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Catch Me If You Can:

Blackbox Adversarial

Attacks on Automatic Speech Recognition using
Frequency Masking

Abstract—Automatic speech recognition (ASR) models are
used widely in applications for voice navigation and voice control
of domestic appliances. ASRs have been misused by attackers
to generate malicious outputs by attacking the deep learning
component within ASRs. To assess the security and robustnesss
of ASRs, we propose techniques within our framework SPAT that
generate blackbox (agnostic to the DNN) adversarial attacks that
are portable across ASRs. This is in contrast to existing work
that focuses on whitebox attacks that are time consuming and
lack portability.

Our techniques generate adversarial attacks that have no
human audible difference by manipulating the input speech
signal using a psychoacoustic model that maintains the audio
perturbations below the thresholds of human perception. We
propose a framework SPAT with three attack generation tech-
niques based on the psychoacoustic concept and frame selection
techniques to selectively target the attack. We evaluate portability
and effectiveness of our techniques using three popular ASRs and
two input audio datasets using the metrics - Word Error Rate
(WER) of output transcription, Similarity to original audio,
attack Success Rate on different ASRs and Detection
score by a defense system. We found our adversarial attacks
were portable across ASRs, not easily detected by a state-of-
the-art defense system, and had significant difference in output
transcriptions while sounding similar to original audio.

Index Terms—Automatic Speech Recognition, Adversarial At-
tack, Blackbox, Frequency Masking

I. INTRODUCTION

Automatic speech recognition models (ASRs) are widely
used in a variety of applications, such as mobile virtual
assistants (Siri, Google Assistant), in-vehicle voice navigation
and voice smart home appliances like Alexa and Google Home
with built-in voice assistants. Owing to the prevalence of ASRs
in our daily lives, their security and integrity are of paramount
concern. The computational core of ASRs are deep neural
networks (DNNs) that have been shown to be susceptible
to adversarial perturbations; easily misused by attackers to
generate malicious outputs [18], [21], [34].

a) Existing work on ASR adversarial attacks.: Adversar-
ial perturbations! were first presented by Szegedy et al. to
demonstrate the lack of robustness in DNN models — a small
perturbation of an input may lead to a significant perturbation
of the output of a DNN model [27]. This vulnerability can
be exploited by adversaries to augment the original input with
a crafted perturbation, invisible to a human but sufficient for
the DNN model to misclassify this input. This influential work
triggered several research contributions in the computer vision
domain that generate adversarial attacks for testing security
and robustness of vision tasks [10], [15], [19]. Research on
the use of adversarial attacks on ASRs is, however, only just

I Also referred to as Adversarial examples or Adversarial attacks.

emerging, and can be classified along two dimensions,

1. Un-targeted or Targeted The aim of un-targeted adver-
sarial audio is to make an ASR model incorrectly transcribe
speech while sounding similar to original input, while the aim
of targeted adversarial attack is to cause an ASR model to
output a specific transcription (target) injected by an adversary.
This paper focuses on un-targeted adversarial attack.

2. Whitebox or Blackbox Threat Model In a whitebox
threat model, the adversary assumes knowledge of the internal
structure of the ASR model, while in a blackbox threat model,
the adversary can only probe the ASR with input audio and
analyze the resulting transcription. We use a blackbox threat
model.

Most existing methods [7], [8], [23], [32] for ASR ad-
versarial attack generation are fargeted and whitebox. These
methods suffer from one or more of the following drawbacks
(1) Whitebox assumption is not practical and lacks portability
since commercial ASR application developers do not typically
reveal the internal workings of their systems, (2) time taken
to generate attacks is considerable and cannot be used in real-
time. , and (3) poor quality audio in attacks makes them easily
detectable by defense techniques like [8], [20]. Existing few
methods [4], [29] for blackbox, targeted attacks suffer from
the drawback of intractable number of queries to the ASR,
that are time-consuming and impractical. Blackbox untargeted
attacks that do not rely on the knowledge of the internal
NN structure or queries to the ASR would address the above
limitations and the only known technique was proposed by
Abdullah et al. in 2020 [1]. To create adversarial audio,
they decompose the original audio and remove components
with low-amplitude that they believe will not affect audio
comprehension. Although interesting, their approach does not
strive to ensure the adversarial and original audio sound
similar. Additionally, difference achieved in transcribed texts
is not measured or reported. We found the ability of their
attacks in bypassing a state of the art defense system was not
effective.

b) Proposed Attack Generation: We propose a blackbox
un-targeted attack generation approach that is faster, more
portable across ASRs, and robust to a state-of-the-art defense
than Abdullah et al. Our framework, SPAT, for attacking ASRs
uses a psychoacoustics concept called frequency masking that
determines how sounds interfere and mask each other. We
manipulate masked (or inaudible) components of the original
audio in such a way that their spectral density is different
but they remain masked. Such a manipulation ensures the
adversarial attack is indistinguishable from the original but has
the potential to change the resulting transcription. We propose



three attack generation approaches centered around this idea
— Griffin Lim Reconstruction (GL),Original
Phase (OP) and Deletion (DE). Additionally, to help
increase similarity to the original audio, we provide the option
of selectively introducing perturbations to a small fraction of
audio frames rather than all of them. The SPAT framework pro-
vides three frame selection options — Random, Important
and Al1l. Among them, the Important option identifies
the frames that cause the most change to output text when
set to zero and we then introduce perturbations to just these
important frames.

