212.02035v1 [cs.SE] 5 Dec 2022

Empirical Study of Co-Renamed Identifiers

Yuki Osumi, Naotaka Umekawa, Hitomi Komata, and Shinpei Hayashi
Tokyo Institute of Technology, Tokyo 152-8550, Japan
osumi@se.c.titech.ac.jp, hayashi@c.titech.ac.jp

Abstract—Background: The renaming of program identifiers is
the most common refactoring operation. Because some identifiers
are related to each other, developers may need to rename related
identifiers together. Aims: To understand how developers rename
multiple identifiers simultaneously, it is necessary to consider the
relationships between identifiers in the program and the brief
matching for non-identical but semantically similar identifiers.
Method: We investigate the relationships between co-renamed
identifiers and identify the types of their relationships that
contribute to improving the recommendation using more than
IM of renaming instances collected from the histories of open-
source software projects. We also evaluate and compare the
impact of co-renaming and the relationships between identifiers
when inflections occur in the words in identifiers are taken into
account. Results: We revealed several relationships of identifiers
that are frequently found in the co-renamed identifiers, such
as the identifiers of methods in the same class or an identifier
defining a variable and another used for initializing the variable,
depending on the type of the renamed identifiers. Additionally,
the consideration of inflections did not affect the tendency of the
relationships. Conclusion: These results suggest an approach that
prioritizes the identifiers to be recommended depending on their
types and the type of the renamed identifier.

Index Terms—identifier, rename refactoring, refactoring rec-
ommendation

I. INTRODUCTION

Program identifiers play a significant role in program com-
prehension, and identifiers are frequently renamed during
software refactoring. It is estimated that identifiers account for
approximately 70% of the total program content [1|]. Corazza
et al. also reported that developers can facilitate knowledge
transfer among developers by naming identifiers appropriately
that reflect their intentions and the domain knowledge [2].
Developers can infer the intent and the behavior of code
fragments if the identifiers in them have appropriate names [J3]].
Therefore, appropriately naming identifiers and/or renaming
them can make it easier for developers to guess the roles
of identifiers and improve the understanding of the program.
Renaming identifiers is considered as the most common form
of refactoring [4].

When an identifier is renamed, it may be necessary to
rename other identifiers related to the renamed identifier.
This is because there may be a misunderstanding if multiple
expressions refer to the same concept to be used for naming
identifiers [1]. However, it is time-consuming to identify all the
identifiers that need to be renamed. The replacement feature
of source code editors and rename refactoring tools provided
by current integrated development environments (IDEs) cannot
determine all the identifiers that need to be renamed together.
Therefore, developers must determine the identifiers to be

renamed manually, which is difficult and may lead to missing
changes.

In this study, we investigated co-renamed program identi-
fiers to discuss their critical characteristics for improving the
recommendation of identifiers to be co-renamed. We surveyed
co-renamed identifiers extracted from past histories of open-
source software (OSS) repositories, clarified the relationships
among them that were prone to be correlated, and discussed
the relationships that should be prioritized in the recommenda-
tion. In addition, we evaluated the variation of word stemming
in identifiers and discussed the influence of inflections, i.e., the
influence of singular and plural and those of participles, on the
recommendation. There are several attempts to utilize the rela-
tionship among identifiers for renaming recommendations [5]],
[6]. The results of our empirical study can strengthen their
approaches by prioritizing the relationships to be used for the
renaming recommendation.

The main contributions of this work are summarized as
follows:

« a large-scale empirical study using OSS repositories on
the relationship between co-renamed identifiers and

« results of evaluating the effect of inflections in identifiers
on co-renaming.

As a result of evaluating co-renamed identifiers, we identified
the relationships among identifiers that frequently occur in
renamed identifiers. Additionally, the frequency of relation-
ships differed depending on the type of renamed identifiers.
Furthermore, we found that the consideration of inflections did
not affect the tendency of the relationships.

The rest of this paper is organized as follows. In the next
section, we explain our aim to support identifier co-renaming
via an example of co-renamed identifiers. Section [[TI] presents
our evaluation methods. Section explains our evaluation
results and discusses their significance for renaming recom-
mendation. In Section [Vl we summarize existing work on
identifiers and their renaming. Finally, Section concludes
this paper and summarizes future work.

II. MOTIVATION

When an identifier is renamed, another identifier may need
to be renamed accordingly. This is because the existence
of multiple representations of the same concept may cause
developers to misunderstand the program [I]. An example
of renamed identifiers is shown in Fig. In this commit,
the class MetricType is renamed to MetricAttribute.

Uhttps://github.com/dropwizard/metrics/commit/3ccd7al

import com.codahale.metrics.MetricType;
public class GangliaReporter extends ScheduledReporter {
private void announceIfEnabled(MetricType metricType, ...)
throws GangliaException {
if (getDisabledMetricTypes().contains(metricType)) {
}

private void announce(..., GMetric[iype Eype, ...)
throws GangliaException {

(a) Before renaming.

import com.codahale.metrics.MetricAttribute;
public class GangliaReporter extends ScheduledReporter {
private void announceIfEnabled(MetricAttribute metricAttribute, ...)

throws GangliaException {
if (getDisabledMetricAttributes().contains(metricAttribute)) {

}

private void announce(..., GMetricliype Eype, ...)
throws GangliaException {

(b) After renaming.

Fig. 1. Renamed identifiers in Metric project.

From the renaming, we can infer that the developer intended to
replace the word “fype” in the identifiers with “attribute”. The
gray-highlighted identifiers in the figure are those renamed in
this commit. The blue-highlighted parts in the figure represent
the changes based on the developer’s intention, i.e., “type”
before the renaming to “attribute” after the renaming. In
contrast, the green parts in the figure indicate that they were
not renamed; the word “fype” remained after this co-renaming
operations.

However, it is time-consuming for developers to determine
all the identifiers that should be renamed. For example, al-
though the source code editors’ Replace All feature can replace
all the matched strings simultaneously, it may lead to errors as
it applies to elements that need not be replaced. Additionally,
rename refactorin
and IntelliJ IDEAP| can limit the identifiers to be renamed at
once to those of the same program element; developers cannot
change multiple identifiers to be renamed at once. Therefore,
developers need to identify all the identifiers to be renamed
simultaneously, which is a challenging task wasting much
time.

According to the renamed one, recommending possible
candidates of related identifiers to be renamed together can
assist developers in improving the consistency of their source
code. When a developer renames the class MetricType
to MetricAttribute as shown in Fig. [T by applying
the substitution from the word “type” to “attribute” to the
variable met ricType, which is typed as MetricType, we

Zhttps://www.eclipse.org/
3https://www.jetbrains.com/idea/

tools provided by IDEs such as Eclipseﬂ

can recommend a renaming to metricAttribute.
In recommending identifiers to be renamed, the following
should be taken into account:

« relationships between identifiers that are likely to be

renamed together and

« inflections in identifiers.

Because not all identifiers should be renamed together
to follow the developer’s renaming intention, it is use-
ful to consider the relationship between identifiers that are
likely to be co-renamed. For example, on one hand, the
substitution in Fig. [T] from the word “rype” to “attribute”
in the class MetricType is also applicable to the word
“type” in the class GMetricType, but this did not happen;
GMetricType was not renamed. On the other hand, this
substitution was applied to the variable met ricType, whose
type is Met ricType, and the variable identifier was renamed
to metricAttribute. Here, a relationship of “variable
and its type” exists between these two identifiers: the class
MetricType and the variable metricType. It is useful to
clarify the kinds of relationships between the identifiers that
are likely to be renamed simultaneously.

Additionally, if inflections are not taken into account,
the developer’s renaming intention cannot be applied, and
recommendations may fail. For example, in the renaming
in Fig. |I|, the method getDisabledMetricTypes has
also been renamed, and a similar substitution from the word
“type” to “attribute” has occurred; however, the plural form
“types” has been replaced with “attributes”, unlike the case
of MetricType. These renamings should be considered as
those based on the same intention.

To clarify the characteristics of the relationships between
identifiers to be co-renamed together and the effects of in-
flections in identifiers, we conducted an empirical study of
co-renamed identifiers. Through answers to the following
research questions (RQs), we discuss the aspects that should
be considered in recommending identifiers to be co-renamed.

e RQ;: How often do co-renamings occur?

e RQ,: To what extent do co-renamed identifiers correlate
the relationships of identifiers?

e RQ3: What is the difference when the inflections in
identifiers are taken into account?

In RQ;, we confirm that a large number of co-renamed
identifiers occur. In RQ;, we characterize the relationships
between identifiers that have undergone co-renamings. In RQ3,
we clarify the effects of inflections in identifiers on the number
of co-renamings and the relationships between identifiers that
have undergone co-renamings.

III. METHODOLOGY
A. Overview

Figure [2] shows the overview of our study. First, we extract
all the renamings from the commit history of the version con-
trol repositories using an existing refactoring detection tool.
Next, we lemmatize each word in the identifier names before
and after each extracted renaming to ignore the inflection.

Extracting Renamings Ignoring Inflection

setQueries > setEntries
::::: hasNextQuery » hasNextEntry

setQuery > setEntry
hasNextQuery » hasNextEntry

REPLACE(“query”, “entry”)
setQuery » setEntry

h'asNextQuer‘y(){

setQuery » setEntry

REPLACE(“query”, “entry”)
hasNextQuery » hasNextEntry

hasNextQuery » hasNextEntry

s.etQueries(){

Analyzing Relationships
Between Co-Renamed
Identifiers

Creating Meaningful

Detectin
Rename Sets 9

Operational Chunks

Fig. 2. Overview of our study.

Subsequently, we compare the old identifier name with the
new one to obtain the operational chunks of the renaming. We
then create meaningful rename sets that share their operational
chunks. Finally, we examine the relationship between their
target identifier names in the source codes for each pair of
two renamings in a meaningful rename set. Note that we skip
the third step when answering RQ; and RQ» since we consider
the inflection only when answering RQ3.

B. Extracting Renamings

We detected renamings using RefactoringMiner ver.
2.0.2 [7], [8] in 187 of the repositories used by Silva et
al. and Tsantalis et al. in their refactoring studies [7], [9].
For each repository, we extracted class renamings (Rename
Class), method renamings (Rename Method), class attribute
renamings (Rename Attribute), method parameter renamings
(Rename Parameter), and variable renamings (Rename
Variable) from detected refactorings and created a set R of
all the renamings. Let r.commit denote the commit in which a
renaming r € R was performed. We excluded repositories that
did not contain any renamings, resulting in 176 repositories
with a history from June 2001 to January 2021. The total num-
ber of commits in these repositories was 1,883,276, whereas
the total number of extracted renamings was 1,084,121.

C. Ignoring Inflection

We split identifier names into words using Ronin in the
Spiral [|10] package for each identifier name before and after
a renaming. For each word, we converted it to lower case
and lemmatized it to ignore inflection using WordNetLemma-
tizer [11]].

D. Detecting Operational Chunks

Using a difference extraction algorithm based on the longest
continuous matching subsequence detection, we extracted each
consecutive addition, deletion, and replacement of words as
one operational chunk from the identifier names before and
after a renaming r. We denote the all set of operational chunks
of r by r.chunks. For each renaming r, we split identifier
names before and after the renaming r into words using
Ronin and created word sequences. We detected r.chunks from
the differences between the word sequence before and after

renaming r. An operational chunk consists of the sequence
of words changed by renaming and changing types of words.
By introducing operational chunks, we can regard renamings
for different identifier names as a co-renaming that shares the
same operational chunk.

There are four types of operational chunks as listed below.

o INSERT(added words): Addition of words. For ex-
ample, a renaming dataProviderId — data-
ProviderInstanceId involves an operational chunk
INSERT(“instance™).

o DELETE(deleted words): Deletion of words. For example,
arenaming SkipConstantResult — SkipResult
involves an operational chunk DELETE(“Constant™).

o REPLACE(deleted words, added words): Replace of
words. For example, a renaming getRandom —
createRandom involves an operational chunk RE-
PLACE(“get”, “create”).

o OTHER(words): Other type of renaming. For example, a
renaming TIMES — times downcases its word, which
belongs to an operational chunk OTHER("time”).

It should be noted that OTHER is only detected when none
of INSERT, DELETE, or REPLACE is detected in a given
renaming. When detecting OTHER, we compared the identifier
names before and after a renaming, starting from the first word,
and detected OTHER for each word that differs.