We evaluate SPAT on three different ASRs — Deepspeech
[12], Sphinx [16] and Google cloud speech-to-text API, using
two different input audio datasets — Librispeech [22] and
Commonvoice [5]. We assess the effectiveness of our ap-
proaches for attack generation and frame selection using the
metrics - WER, Similarity, attack Success Rate and
Detection score. We also compare SPAT with a targeted
whitebox state-of-the-art (SOTA) method [8] and an untargeted
blackbox SOTA method [1]. It is worth noting that the scale
of our evaluation is much bigger than existing work [1], [8],
[23] as we use different audio datasets and ASRs. We find our
approach using OP or DE for attack generation combined with
Important or A1l frame selection was effective at attacking
all three ASRs. Our techniques were 312x faster than the
whitebox targeted SOTA, and 7 faster than blackbox targeted
SOTA method. The defense system, Waveguard [14], was less
effective at detecting attacks generated with our techniques
compared with the other two SOTA methods.

In summary, the contributions in this paper are as follows:

1) A novel approach and framework, SPAT, for untargeted
blackbox adversarial attack generation on ASRs based
on frequency masking.

2) Frame selection option to selectively perturb frames in
an audio.

3) Extensive empirical evaluation of the attack generation
and frame selection options within SPAT on three ASRs
and two audio datasets. We also compare performance
against SOTA whitebox and blackbox techniques.

The source code for SPAT can be found at:
https://anonymous.4open.science/r/lalalala-9DEE.

II. BACKGROUND

Most current ASRs comprise the following stages when
transcribing an input audio to a text output: 1. Pre-processing
to remove noise and detect human voice in the input audio,
2. Signal processing stage to extract audio features as Mel
Frequency Cepstral Coefficient (MFCC) and 3. Recurrent
Neural Network prediction that uses the MFCC features from
the audio to predict a probability distribution of characters for
every time step or audio frame. From the character sequence
distributions, an output selection algorithm, such as Beam
search, is used to select the most likely translated text. More
details on the stages can be found in [3]. We next present a
brief description of the frequency masking concept used in
SPAT.

A. Frequency Masking and Masking Threshold Computation

Frequency masking is a psychoacoustic phenomenon that
occurs when the perception of a sound is affected and masked
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Threshold
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Fig. 1. Frequency masking phenomenon: the masker creates a masking
threshold in the nearby frequency domain such that other sounds below this
threshold cannot be heard.

by the presence of another sound, distracting the ear from
being able to clearly perceive the simultaneous sounds [17].
For example, on a quiet night, consider that the sound of
chirping crickets is audible but in the presence of the TV
sound, we stop hearing the crickets chirping as the TV sound
masks it. In Figure 1, the TV sound would be the masker (seen
as a red bar) that creates a masking threshold [17] which is the
minimum level at which other sounds in the same frequency
frame can be heard. The chirping sound of the crickets falls
below the masking threshold (seen as a blue bar) and therefore
is not audible in the presence of the TV. The chirping sound
in Figure 1 would be the maskee.

a) Masking Threshold Computation: To calculate the
masking threshold for a given audio, we need to first convert
the audio from the expression in the time domain to the
frequency domain (using Fast Fourier Transform), then discard
the phase information in the spectrum. We then use the
amplitude information of the spectrum to calculate the log-
magnitude power spectral density (PSD) of this audio. The
PSD characterizes the energy distribution on a unit frequency,
and is used widely to describe the frequency domain results of
the signal [17], [31]. The red and blue bars in Figure 1 repre-
sent the PSD (in dB) of maskers and maskees, respectively, for
the given frequency bin. According to [17], [23], maskers are
identified from the audio PSD using two conditions: the PSD
of a masker should be greater than the absolute threshold of
hearing (ATH), and it must be the highest PSD estimate within
a certain surrounding frequency range. After identifying the
maskers, their respective masking thresholds will be computed
using a two-slope function, described in [31]. If there are
several maskers and associated masking thresholds, they will
be combined into a global masking threshold for the audio
like in [23]. Once the maskers are identified, the other PSDs
in the audio are labelled maskees. A more detailed description
of the computation of masker, maskee and masking threshold
can be found in [23], [31].

We use this masking phenomenon observed with simultane-
ous sounds to create adversarial audio that sounds similar to
the original audio but has the potential to produce a different
transcription. We achieve this by first taking the original audio
that is composed of many sounds, identifying the maskers and
maskees in it using the approach from [23], [31] (red and



blue bars in Figure 1). We then manipulate the PSD of the
maskees so it stays below the masking threshold, ensuring they
are not audible, like in the original audio. Nevertheless, this
manipulation can still affect the transcribed text. We create
the adversarial audio by composing together the unchanged
maskers and manipulated maskees. In terms of our earlier
example with the TV sound and crickets chirping, we identify
the TV sound as the masker and the chirping crickets as the
maskee. We then manipulate the PSD of the cricket sound,
staying within the masking threshold, to produce an adversarial
audio that composes the TV sound with the manipulated
chirping sound. Section III describes the SPAT framework and
the techniques used for manipulation in detail.

B. Griffin-Lim Algorithm

To construct an adversarial audio from the maskers and
manipulated maskees in the amplitude spectrum, we use
the Griffin-Lim (GL) algorithm that helps reconstruct audio
waveforms with a known amplitude spectrum but an unknown
phase spectrum [11]. Steps in the algorithm are as follows: (1)
Randomly initialize a phase spectrum, (2) Use this phase spec-
trum and the known amplitude spectrum to synthesize a new
waveform through Inverse Short-Time Fourier Transform (3)
Use the synthesized speech to get new amplitude spectrum and
new phase spectrum through Short-time Fourier Transform, (4)
Discard the new amplitude spectrum, (5) Repeat steps 2, 3, 4
for a fixed number of iterations. Output is a waveform with
an estimated phase spectrum and the known input amplitude
spectrum.