E. Creating Meaningful Rename Sets

Based on the operational chunks detected in Section [[II-D]
we created a meaningful rename set, a collection of renamings
that share the same operational chunk in the same commit. We
defined a meaningful rename set U, , in commit ¢, where its
belonging operational chunk is 4, as follows:

Uep i={r e R|r.commit=c A r.chunks 2 h}.

For the set R of all the renamings in each repository, we
created a set U of meaningful rename sets, i.e., U = {U,j, |
Uen # 0}

When we detected multiple operational chunks in a renam-
ing, we created meaningful rename sets for each operational
chunk and included the renaming in all their sets. For example,
renaming r: minimumVersion — versionSpec is an
element of both UDELETE(“minimum”) and UINSERT(“spec”)-

F. Analyzing Relationships between Co-Renamed Identifiers

For each pair of two renamings in a meaningful rename
set Uc,n, we evaluated the relationship between the renamed
identifiers in the source codes. Let P(U,) denote a set of all
pairs of two renamings in U, j, i.e.,

P(Ucp) =A(ri,rj) | risrj €Ucp N 1i 1},

For a pair p; = (r;,rj) € P(U¢), we detected relationships
R.(p;) from the source codes of the parent commit of commit
¢, i.e., the source codes before r; and r; perform as follows:

R.(pi) = relation.(r;.old, r;.old)

where r.old is the identifier before r is performed and
relation.(I;,1;) is a set of relationships between identifiers
I; and I; in the source codes of the parent commit of c¢. We
defined 14 relationships between co-renamed identifiers and
categorized them into three: Location, Type, and Call/Data
Dependency. The details of each relationship R are as follows.
1. Location

« BELONGSc: Relationship between a class ¢ and its inner
class c.c.

« BELONGS)/: Relationship between a class ¢ and its
method c.m.

« BELONGSF: Relationship between a class ¢ and its at-
tribute c.a.

o BELONGS,:
parameter a.

« BELONGS,: Relationship between a method m and its
local variable v.

« CO-0CCURSyy: Relationship between two methods c.m
and c.mj in the same class c.

Relationship between a method m and its

2. Type

« EXTENDS: Relationship between a class ¢ and its direct
subclass c¢’.

o IMPLEMENTS: Relationship between an interface i and
the class ¢ that implements i.

¢ TYPE),: Relationship between a method m and its return
type c.

« TYPEy: Relationship between an attribute, a variable, or
a method parameter v and its type c.

3. Call and Data Dependency

« INVOKES: Relationship between a method m; and an-
other method m, invoked by m (m; # my).

« ACCESSES: Relationship between a method c.m of a class
c and the attribute c.a of the same class ¢ referenced by
c.m.

« ASSIGNS: Relationship between a left side attribute or
variable vje; of an assignment statement and a right side
attribute of the assignment statement Vv, such as an
attribute, a parameter, a variable or an invocation of a
method.

« PASSES: Relationship between a (formal) parameter p of
a method m and an argument (actual parameter) a of the
method m such as an attribute, a variable, or invocation
of a method.

See again Fig. [[fa) with assuming that the developer
triggered to rename the class name MetricType to
MetricAttribute. In this code fragment, the type of
the parameter metricType is MetricType, which means
that there is a relationship of TYPEy between the parameter
metricType and the class MetricType. Also, the method
getDisabledMetricTypes returns an object typed as
Set<MetricType>, which is not expressed in Fig. [I{a)
though, which leads to a relationship of TYPE, between
the method getDisabledMetricTypes and the class
MetricType. We identify these kinds of relationships by
applying simple static analyses for parsed source files.

We converted the target source codes to XML files using
srtcML [12]] and detected relation.(r;.old, r ;.old) using XPath.
For each relationship R, we defined XPaths that return nodes
only if a pair (r;.old,rj.old) satisfies R. For example, in
BELONGS,,, we defined an XPath that returns nodes only if
a class ¢ has a method m as follows.

« //class[name[text()=c]]/block/function[name[text()=m]]

For a pair (r;.old,rj.old), we created a set of relation-
ships R that the pair satisfied and regarded the set as a
relation.(r;.old, r;.old).

IV. EMPIRICAL STUDY
A. RQi: How often do co-renamings occur?

1) Motivation: The purpose of this RQ is to confirm that
many renamings co-occur. We determined the number of co-
renamed identifiers and the characteristics of these renamings.

2) Study Design: For each of the 176 repositories in
Section [[II-B| we evaluated a percentage of co-renamings. For
each U created in each repository, we computed the ratio of
the total number of elements of meaningful rename sets that
contained more than one element Yy 7|2 |U| to the total
number of all elements of meaningful rename sets ;i |U|.
We regarded this ratio as the rate of co-renamings.

We determined the ratio of the number of co-renamed
identifiers to the number of all the co-renamed identifiers for
each co-renamed identifier. For the case where n identifiers
are co-renamed, we computed its ratio of the total number
2ueu,uj=n U] to all the co-renamings Y.y ey, jv)>2 U]

For each number of co-renamed identifiers, we also de-
termined the ratio of the number of unique identifier names
included in the co-renamings to the number of co-renamed
identifiers. Because some co-renames contain renamings for
the same identifier names, the number of renamed identifier
names in the co-renamings may be small even when the num-
ber of co-renamed identifiers is large. We computed the rate of
the total number of meaningful rename sets in which m unique
identifier names were involved to the number of meaningful
rename sets whose size was n. Here, the number of unique
identifier names m was computed as the number of non-
overlapping pre-renaming identifier names |{r.old | r € U}|
in a meaningful rename set.

3) Results: On average, 57% of the renamings were co-
renamings. The left side of Fig. [3] is a box plot showing
the ratio of the total number of elements in the meaningful
rename sets with more than one element to the total number of
elements in all the meaningful rename sets, i.e., the rate of co-
renamings in each repository. The vertical axis represents the
rate of co-renamings. Although the rates are widely distributed
(16% to 89%), the first quartile is 51%, which shows that 75%
of all projects contain more than 50% of co-renamings. The
rate of co-renamings is 0.57 for both the mean and median.