III. METHODOLOGY
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Fig. 2. Our framework, SPAT, for generating adversarial attacks comprises
of three stages, 1. Frame Selection, 2. Attack generation and finally 3.
Adversarial audio formed by combining information in the first two stages.

In this section, we propose techniques for generating adver-
sarial attacks for ASRs. As seen in Figure 2, our framework,
SPAT, has two important stages, 1. Audio Frame Selection and
2. Attack Generation. The general workflow in SPAT is as
follows: Given an input audio example, we first select frames
within it using one of the three techniques for audio frame
selection — Random, Important and All. Independently,
we generate manipulated audio from the input audio using one
of three attack techniques — GL Reconstruction (GL),
Original Phase (OP), Deletion (DE). We then

replace the selected frames in the original audio with cor-
responding manipulated audio frames while keeping the rest
of the audio unchanged. The combination of original and
manipulated audio frames forms the adversarial attack audio.

a) Threat Model and Assumptions: The attack techniques
in SPAT assume a black-box threat model, in which an adver-
sary has no knowledge of the internal workings or architecture
of the target ASR model. We treat the ASR as a black-box
to which we make requests in the form of input audio and
receive responses in the form of transcriptions in text format.
We also assume that an adversary can only make a limited
number of requests to the target ASR. We also accommodate
the scenario when the adversary cannot make any requests to
the target ASR (with A11 frames selected). Finally, we assume
an over the line attack. This means that digital files are sent
directly to the target ASR system for transcription, as opposed
to playing back audio files over the air through speakers.

A. Stage 1: Frame Selection

We explore generation of adversarial audio by modifying
a subset of frames in the entire audio. We provide three ap-
proaches to select audio frames that will be later manipulated —
Random, Important and A11l. We will start by describing
the technique to select Important frames.

1) Important:: The rationale for selecting important frames
is to restrict manipulation to a small number of significant
frames. This allows the adversarial audio to remain similar to
the original while still affecting the output transcription text.
We define importance of frames based on the proportion of
Word Error Rate (WER?) produced by masking that frame in
the original audio. The steps involved in selecting important
frames are as follows,

1. For every input audio example, record output transcription.
2. Pick one of the input audio examples. For every frame in
the processed audio example, set it to zero (masked) while
keeping the remaining frames unchanged. Record translated
text using the ASR for the masked audio.

3. Compute WER between the masked and original output.
Repeat this for all frames. The frames that result in a non-
zero WER are identified as important frames for that audio
example. Magnitude of WER change for frame selection can
be altered to suit needs.  °

4. Repeat Steps 2 and 3 for the remaining input audio
examples.

At the end of this process, every input audio example is
associated with a list of important frames.

2) Random:: To enable us to compare the effectiveness
of only using important frames in frame selection, we also
provide a means to select frames randomly. The number of
frames selected for a given audio example is set to be the
same as the number of important frames in that audio.

3) All:: We simply use all the frames from the manipulated
audio generated in Stage 2 (see Section III-B). Using A11
frames helps us assess how much WER was achievable. In ad-
dition it helps quantify the tradeoff in WER and Similarity
when compared to frame selection with Important and
Random. It is worth noting that using A11 frames requires
no queries to the ASR. Therefore, if the threat model assumes

2WER is a common metric to evaluate the difference in ASR transcription
between original versus adversarial audio. The formula is provided in Sec IV-B



no queries then we would select 211 frames in Stage 1 of our
approach.
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Fig. 3. Attack generation methods, GL and OP, increase the PSD of maskees
to the masking threshold. Attack generation with DE suppresses the PSD of
maskees to zero.

B. Stage 2: Attack Generation

We discuss three attack generation techniques within SPAT
— GL, OP and DE, that manipulate the amplitude spectrum
of the input audio example using the concept of frequency
masking, described in Section II-A. We illustrate the manipu-
lations in Figure 3 and describe them in the Sections below. All
three techniques take the input audio, generate audio frames
in the frequency domain (obtained with sampling and fast
fourier transform), with each frame having amplitude and
phase information. For each frame, we compute the masking
threshold, maskers and maskees using established techniques
discussed in Section II-A

1) GL Reconstruction (GL): As seen in the top part of
Figure 3, GL (and OP) increases the PSD of all maskees (blue
bars in the original audio) to the global masking threshold.
Masker PSDs remain unchanged. We then compute an updated
amplitude based on the maskers and altered maskees PSD
inversely [31]°. GL discards phase information of the input
audio waveform. Instead, it estimates phase information using
the GL reconstruction technique discussed in Section II-B. The
estimated phase information is combined with the updated
amplitude information and is used to synthesize the attack
audio through inverse FFT.

2) Original Phase (OP): The primary difference between
the OP and GL technique is in the phase information. Es-
timating phase using the GL algorithm introduces distortion
and lack of consistency across multiple runs. To avoid this
problem, the OP technique retains phase information from the
original audio. We believe using phase information from the
original audio to synthesize the attack audio will make it more
similar to the original audio.

| PsD(k)
3 Amplitude(k) = N\/ 10~ 10 , where k is the index of the frequency
bin and NV represents the length of frame.