Figure [] shows a cumulative distribution of the percentage
of the total number of elements of the meaningful rename sets
for each number of the elements of the meaningful rename
sets, colored by the number of unique identifier names. The

0.8

0.6 =

2
T
o
0.4
°
0.2 °
o o
0.0
RQI RQ:;
(Without Ignoring Inflection) (Ignoring Inflection)
Fig. 3. Rate of co-renamings.
08 -
2
0.6 . 3
Q = 4
& 0.4 w5
. 6~
0.2
0.0

Number of Elements in Meaningful Rename Sets

Fig. 4. Cumulative distribution of the rate of co-renamings, colored by the
number of unique identifier names.

vertical axis represents the rate of meaningful rename sets,
whereas the horizontal axis represents the maximum number
of elements of the meaningful rename sets. For example, the
blue area in the figure shows the rate of meaningful rename
sets that have only one unique identifier name.

The number of elements of a co-renaming was small.
From Fig. @ we can observe that meaningful rename sets
with less than six elements account for more than 50% of
all the meaningful rename sets considered as co-renaming.
Furthermore, 70% of all the meaningful rename sets had no
more than 20 elements.

On the other hand, most of the co-renamings consisted of
different identifier names. Figure [4] shows that the rate of co-
renamings with less than five unique identifier names did not
increase even if the number of elements in meaningful rename
sets increased. In other words, there were few identifiers in
a meaningful rename set whose names were the same as
those of other identifiers in the meaningful rename set. This
result indicates that when recommending co-renamings, it is
essential to consider how identifier names were renamed,
i.e., operational chunks, not only to recommend identifiers
matching names with those of renamed identifiers.

57% of all the renamings were co-renamings. The co-
renamings were composed of relatively few renamings. It
is important to consider operational chunks when recom-
mending co-renamings.

1.0

o
° ° b
o
8, g
0.2 ° ° s
8 § 8 8
i i i I g &Ié
Wi ida | basi
Y = & 75 ¢ 5 B E 5 & 8 B ¢ B
A Y E @ f =
O C O O Z 2 & X 173 C 2
z 2 z z z £ & & & X 5 4 2 3z
e g 9 © 9 o = = 4 BH =2 O @ &
2 2 8 2 B © #x 4 Zz O <
= 3 Iy S M| = - =
[aa] m m m m 3 &
&) =
Relationships
Fig. 5. Rate of relationships.

B. RQ>: To what extent do co-renamed identifiers correlate
the relationships of identifiers?

1) Motivation: Because it is unnecessary to rename all the
other identifiers to which an operational chunk of a renaming
can be applied, we reveal the relationships between identifiers
that are likely to be co-renamed. For co-renamings detected
in each repository, we evaluated the relationship between the
co-renamed identifiers.

2) Study Design: We determined the relationships between
the co-renamed identifiers and evaluated the 176 repositories,
same as RQ;. From these repositories, 653,194 meaningful
rename sets were created. Of these, we analyzed 138,250
meaningful rename sets that contained more than two elements
and detected 732,390 relationships.

We also limited the detection of relationships to meaningful
rename sets that contain at least one renaming for a specific
type of identifiers: Class, Method, Attribute, Parameter, and
Variable. By limiting the analysis, we could detect relation-
ships between these types of identifiers, and those that are
likely to be co-renamed. For example, if we limit the detection
of relationships to a meaningful rename set that contains
at least one renaming of a Class, we do not analyze the
meaningful rename sets that do not contain renamings of
Classes.

3) Results: The most detected relationships were
CO-0CCURS)y and ASSIGNS. Figure [5] shows a box
plot of the rate of each relationship. The vertical axis
represents the rate of relationships, whereas the horizontal
axis represents the kinds of relationships. The mean values
for the rate of CO-OCCURSy, and ASSIGNS were 40.8% and
25.9%, respectively, the highest of all the relationships, while
the other relationships were much lower.

Figure [6] shows a box plot of the rate of each relationship,
limiting the analysis to co-renamings containing a specific
type. In each figure, the vertical axis represents the rate
of relationships, whereas the horizontal axis represents the
kinds of relationships. Each box plot shows the distribution

ACCESSES{| [[—mooo

CO-0OCCURS /| [F—— = =
EXTENDS{ [——
TYPE) /| [F—two
TYPEy| — I }——— = = .
ASSIGNS{ H 7 }———i= o
PASSES{ [F—kea o oo
Rate
S S £ § =
(=] Tt (=] ot (=]
CO-0CCURS /| ——— 0 F—

BELONGSjf [Fee ©
INVOKES{ [fee =

BELONGS 41 [F+=-
BELONGS | Jeo
BELONGS)] oo ©
BELONGS/ I ¢
BELONGS 4{ {F}+ee
BELONGS{ fm=o

BELONGS(| feee o o o
IMPLEMENTS{ [J—feewwoc o
BELONGS({ =

Relationships

(a) Classes.

,_

PASSES| —F }F— «

TYPE)/ =
INVOKES{ [Hes ©

Rate
OSSN
S S S
TYPE (o= B
ACCESSES] HF}— oeo
ASSIGNS| e——F }——— oo

BELONGS({ #
BELONGS)/{ =
BELONGSpf b= ©
BELONGS z{ HE—
BELONGS{ |
EXTENDS{ b=

i

7
]
Q0
Q
Q
&)

IMPLEMENTS/{ fwoc o

Relationships

(d) Parameters.

EXTENDS]
IMPLEMENTS{ b=

Relationships

(b) Methods.

TYPE)/ [o
ASSIGNS
BELONGS 4{ [}
BELONGS{ ke
TYPE)/| b=
INVOKES] [©

TYPE| [F=
INVOKES| {}—= « =
HIE——ee =
NSy HII—
PASSES{ [+
Rate
S § 8 §
CO-OCCURS | H -F——imewos o o0 o
TYPE| (b=
ACCESSES{ {7 —w
ASSIGNS| ———— 7 ——— =
PASSES{ HI—tes

BELONGS(=
BELONGS)/{ j=-
BELONGS | lme
EXTENDS] =
IMPLEMENTS{ = = »

Relationships

(c) Attributes.

TYPE)| Broo o
INVOKES{ [}-mas000 o o
ACCESSES| [F}— -

Rate
S i I
=] Ut (=} ot
CO-OCCURS /| [[—— o oo
TYPEy 12— ° o e
ASSIGNS| ——F F———i¢ we
PASSES| —{ 7 F——fem o o

BELONGSjf fmee o
BELONGS 4{ [e
BELONGS{ [} =<
EXTENDS] jw
IMPLEMENTS{ f= o -

BELONGS¢| &= o
BELONGS) | =

Relationships

(e) Variables.