3) Deletion (DE): Previous methods, OP and GI, ensure
the attack audio sounds no different from the original input
by increasing the PSD of the maskees up to the maximum
limit (which is the masking threshold) for them to remain
masked. The DE technique, on the other hand, suppresses the
PSD of the maskees to the minimum value of zero which
is akin to deleting them. This manipulation will not affect
the audio perception as the masking threshold is unaffected.
The DE technique, thus, deletes all maskee PSDs that are
hidden under the masking threshold. Subsequently, we use
the modified amplitude after deletion and combine it with the
original phase information from the input audio (similar to
OP’s use of phase). We use inverse FFT as before to synthesize
attack audio from the amplitude and phase information.

C. Stage 3: Combining Original and Attack Audio

In this final stage, we create an adversarial attack by taking
the original audio, replacing the selected frames (identified
in Stage 1) with corresponding frames from the attack audio
(generated in Stage 2). Other frames from the original audio
are left unchanged. This modified version of the original serves
as an adversarial attack.

The source code for our adversarial attack genera-
tion framework, SPAT, with the three attack generation
and three frame selection methods, can be found at
https://anonymous.4open.science/r/lalalala-9DEE.

IV. EXPERIMENTS

We evaluate the effectiveness of our techniques within
SPAT, described in Section III, using two different datasets —
(1) 200 audio samples from Librispeech [22] and (2) 200 audio
samples from Commonvoice [5]. We use three ASRs in our
evaluation, namely, Deepspeech [12], Sphinx [16], and Google
ASR. Our choice of datasets and ASRs were inspired by their
use in related work for adversarial ASR attack generation [1]
[8] [23] [35]. We discuss the defense system used to assess
the effectiveness of the adversarial attacks, evaluation metrics
and the research questions in our experiments in the rest of
this Section.

A. Detection and defense

The ability to evade defense systems is an important mea-
sure of effectiveness for adversarial attacks. Defense systems
have evolved to detect and defend a significant fraction of
adversarial attacks. In our experiments, we use a SOTA ad-
versarial audio detection and defense system, Waveguard [14],
proposed by Hussain et al. in 2021. We chose Waveguard
as our defense system as it is demonstrated to be faster,
more effective and capable of detecting both targeted and
untargeted attacks compared to existing detection techniques,
like Temporal Dependency Detection Method [33]. We report
how well Waveguard performed (as an AUC score) in detecting
adversarial attacks in our experiments.

Attack detection with Waveguard is divided into two steps.
The first step is to transform the input audio using one
of several functions that are meant to preserve (or closely
preserve) the transcription text. For example, one of their trans-
formations — Mel Spectrogram Extraction and Inversion — first
extracts MFCC features from input audio and reconstructs the
audio from MFCC features. The second step is to compare the
Character Error Rate(CER) between the transcription text for



the original and transformed audio. If the difference between
the texts is greater than a predefined threshold, then the input
audio is classified as adversarial, and benign otherwise.

B. Evaluation Metrics

to measure the effectiveness
of our techniques - Word Error Rate (WER),
Similarity, Success Rate and Detection
score. We are interested in generating adversarial attacks that
sound similar to the the original audio (high Similarity)
but produce a transcription different from the original (high
WER). Additionally, we would like the technique to be
portable, i.e generate adversarial attacks that are usable across
several ASRs (high Success Rate). Finally, we want the
generated attacks to be robust to get past SOTA defense
systems, like Waveguard [14] (lower Detection score).
We provide definitions of each of these metrics below.

a) WER: is a common metric to evaluate the differ-
ence in ASR transcription from original versus adversarial
audio [9] [13]. WER is computed using Equation (1),

We use four metrics

WER — Insertions + Supstitutions + Delet'ions 0
Total Words in Correct Transcript

b) Similarity: We use the widely used PESQ metric [24]
that measures quality of audio relative to a reference audio
to assess similarity of adversarial audio to the original. The
PESQ algorithm accepts a noisy signal, which in our case is
the adversarial attack, and an original reference signal, which
is the input audio for our method. The PESQ score ranges
from -0.5 to 4.5. The higher the score, the better the voice
quality. According to [6], audio quality is deemed “good”
when its PESQ score is above 3.0. We use this standard for
classifying the quality of the adversarial audio. In this paper,
we use Similarity metric to mean the PESQ score.

c) Success Rate: shown in Equation (2), refers to
the ratio of adversarial attacks that can successfully attack a
given ASR. A successful attack, as defined by Abdullah et
al [1], happens when the adversarial attack results in a non-
zero WER with respect to the original transcription.

Number of successful attacks

S Rate = 2
uccess Rate Total number of adversarial attacks @

d) Detection score: refers to the effectiveness of
the Waveguard defense system in correctly classifying adver-
sarial attacks. We use the area under the curve (AUC) metric,
reported by Waveguard [14], to evaluate correct classification
of adversarial attacks. The AUC score ranges from 0.0 to 1.0.
We aim for a lower Waveguard AUC score or Detection
score with our techniques.

C. Research Questions

We aim to answer the following research questions (RQs)
in our experiments,
RQ1: Which frame selection method in SPAT among
Random, Important, All performs best?
We compare the WER and Similarity achieved by the
different frame selection techniques across three different
ASRs and two input audio datasets. Answering this research
question will help us assess the value of selecting a subset of
frames versus just changing the whole audio.

RQ2: Which attack generation technique among GL, OP,
DE performs best?

We compare the WER, Similarity achieved by the different
attack generation techniques across three different ASRs and
two different input datasets. We also measure Time taken by
each technique.

RQ3: Are the adversarial attacks portable across ASRs?
One of the primary selling points of our techniques is that
they are blackbox and untargeted, and therefore agnostic to
the structure and workings within ASRs. We validate this by
evaluating the Success Rate of the generated adversarial
attacks across three different ASRs.