Fig. 6. Rate of relationships detected in co-renamings containing renamings of specific identifiers.

of particular relationships detected to the total relationships
detected for each repository. Light blue-colored ones are
for the relationships that involve limited types of identifiers.
For example, Fig. [6a] shows the rate of relationships when
limiting the analysis to co-renamings that contain at least
one renaming of Class, and the box plots of relationships
that involve class renamings, i.e., BELONGSc, BELONGS,,,
BELONGSfF, EXTENDS, IMPLEMENTS, TYPEy,, and TYPEy
are highlighted as light blue.

The different distributions for each type of identifier in
Fig. [f indicate that the relationships in which identifiers are
likely to be co-renamed differ depending on the type of identi-
fier renamed. CO-OCCURS), is the most detected relationship
for Method, ASSIGNS for the other types. Note that TYPEy
is frequently detected relationship in Class; ACCESSES in
Attribute, PASSES in Parameters and Variables. Each of these
relationships is associated with the corresponding identifier
type. This result means that identifiers in a relationship to
a renamed identifier are likely to be co-renamed with the
identifier.

The distribution of the relationships differed significantly
among the types of identifiers. The most detected relation-
ship was CO-OCCURS; for Method, ASSIGNS for the other
types. In addition, TYPEy frequently appeared in Class;
ACCESSES in Attribute, PASSES in Parameter and Variable.
These results suggest that identifiers that are likely to be co-
renamed depend on the type of identifiers.

C. RQ3: What is the difference when the inflections in identi-
fiers are taken into account?

1) Motivation: In RQ; and RQ,, we did not ignore in-
flection. Thus, operational chunks that should be the same in
multiple renaming may become a different operational chunk
in each renaming. Therefore, we evaluated the rate of co-
renamings and the tendency of the relationships between the
renamed identifiers in both cases of ignoring inflection and
not and clarifying the effect of the inflection.

2) Study Design: In order to take inflections into account,
when detecting operational chunks (in Section [[II-D), we
ignored inflection. After splitting identifier names into word
sequences in Section for each word, we lemmatized it
to ignore inflection using WordNetLemmatizer [[11].

WordNetLemmatizer can convert word forms within a part
of speech, such as the singular and plural forms of nouns and
the present and past tenses of verbs, but cannot convert word
forms across parts of speech. For example, the plural form of
a noun such as queries can be converted to its singular form
query, but the noun creator cannot be converted to the verb
create.

Then, we evaluated the effect of inflection on the operational
chunks of renamings. We evaluated the 176 repositories used
in RQ;. If we do not ignore inflection, the operational chunks
of renaming change only the inflection REPLACE instead of
OTHER. For example, in a renaming node — nodes, when
ignoring inflection an operational chunk OTHER(“node”) is
detected, while not an operational chunk REPLACE(“node”,

3 without
0.6 I ignoring
inflection
ignoring
inflection

DELETE REPLACE INFLECT

Type of Operational Chunks

INSERT
Fig. 7. Rate of detected operational chunks.

“nodes”) is detected. To evaluate the difference in detecting
such operational chunks, we defined a new operational chunk
INFLECT, which represents inflection.

o INFLECT(words): Inflection of words. For example, a
renaming of instance — instances involves an
operational chunk of INFLECT(“instance”).

When we detected OTHER from renaming r, we compared
the words in the identifiers before and after the renaming
from the beginning in a case-insensitive manner and detected
INFLECT each word that differs. We compared the rate of
each operational chunk, including INFLECT, ignoring and not
ignoring inflection.

We also evaluated the effect of inflection on the co-
renamings in the same 176 repositories as RQ; and RQ,. We
evaluated the difference in the ratio of the total number of
co-renamings to the total number of renamings and that in the
number of meaningful rename sets |U| between the two cases
of ignoring and not ignoring inflection for each repository.

Additionally, We evaluated the effect of the relationships
between co-renamed identifiers in the same 176 repositories
as in RQ;. For each repository, we created a set of meaningful
rename sets U = {Uj, U,, ...} ignoring inflection and a
set of meaningful rename sets US? = {U‘fk’p , U;klp ,)
without ignoring inflection. We analyzed relationships between
identifiers in the newly created meaningful rename sets, ignor-
ing inflection, i.e., the meaningful rename sets included in a
relative complement of U*? in U (U\U**P). The total number
of newly created meaningful rename sets in all repositories was
119,165.

3) Results: Figure [/| shows the results of the evaluation of
differences in operational chunks with and without ignoring
inflection. Figure [7] shows the rate of operational chunks
detected for each case with and without ignoring inflection
in all repositories. The vertical axis shows the rate of the total
number of operational chunks, and the horizontal axis shows
the types of operational chunks. We excluded OTHER from the
graph to focus on whether operational chunks changed due to
inflection. The rate of OTHER was 0.03 in both cases.

The rate of the number of operational chunks did not
change significantly owing to the effect of inflection. Figure [7]
shows that when we ignored inflection, the rate of REPLACE
decreased, whereas the rate of INFLECT increased. One of the
reasons for this result is that the operational chunk REPLACE,

1.0 [} o o o

0.8

°
o
°
° 8 5
021 °] ° °
s 8 -
iabiTdiadd
i i i
T SR A
S0 R 0= 8 X v owm X = wm owm ;!
& g & 5 5 g £ £ £ E £ 2 & &
Z z %2 % Z 5 & # % > ©o & 7 2
S 3 9 9 ¢ © B = 4 B = & @ &
2= 2 2 2 2 °© % a4 z 5 <
2 @ o 2 @B =2 5 m 29 =4
Mm@ A A A 3 &
&) =

Relationships

Fig. 8. Rate of relationships in co-renamings affected by inflection.

detected without ignoring inflection, changes to the operational
chunk INFLECT due to ignoring inflection. However, the
decrease in the rate of REPLACE was slight and did not
significantly change the overall distribution.

The effect of inflection on the ratio of co-renamings to the
total renaming was negligible. The right side of Fig. 3] shows
the rate of co-renamings detected by ignoring inflection. The
distribution, whose mean value of the rate of co-renamings
detected with ignoring inflection is 0.58, is almost the same
as that without ignoring inflection, as shown in the left side of
Fig. [Blused in answering RQ;. The total number of meaningful
rename sets when ignoring inflection was 651,389, whereas
that when not ignoring inflection was 653,194, with almost no
difference between the two cases. However, there were cases
where the number of detected operational chunks changed
owing to ignoring inflection, and the number of meaningful
rename sets also changed. Because a meaningful rename set
is created for each operational chunk, renaming that increases
the number of operational chunks by ignoring inflection may
create a new meaningful rename set and affect the results.