RQ4: Do SPAT generated attacks perform better than SOTA
techniques?

We selected representative and high-performing SOTAs in our
comparison, namely a whitebox targeted technique proposed
by Carlini et al [8], and a blackbox technique by Abdullah et
al [1].

Carlini et al. generate adversarial attacks using Deepspeech
ASR and the Commonvoice input dataset. To allow com-
parison, we use the same ASR and input dataset with our
techniques. Owing to the targeted nature of their technique,
they require the transcription text to be specified in advance. To
address this need, we use the transcription from Deepspeech
ASR with adversarial attacks generated by our technique as
Carlini et al.’s target. We then compare our technique with
Carlini et al. with respect to time taken to generate adversarial
attacks, Similarity to original audio, Success Rate on
other ASRs, Google and Sphinx, and Detection score.
Since the transcription text in both techniques are the same, it
is not useful to compare WER.

We compare our technique against Abdullah et al. using
WER, Similarity, Success Rate, Detection
Score, Time over different ASRs and both
Commonvoice and Librispeech dataset.

a) Experiment settings: We use Google Colab Pro with
two NVIDIA Tesla T4 GPUs(16GB RAM, 2560 cores) to run
our experiments. We use the following audio parameters in
our experiments: Sampling rate of 16000H Z, frame length of
2048 and frame shift of 512.

the

V. RESULTS AND ANALYSIS

We present and discuss the results from our experiments
in the context of the research questions presented earlier. It
is worth noting that WER and Similarity are measured
for each attack, while Success rate and Detection
score are measured across an entire dataset. Techniques
should try to maximise WER, Similarity and Success
rate while minimising Detection score by Waveguard.

A. RQI: Comparison of Frame Selection Techniques

The best performing frame selection technique is one that
achieves high WER and high Similarity across audio
examples. However, these two metrics are often conflicting.
We discuss and compare WER and Similarity achieved by
the three frame selection techniques in SPAT below. Figures
in Table I shows the WER achieved by different frame section
techniques for the Librispeech and Commonvoice datasets
across different ASRs and attack generation techniques while
Figure 4 shows the Similarity achieved.
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TABLE 1

BOX PLOTS OF THE WER OF THE ADVERSARIAL ATTACKS GENERATED WITH TWO DIFFERENT DATASETS.

Librispeech Commonvoice
GL OP DE GL OP DE
Deepspeech 96% 95% 91% 95% 90% 90%
Sphinx 99% 96.5% 94% 98% 89% 90%
Google 99% 97.5% 95.5% 85% 80% 80%
Average 98% 96.3% 93.5% 92% 86.3% 86.6%
ABLE I

THE SucciEss RATES OF THE ADVERSARIAL ATTACKS WITH GL, OP, DE ATTACK GENERATION METHODS ACROSS THE THREE ASRS AND TWO
DATASETS.ALL FRAMES IS USED AS THE FRAME SELECTION METHOD.

Technique Time Similarity Success rate WER Detection score
Deepspeech | Sphinx | Google | Deepspeech | Sphinx [ Google
Carlini [8] | 780 seconds 3.63 N/A T7% |33% N/A N/A [N/A 0.67
Abdullah [1]| I8 seconds 3.12 80% T7% | 54% 0.39 0.44 10.14 0.65
OP 3.5 seconds 3.65 90% 89% |80% 0.46 0.47 10.40 0.52
DE 2.5 seconds 4.29 90% 90% |80% 0.45 0.50 10.38 0.55
TABLE IIT

COMPARISON OF OP, DE WITH ABDULLAH ET AL. [1] AND CARLINI ET AL. [8] WITH RESPECT TO GENERATION TIME FOR PER ADVERSARIAL ATTACK,
SIMILARITY TO ORIGINAL AUDIO EXAMPLES,WER, SUCCESS RATE ANDDETECTION SCORE AGAINST DEFENSE SYSTEM [14] IN ATTACKING ALL
THREE ASRS
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Fig. 4. Box plots of the Similarity of the adversarial attacks generated
with all datasets.

a) A1l frames: We find in Table I and Figure 4, that
the A11 frame selection achieves the highest WER and lowest
Similarity compared to Important and Random across
ASRs, input datasets and attack generation methods. This is
in line with our expectations as the other two frame selection
techniques select a small part of the audio to introduce noise
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Fig. 5. Pareto front over adversarial attacks generated by Random,
Important and A1l frame selection techniques on Commonvoice dataset
and Deepspeech ASR using DE.

into achieving lower WER but higher Similarity to original
audio.

b) Important versus Random:: For most combina-
tions of ASR, dataset and attack generation, we find Random
frame selection produces the lowest WER and the highest
Similarity, while Important frame selection results in
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Fig. 6. Pareto front over adversarial attacks generated by GL, OP and DE on
Commonvoice dataset and Deepspeech ASR using Important frames.

a WER and Similarity between Random and A11.

c) Statistical Analysis.: We confirmed the statistical sig-
nificance (at 5% significance level) of the difference in means
between the frame selection techniques using one-way Anova
and did a post-hoc Tukey’s Honest Significant Difference
(HSD) test to reveal which differences between pairs of
means are significant. Extension file* Sections 1.1.1 and 1.1.2
list the P-values for pairwise comparisons of WERs and
Similarities between frame selection techniques. For the
WER metric, we find the A11 frames selection technology is
significantly better than Important and Random on major-
ity of ASR, dataset, attack technique combinations. In contrast,
for Similarity measure, Random and Important frame
selections significantly outperformed A11.

d) Fareto front: Owing to the conflicting nature of the
WER and Similarity metrics, all three frame selection
techniques achieve a trade-off between them. We use the
Pareto front with these two metrics, shown in Figure 5 for
one of the datasets and ASRs, to determine the number
of non-dominated attack examples (that fall on the Pareto
front) from each frame selection. We find Important frame
selection has the most number of non-dominated attacks (17
examples); Random was second with 12 examples, while 211
frames only had 1 non-dominated attack example. This trend is
observed across all ASRs, attack technologies and datasets (see
results in Extension file Section 1.1.3). Based on the number
of non-dominated examples, we believe that Important
frames is effective at achieving a trade-off between WER and
Similarity.

e) Summary: In terms of WER, we find A11 frames per-
forms best. However, Important and Random frames per-
form better in terms of Similarity. We find Important
is the best at optimising trade-off between the two met-
rics, achieving reasonable performance in both WER and
Similarity.

B. RQ2: Comparison of Attack Generation Techniques

We present WER achieved by GL, OP, DE using different
ASRs and datasets in Table I, while we show Similarity

“Extension file is available at https://anonymous.4open.science/r/lalalala-
9DEE/apsec2022_extension.pdf

achieved in Figure 4. Best performing attack generation tech-
nique is one that results in a high WER and high Similarity
to original audio.

a) WER Performance: GL attack generation performs
better than both OP and DE in terms of WER achieved. We
confirm the differences are significant using One-way Anova
and Tukey’s HSD test (see P-values in Section 1.2.1 of the
Extension file). Between OP and DE attacks, OP outperforms
DE with DeepSpeech and Sphinx ASRs over the Librispeech
dataset. There is no significant difference between the two
techniques over the other dataset and ASRs.

b) Similarity Performance: Both OP and DE signifi-
cantly outperform GL in terms of Similarity, confirmed
with pairwise comparison using one-way Anova followed by
Tukey’s HSD test (P-value tables in Extension file Section
1.2.2). The median Similarity or PESQ score for GL tends
to be below the value of 3.0 (shown by the dashed line),
irrespective of frame selection used. According to Beuran et
al. [6], the standard for good quality audio is a PESQ score of
greater than 3 and GL technique does not meet this standard in
our experiments. We believe this is because GL uses estimated,
rather than actual, phase information which causes distortion
that reduces the PESQ score.

Between OP and DE, there is no significant difference
in their Similarity performance. The benefit with using
DE lies in faster generation of an adversarial attack. The
average time to generate a single adversarial attack using
DE is 2.5seconds, a second faster than the OP technique
(3.5seconds on average) as OP relies on calculating the
masking threshold for every input example.

c) Pareto Front: As with RQ1, we draw the Pareto
front using WER and Similarity, shown in Figure 6. For
Deepspeech ASR using Important frames in Figure 6, we
find DE technique has the most number of non-dominated
attacks (16 examples); OP is second with 5 examples, while
GL only has 2 non-dominated attack example. This trend is
observed across most ASRs, frame selections and datasets.
However, for the A11 frame selection, OP has the most number
of non-dominated attacks on Deepspeech and Google (Results
available in Section 1.1.3 of the Extension file).

d) Summary: Based on the number of non-dominated
examples, we believe that when using Important and
Random frame selection, DE is a suitable choice for opti-
mising both WER and Similarity. When using A11 frame
selection, OP is a better choice. Independently, DE is the fastest
attack generation among the three techniques.

C. RQ3: Portability across ASRs

We evaluate portability of the adversarial attacks generated
by OP, GL, DE across the three ASRs using the Success
Rate metric, described in Section IV-B. Table II presents
Success Rates achieved with the Librispeech and Com-
monvoice datasets.

We find GL achieves the best success rates over all ASRs,
with both the Librispeech dataset (average of 98%) and the
Commonvoice dataset (average of 92%). OP comes next, per-
forming better than DE on the Librispeech dataset (96% versus
93.5%, respectively). OP and DE have similar performance
over the Commonvoice dataset (average of 86%).



a) Summary: All three attack generation techniques have
high success rates across the three ASRs producing portable
adversarial attacks. GL outperforms OP and DE in portability
but the magnitude of difference is small (on average 2% to
5%). OP and DE have comparable performance on the ASRs,
especially with the Commonvoice dataset.

D. RQ4: Comparison to Existing Techniques

We compare performance of SPAT against a whitebox tar-
geted technique proposed by Carlini et al. [8] and a blackbox
untargeted technique proposed by Abdullah et al. [1] us-
ing the metrics — WER, Similarity, Success rate,
Time, Detection score. Within SPAT, we use OP and
DE for attack generation as they perform best in terms of
Similarity and WER>

1) Comparison with Carlini et al: We fix the ASR to
Deepspeech and input dataset to Commonvoice to match the
experiments in Carlini et al. [8]. We show results in Table III.
We do not compare WER as the target text for Carlini et al. [8]
is the transcription text from our adversarial attacks, so there
will be no difference.

a) Time and Similarity: We find time taken to
generate attack examples is faster with our approaches,
OP and DE, compared to Carlini et al. with a maximum
speedup of 312x achieved with DE. We also achieve higher
Similarity scores — 4.3 (DE) and 3.7 (OP), compared to
3.6 by Carlini et al. We confirm the statistical significance
(at 5% significance level) of the observed differences in
Similarity using one-way Anova and Tukey’s Honest
Significant Difference (HSD) test. We find our techniques are
a clear winner in terms of time taken, and outperform Carlini
at al. in Similarity.