Figures [§] and [9] show the results of analyzing relationships
for the co-renamings affected by inflection. Figure [8]is a box
plot of the results of the rate of each relationship for each
repository, as in Fig. [5} Fig.[9]is a box plot of the results of the
rate of each relationship obtained by limiting the detection of
relations to co-renamings containing renamings of the specific
type of identifiers for each repository, as in Fig. [6]

The rate of relationships did not change significantly in
general, except when analyzing co-renamings containing re-
namings of Class. Comparing Fig. [§] with Fig. B} the rate
of each relationship somewhat changed but not considerably
different. Comparing Fig. [0] with Fig. [6] the rate of each
relationship is also not considerably different for Method,
Parameter, and Variable; however, for Class, the rate of TYPEy
increases, while many other rates decrease. This result may be
due to ignoring the word inflection of the identifier name. For
example, if the instances query and queries of the class Query

INVOKES] #mo o o
ACCESSES{ [Jmwoo o

Rate
T & o 5
Tt (=] ot (=]
EXTENDS| [} ecos
TYPE) /| [Hewoe
TypEy| I F——
ASSIGNS| = F——i¢ cowo °
PASSES| [Jom= o o
Rate
S S £ § =
(=] Tt (=] [9; (=]
CO-0CCURS) /| — > —

BELONGS 4 [=
BELONGS{ Jpose o o

BELONGS /{ oo oo
BELONGSj{ e =
BELONGS 4{ s wcoo
BELONGS | ®=ee o
CO-OCCURS | [JHeowos oeo oo
BELONGS(f =
BELONGS y/{ =
BELONGS/ &=

BELONGS({ ==«
IMPLEMENTS{ [JHem=e o

Relationships

—~
=
=

(a) Classes.

0

TYPE) /| ==
INVOKES] e o o

EXTENDS{ =

@
&
8]
o

O
<

1.00 .
. f
0.75
'D °
F050 e
0.25 & i ﬁ {5
@ @ a2 8
wn
g <&
M

BELONGS(=
BELONGS) /1 & -
BELONGSj #=
BELONGS | =

Q
O
Relationships

IMPLEMENTS{ &= o

(d) Parameters.

EXTENDS| ®e¢ o

Relationships

Methods.

TYPE) | lwmco
TYPE(| Je o o
INVOKES] [F—ow o000
TYPE)| fmoco
INVOKES] hemo o

EXTENDS] acoee

BELONGS 4{ [+ =

IMPLEMENTS{ &=
ACCESSES|{ H = ———ieo ©
ASSIGNS{ {7 —— =
PASSES{ [J-mee
Rate
S & = I =
(=] It (=] ot S
BELONGS(=
BELONGS/{ = »
BELONGSjof &=
BELONGS{ & o B
CO-OCCURS /{ [[T}——tmowe o oo
IMPLEMENTS{ @eo
TYPE| oo
ASSIGNS{ ——] i
PASSES{ [t

Relationships

(c) Attributes.

Rate
(==} o (=3 —
[Sv) ot - 2
& : = g
TYPEY| [F—dewws o oo o
ASSIGNS| [b—
Passes| 1= F—— B o

. :
° 8 s 8
. 5%:“ i
(]_(J()?lli\ri\ ;EI i
}:Fﬁ;:gg: am
N gy N owm Wy " =
c BT o0 Rz z & Z @
Z 7 Z Z z 5 @ d % o A
353030 E =KL > 8
= 3 =2 2 2 0 % & z 3
B g EE&a34g 3 =2
M mMAMMM 3 o
Q =
&) =]

Relationships

(e) Variables.

Fig. 9. Rate of detected relationships in co-renamings affected by inflection and containing renamings of specific identifiers.

are co-renamed to entry, entries, and Entry, respectively, the
number of TYPEy increases because of ignoring the inflection
of the identifier name. We assume that the rate of TYPEy
increased owing to such co-renamings.

There was a slight effect of inflection on the rate of opera-
tional chunks. It also had no significant effect on the rate of
co-renamings. There was no significant effect in terms of
relationships in general, except for an increase in the rate of
TYPEy in the co-renamings containing renamings of Class.

D. Discussion

In recommending co-renamings, we should change the
identifiers recommended preferentially based on the type of
renamed identifier and relationships between them. In RQ»,
we found that the tendency of relationships between renamed
identifiers was different for each type of renamed identifier.
We inferred that we can improve the accuracy of recom-
mending co-renamings by recommending identifiers that have
a relationship, which are likely to be co-renamed with a
renamed identifier, based on the type of renamed identifier.
For example, suppose that a class Sample has methods
addItem and removeItem, and addItem is renamed
to addElement. This renaming is for a method, and it
involves REPLACE(““item”, “element”). In answering RQ»,, we
found that the most detected relationship is CO-OCCURSy; in
method renamings. Therefore, we can recommend renaming
identifiers in a CO-OCCURSy, relationship with addItem,

i.e., removeltem to removeElement. We found a case
similar to this example in neo4ﬂ In this project, there were
renamings including DELETE(“count”) such as countPins
— pins and countBytesRead — bytesRead. These
renamings were only for methods; no renamings occurred
for other type identifiers including “count” like an attribute
pageCount. Changes in interface methods probably caused
this, so it was not necessary to rename all the identifiers,
including “count”.

However, the effect of inflection is negligible, and we should
pay little attention to the inflection. In RQ3, we evaluated the
changes in the rate of operational chunks and co-renamings
due to ignoring inflection and the trend in relationships
between co-renamed identifiers in meaningful rename sets
affected by ignoring inflection. However, the results of RQs
did not significantly differ from the results of RQ; and RQ;.
This result suggests that we do not need to pay attention
to inflection in recommending co-renamings. Although the
detection rate of TYPEy increased for the co-renamings
containing renamings of Class when ignoring inflection, this
relation also had a high detection rate when not ignoring
inflection. Therefore, inflection does not seem to affect the
recommendation of co-renamings. However, in some cases,
the number and type of detected operative chunks changed
depending on whether we ignored inflection or not. Thus,
it is necessary to evaluate the case such that the number of

“https://github.com/neo4j/neodj/commit/f24af6d

operational chunks changes because of ignoring inflection in
detail.

Some relationships may have a direction of propagation of
renamings, and it is necessary to evaluate the directions of the
relationships. We can consider the direction of a relationship
when one renaming of two renamings in a relationship causes
the other renaming. In RQ3, we detected many PASSES for co-
renamings containing renamings of Parameters or renamings
of Variables. Liu et al. [[13]] evaluated identifiers with PASSES
relationships and found that in many cases, it is better to
rename arguments (i.e., Variables) than Parameters. Based on
Liu et al. and our results, we deduced that most of the co-
renamings in the PASSES relationship are due to renamings
of Parameters, which causes renamings of Variables. By eval-
uating the directions of relationships, we may discover more
valuable things for a recommendation of co-renamings.

E. Threats to Validity

1) Internal Validity: The tools used in this study may have
influenced the results. We used RefactoringMiner [7]] to extract
renamings; but it is not the latest version, but the October 2018
version. However, the latest version of RefactoringMiner might
yield different results from our evaluation. In addition, we used
WordNetLemmatizer [[11]] to ignore inflection, but we did not
care about the accuracy of the tool.

The relationships between identifiers in our evaluation do
not cover all the relationships between the identifiers that tend
to be co-renamed. In fact, in several meaningful rename sets,
we could not detect any relationships. We can evaluate the
relationships in more detail by examining these meaningful
rename sets and defining new relationships.

2) External Validity: The results of our evaluation may
not be the same for all repositories in general. We evaluated
only open-source Java repositories. In repositories we did not
evaluate, the trend of co-renamings and the degree of the
influence of inflection might be different from our results.
We evaluated 176 repositories of various sizes to address this
issue: from 2,482 to 1,907,462 LOC and from 131 to 255,628
commits.

V. RELATED WORK

Identifiers in a program have an important role in pro-
gram understanding [14]-[16]. Deissenboeck and Pizka stated
that identifiers account for approximately 70% of program
texts [17]. Corazza et al. reported that developers could
smoothly communicate with each other by giving appropriate
identifier names that reflect the developer intention and the
domain knowledge [2]. If identifiers are named appropriately,
developers can infer their intention and behavior [3]].

Peruma examined identifier renamings along with commit
messages, their data types, and refactorings before and after
them and reported that developers tended to rename identifiers
to narrow their meanings, and 17.39% of all the renamings
changed their corresponding data types [/18§]].

Arnaoudova et al. proposed REPENT [19]], an approach to
automatically detect and classify identifier renamings in source

code. Based on a natural language processing technique,
REPENT classifies renamings into different categories such
as meaning-preserved, narrowed, or broadened. Peruma et al.
presented an empirical study of how identifiers were renamed,
with an attention of whether the meaning of identifiers were to
be narrowed or broadened [20]. Their classifications are more
semantic-oriented, whereas our types of operational chunks are
more lexical, based on the sequence of words in identifiers.
In addition, REPENT and the study by Peruma et al. is
focused on the classification of renaming instances, whereas
our analysis focused on the co-renamings, i.e., the relationship
between renamed identifiers.

Several studies tried to perform a parsing for investigating
the structure of identifiers with a specialized grammar and
capturing a better meaning of the word fragments in iden-
tifiers [21]], [22]]. In addition, abbreviations are common in
identifiers, and the expansion of such abbreviations can reveal
the meaning of identifiers and relationships among them [23]]—
[25]]. These approaches can be more reliable than a simple
inflection detection in our approach, and an extension of the
inflection analysis in this paper may have room for improve-
ments by embedding such sophisticated analyses approaches
into our study framework.

Techniques to correct identifier names have been proposed
for avoiding inconsistent identifier names that hinder program
understanding. Some of them normalize identifiers so that
the naming conventions are consistent for the entire program.
Caprile and Tonella proposed a technique to generate a new
identifier name by normalization using pre-defined rules and
dictionaries [[15]. Surafel et al. proposed a technique to
suggest identifier names using an ontology generated from
source code [26]. Kashiwabara er al. proposed a method to
recommend an appropriate verb to be used as a method name
using association rule mining [27]]. Lawrie er al. proposed a
technique to calculate the similarity of vocabulary in identi-
fiers using information retrieval technology and normalizing
them [[16].

Meanwhile, the renaming by developers frequently occurs
during software refactoring. Because an inconsistent renam-
ing leads to inconsistent identifier names, preventing such
renaming is also important. Fowler’s refactoring catalog [28]
contains rename refactorings such as Rename Method. Re-
naming is the most used refactoring operation [4], [29], and
developers are able to rename a specific identifier using
existing refactoring tools consistently. However, these tools
do not have a co-renaming feature of related identifiers. Liu
et al. [5] proposed RenameExpander, which recommends the
renamings of identifiers related to the identifier renamed by
developers. However, they did not investigate what relation-
ships frequently occurred. Thies and Roth proposed a rename
refactoring recommendation approach based on the assign-
ments for variables [6], which is similar to the relationship of
ASSIGNS in our approach. Our results can provide not only
empirical evidence of the effectiveness of such approaches but
also supportive opportunities to improve their recommendation
results with a deep look at the type of relationships.

Multiple renamings tend to occur at once in software
refactoring. If there is an identifier related to another identifier
to be renamed, it may be necessary to rename it too. Saika
et al. analyzed a refactoring operation history performed by
developers and reported that a series of refactorings such
as multiple renamings is often performed [30]. There are
several attempt of an IDE support for applying a sequence
of continued refactoring operations [31f]. The results of our
empirical study can support the design of such refactoring
tools. Programmer-friendly refactoring tools can be improved
by being aware of the type of the identifier to be triggered
to rename and providing tailored support according to what
entities are to be renamed.

VI. CONCLUSION

In this study, we evaluated the effects of co-renamed
identifiers on the relationships between identifiers and on the
word form changes of words in the identifiers. The results
showed that half of the identifier renamings occurred together
with other renamings. Additionally, the relationships between
identifiers that are likely to be co-renamed differ depending
on the type of the renamed identifiers. Finally, a slight effect
was observed for word form changes. These results suggest
that, in recommending a renaming, it is beneficial to prioritize
candidate identifiers to be co-renamed for each type of the
renamed identifier.