b) Success Rate: To evaluate portability of adversarial
attacks, we transcribe the adversarial attacks using Google and
Sphinx (since DeepSpeech is used by Carlini et al.). We find
when used with Google ASR, adversarial attacks generated
by Carlini et al. have a much lower Success Rate than
our techniques (33% versus 80%), respectively. For Sphinx,
the difference in Success Rate is smaller but the trend
remains (77% Carlini versus 89% to 90% for ours). The
lower Success Rate observed with Carlini et al. is because
their technique specifically targets the neural network inside
Deepspeech, and may not be as effective when used on other
ASRs with different NNs. This is a drawback also encountered
with other whitebox attacks. However, since our method is
blackbox, we find it is easier to port our adversarial attacks to
different ASRs.

¢) Detection score: Attack examples generated by Car-
lini et al. are more easily detected by Waveguard, with a higher
Detection score score of 0.67, compared to techniques
in SPAT, whose Detection scores are 0.52 for OP and
0.55 for DE. We believe this is because Carlini et al use noise
in their attack generation which is detected more easily by
Waveguard. We find SPAT attack generation with OP and DE
performs better than Carlini et al at evading the Waveguard
defense.

Across all four evaluation metrics, we find one of the two
techniques from SPAT is the winner (highlighted in red in
Table III), outperforming Carlini et al [8] across all metrics.

SWe use the best performance between A11 and ITmportant frames.

2) Comparison with Abdullah et al: Like SPAT, Abdullah et
al. [1] use a blackbox, untargeted attack generation technique
that is meant to be fast and portable on different ASRs. Unlike
the comparison with Carlini et al., we can include WER as a
performance metric (in addition to the other 4 metrics) and
Deepspeech ASR in our comparison. We discuss performance
for each of the metrics below using the Commonvoice dataset®.

a) Time and Similarity: We find attack generation
with OP and DE is much faster than Abdullah et al. (5x
and 7x faster, respectively). For the Similarity metric,
SPAT outperforms Abdullah et al. with both OP and DE attack
generation (at 5% significance level, P-value tables in the
Extension file.)

b) Success rate, WER and Detection score:
Attack examples generated with OP and DE have a higher
Success rate than Abdullah et al. across all ASRs. We
see a similar trend with WER, where OP and DE outperform
Abdullah et al. (at 5% statistical significance). Finally, OP
and DE surpass Abdullah et al. with respect to getting past
Waveguard’s defense system by achieving lower detection
scores of 0.52 and 0.55, respectively, versus 0.65 for Abdullah
et al..

In summary, we find our attack techniques, OP and DE,
surpass Abdullah et al. for each of the five evaluation metrics
(best performing is highlighted in red in Table III).

3) Threats to Validity: There are three threats to validity in
our experiments based on the selected ASRs, speech datasets
and the metrics used in evaluation.

Firstly, we only use three ASRs among dozens of commer-
cial and non-commercial ASRs in our experiments to evaluate
the effectiveness of our attacks. Results may vary on other
ASRs. However, our techniques are meant to be ASR agnostic
so we believe they will be applicable to other ASRs. It is worth
noting that the number of ASRs in our experiments is at par
or exceeds that used in Section VI. We plan on conducting a
more extensive evaluation in the future.

Secondly, we use audio samples from two common speech
datasets — Librispeech [22] and Commonvoice [5]. The adver-
sarial examples we generate are a manipulation of the input au-
dio. It would be interesting to evaluate our technique on audio
samples in other speech datasets. Given the time consuming
nature of the experiments, the number of samples from the
different attack generation techniques and their combination
with frame selection techniques, we were unable to scale our
experiments further.

Thirdly, we use metrics WER, PESQ score for
Similarity, Success Rate and attack Detection
Score in our evaluation of adversarial examples. These
metrics have been used separately in other related work [1],
[9], [13], [24] which led to their selection in our experiments.
We have also tried Cosine Similarity of MFCC features in
place of PESQ score and the trends were similar between
the different techniques in SPAT. The choice of metrics for
evaluating adversarial examples in this field have not been
standardised and there is a range of metrics across several
papers. We have tried our best to capture several metrics in
our evaluation to avoid bias along any one dimension.



Attack Type
Whitebox-Targeted

Existing work

Vaidya et al. [30], Carlini et al, [7], [8],
Qin et al. [23],Yuan et al. [34],Yakura
et al. [32], Schonherr et al. [25], [26],
Szurley et al. [28]

Zhang et al. [35], Alzantot et al. [4],
Taori et al. [29]

Abdullah et al. [1]

TABLE TV

EXISTING WORK ON ADVERSARIAL ASR ATTACK GENERATIONS.

Blackbox-Targeted

Blackbox-Untargeted

VI. RELATED WORK

As mentioned in Section I, existing adversarial attack gener-
ation on ASR models can be classified along two dimensions:
1. Targeted for a given transcription or untargeted, and 2.
Whitebox, with knowledge of the internal ASR structure or
Blackbox. Table IV lists the existing techniques using these
two dimensions and they are discussed in more detail in the
rest of this Section.

A. Targeted Attacks

Vaidya et al. [30] pioneered the first whitebox targeted
method for attacking ASR in 2015. Given the transcription to
target, they gradually approach the target by continuously fine-
tuning the parameters of the extracted MFCC features. Once
the goal is reached, they use the obtained adversarial MFCC
features to reconstruct the speech waveform. On the basis
of Vaidya’s work and in an effort to improve the efficiency
of their approach, Carlini et al. [7] proposed Hidden Voice
Command in 2016, adding noise that is often encountered in
real life. However, neither of these two types of attacks can
conceal the existence of noise, and such adversarial attacks can
be easily detected as noise rather than effective commands.