Future work will include further definition and evaluation of
relationships, and the evaluation of the direction of relation-
ships. In some co-renamings of identifiers, the relationships
considered in this study were not detected at all. Defining new
relationships for these co-renamings may lead to discovering
additional characteristics for recommending new identifiers to
be renamed. Additionally, there was a possibility that some
of the relationships had a direction. It is possible that more
detailed characteristics of the relationships can be revealed by
determining the identifier renamings that cause another, e.g.,
by considering the time series of the changes.

The dataset of co-renamed identifiers used in this study is
publicly available [32].

ACKNOWLEDGMENTS

This work is partly supported by JSPS KAKENHI
(JP22H03567, JP21H04877, JP21K 18302, and JP21KK0179).

REFERENCES
[1] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261-282, 2006.
A. Corazza, S. D. Martino, and V. Maggio, “LINSEN: An efficient
approach to split identifiers and expand abbreviations,” in Proc. ICSM,
2012, pp. 233-242.
W. C. Wake, Refactoring Workbook. Addison-Wesley, 2003.
G. C. Murphy, M. Kersten, and L. Findlater, “How are Java software
developers using the Eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76-83, 2006.
H. Liu, Q. Liu, Y. Liu, and Z. Wang, “Identifying renaming opportunities
by expanding conducted rename refactorings,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 887-900, 2015.
A. Thies and C. Roth, “Recommending rename refactorings,” in Proc.
RSSE, 2010, pp. 1-5.

[3]
[4]

[5]

[6]

10

[7]

[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in Proc.
ICSE, 2018, pp. 483-494.

N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,” IEEE
Transactions on Software Engineering, vol. 48, no. 3, pp. 930-950, 2022.
D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Confes-
sions of GitHub contributors,” in Proc. FSE, 2016, pp. 858-870.

M. Hucka, “Spiral: Splitters for identifiers in source code files,” Journal
of Open Source Software, vol. 3, no. 24, 653, pp. 1-3, 2018.

S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: Analyzing text with the natural language toolkit. — O’Reilly
Media, Inc., 2009.

M. L. Collard and J. I. Maletic, “Document-oriented source code
transformation using XML,” in Proc. SET, vol. 9, 2004, pp. 11-14.

H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est omen:
Exploring and exploiting similarities between argument and parameter
names,” in Proc. ICSE, 2016, pp. 1063-1073.

N. Madani, L. Guerrouj, M. D. Penta, Y.-G. Gueheneuc, and G. An-
toniol, “Recognizing words from source code identifiers using speech
recognition techniques,” in Proc. CSMR, 2010, pp. 68-77.

B. Caprile and P. Tonella, “Restructuring program identifier names,” in
Proc. ICSM, 2000, pp. 97-107.

D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code
vocabulary,” in Proc. WCRE, 2010, pp. 3—12.

F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261-282, 2006.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman,
“Contextualizing rename decisions using refactorings, commit messages,
and data types,” Journal of Systems and Software, vol. 169, no. 110704,
pp. 1-22, 2020.

V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y. Guéhéneuc, “REPENT: Analyzing the nature of identifier renam-
ings,” IEEE Transactions on Software Engineering, vol. 40, no. 5, pp.
502-532, 2014.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An
empirical investigation of how and why developers rename identifiers,”
in Proc. IWOR, 2018, p. 26-33.

C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,
M. W. Mkaouer, and E. Hill, “On the generation, structure, and semantics
of grammar patterns in source code identifiers,” Journal of Systems and
Software, vol. 170, no. 110740, pp. 1-21, 2020.

C. D. Newman, A. Preuma, and R. AlSuhaibani, “Modeling the rela-
tionship between identifier name and behavior,” in Proc. ICSME, 2019,
pp- 376-378.

E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pollock,
and K. Vijay-Shanker, “AMAP: Automatically mining abbreviation
expansions in programs to enhance software maintenance tools,” in Proc.
MSR, 2008, pp. 79-88.

Y. Jiang, H. Liu, J. Zhu, and L. Zhang, “Automatic and accurate expan-
sion of abbreviations in parameters,” IEEE Transactions on Software
Engineering, vol. 46, no. 7, pp. 732-747, 2020.

A. Alatawi, W. Xu, and J. Yan, “The expansion of source code
abbreviations using a language model,” in Proc. COMPSAC, vol. 2,
2018, pp. 370-375.

L. Surafel, A. Lemma, and T. Paolo, “Automated identifier completion
replacement,” in Proc. CSMR, 2013, pp. 263-272.

Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, and
K. Inoue, “Recommending verbs for rename method using association
rule mining,” in Proc. CSMR-WCRE, 2014, pp. 323-327.

M. Fowler, Refactoring: Improving the Design of Existing Code.
dison Wesley, 1999.

E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5-18, 2012.

T. Saika, E. Choi, N. Yoshida, A. Goto, S. Haruna, and K. Inoue, “What
kinds of refactorings are co-occurred? An analysis of Eclipse usage
datasets,” in Proc. IWESEP, 2014, pp. 31-36.

K. Maruyama and S. Hayashi, “A tool supporting postponable refactor-
ing,” in Proc. ICSE, 2017, pp. 133-135.

Y. Osumi, N. Umekawa, H. Komata, and S. Hayashi, “Appendix of
empirical study of co-renamed identifiers,” 2022. [Online]. Available:
https://zenodo.org/record/7214226

Ad-

https://zenodo.org/record/7214226

	I Introduction
	II Motivation
	III Methodology
	III-A Overview
	III-B Extracting Renamings
	III-C Ignoring Inflection
	III-D Detecting Operational Chunks
	III-E Creating Meaningful Rename Sets
	III-F Analyzing Relationships between Co-Renamed Identifiers

	IV Empirical Study
	IV-A RQ1: How often do co-renamings occur?
	IV-A1 Motivation
	IV-A2 Study Design
	IV-A3 Results

	IV-B RQ2: To what extent do co-renamed identifiers correlate the relationships of identifiers?
	IV-B1 Motivation
	IV-B2 Study Design
	IV-B3 Results

	IV-C RQ3: What is the difference when the inflections in identifiers are taken into account?
	IV-C1 Motivation
	IV-C2 Study Design
	IV-C3 Results

	IV-D Discussion
	IV-E Threats to Validity
	IV-E1 Internal Validity
	IV-E2 External Validity

	V Related Work
	VI Conclusion
	References