Yuan et al. [34] proposed a method for embedding com-
mands into songs so that when these songs are played, the
commands will be translated by an ASR. Additionally, they
improve the realistic nature of adversarial attacks by intro-
ducing noise generated by hardware devices. This approach,
however, is restricted to songs as the carrier of commands,
and is, therefore, limited in application scenarios.

Carlini et al. [8] in 2018 used a whitebox approach that
applies gradient descent to modify the original audio so
that the difference between the transcription and the target
text is smaller. Their experimental results show their attack
Success Rates reached 100% on Deepspeech ASR. How-
ever, their approach faces the following drawbacks: First, it
can take up to several hours to generate attacks; second, the
gradient descent method requires the attacker to have a good
understanding of all the internal parameters and structures of
the attacked system before it can be used; and finally the
adversarial attacks generated will be invalid over other ASRs.

Yakura et al. [32] proposed some improvements to [8]
to maintain attack performance under over-the-air conditions
(mixed with sound of the surrounding environment). They
generate adversarial attacks accounting for noise caused by
echo and recording in real life, so as to obtain more robust
adversarial attacks. However, other shortcomings in Carlini et
al. [8] (such as long generation time and weak transferability)
have not been addressed.

6Results for Librispeech dataset follow a similar trend and can be viewed
in Extension file Section 1.3.2.

In 2018, Schonherr et al. [26] developed a whitebox ap-
proach that applies the knowledge of masking threshold to
generate adversarial attacks. They proposed to limit the gen-
erated noise below the masking threshold of the original audio
to ensure that the obtained perturbation is not audible to the
human ear. In more recent work [25], they introduced room
impulse response (RIR) simulator to improve the robustness
of examples that produces different types of noise for different
environment configurations.

Inspired by Schonherr et al., Qin and Carlini et al. [23]
developed a whitebox method and optimized perturbations to
make it lower than the masking threshold of the original audio.
This method achieved a 100% attack Success Rate on
the Lingvo system. However, their algorithms only study the
attack on traditional signal-processing-based ASRs, and has
not studied the end-to-end ASRs that have emerged in recent
years. Adbullah et al [2] adapted the algorithm for end-to-end
ASRs on the basis of those two. But again, it’s also a targeted
white-box attack, and those limitations are still unresolved.

Like other whitebox targeted approaches, their work lacks
portability to other ASRs and is time consuming for attack
generation.

Around the same time, Szurley et al. [28] proposed a white-
box method similar to Schonherr et al. [25], [26] and Carlini et
al. [8], [23] that constructed an optimization based on masking
threshold and combined it with room reverberation. Their
method reached a 100% Success Rate on Deepspeech but
still suffers from limitations of lack of portability and time
consuming attack generation.

a) Blackbox-targeted approaches: Few Blackbox Tar-
geted adversarial attack generation techniques exist in the lit-
erature [4], [29], [35]. Zhang et al. [35] in 2017 modulated the
voice on the ultrasonic carrier to insert preset commands(like
”Open the window”) into the original audio. However, this
method is not easy to reproduce as it uses hardware charac-
teristics of the microphone to complete the attack. Alzantot et
al. [4] proposed a iterative optimization method that adds a
small amount of noise iteratively to a benign example until
the ASR outputs a target label. Taori et al. [29] used a
genetic algorithm to achieve iterative optimization, mutating
benign examples until the ASR output matches a target label.
These approaches for blackbox targeted attacks suffer from
the following two weaknesses: First, they require thousands
of queries to ASRs to generate one adversarial attack, which
is unrealistic. Secondly, these attacks are only applicable to
ASRs that aim to classify audios, not translate audios.

B. Untargeted Attacks

The only known untargeted blackbox adversarial ASR at-
tack generation approach is that proposed by Abdullah et
al. [1] in 2019. They construct an adversarial attack by
decomposing and reconstructing the original audio. Specif-
ically, they decompose the original audio into components
called eigenvectors via Singular Spectrum Analysis (SSA).
These eigenvectors represent the various trends and noises
that make up the audio. They believe that eigenvectors with
smaller eigenvalues convey limited information. They choose
a threshold to classify eigenvalues as small and subsequently
eliminate small eigenvectors. They then reconstruct an audio
from the remaining components as the adversarial attack. We



compare performance of our techniques against their approach
in Section V-D.

VII. CONCLUSION

We proposed a blackbox untargeted adversarial attack gener-
ation technique for ASRs using frequency masking to make the
adversarial audio sound similar to the original while producing
a change in the transcription. Our framework, SPAT, provides
three attack generation options — GL, OP and DE. We also
provide the option of selectively introducing perturbations to
a small fraction of audio frames using three frame selec-
tion options — Random, Important and A1l. Evaluation
of our techniques over three ASRs and two audio datasets
showed that our techniques can be effective at achieving high
WERs (average of 44% with OP+A11) while also achieving
high Similarity (average of 3.93 with OP+Important).
The choice in attack generation and frame selection helps
achieve a good balance between these two metrics, with
DE attack generation and Important frames achieving the
best trade-off. We also confirmed that our techniques were
portable across ASRs and superior to existing whitebox tar-
geted technique [8] and blackbox untargeted technique [1] in
terms of WER, Similarity, Success Rate, Time
and Detection score.
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