
A Reference Architecture for Blockchain-based
Traceability Systems Using Domain-Driven Design

and Microservices
Yanze Wang1, Shanshan Li1,∗, Huikun Liu1, He Zhang1, Bo Pan2

1State Key Laboratory of Novel Software Technology, Software Institute, Nanjing University, Nanjing, China
2Terminal Cloud Service Department, Huawei Technologies Co.,Ltd, Nanjing, China

∗Corresponding Author
Email: {yzwang9826@gmail.com, lss@nju.edu.cn, chloeliuliu@126.com, hezhang@nju.edu.cn, panbo17@huawei.com}

Abstract—Traceability systems are important for solving prob-
lems due to the increasing scale of the global supply chain,
such as food safety crises and market disorder. Blockchain, as
an immutable and decentralized ledger, is able to optimize the
traditional traceability system by ensuring the transparency and
reliability of the system data. However, the use of blockchain
technology may lead to a rapid increase in the complexity of
system design and development. It is challenging to address
widespread and complicated business, changeable processes, and
massive data in practice, which are the main factors restricting
the wide application of a blockchain-based traceability system
(BTS). Therefore, in this paper, we reviewed relevant studies and
proposed a reference architecture for BTSs. The proposed refer-
ence architecture can improve the cohesiveness, maintainability,
and extensibility of BTSs through domain-driven design (DDD)
and microservices. Considering the efficiency reduction caused by
massive data and complicated data structure, we further changed
the traditional single blockchain framework into multiple sub-
chain networks, which could improve development efficiency
and system performance. With the guidance of the architecture
trade-off analysis method (ATAM), we evaluated our reference
architecture and implemented a prototype in the salmon supply
chain scenario. The results show that our solution is effective and
adaptable to meet the requirements of BTSs.

Index Terms—Reference Architecture, Traceability System,
Blockchain, Domain-driven Design, Microservice

I. INTRODUCTION

Numerous food safety scandals have severely undermined
consumer confidence in the food industry and have caused
growing concerns about food safety and quality in the global
supply chain industry [1]. People are struggling to find
an effective way to deal with these issues, and the term
“traceability system” is now being used more frequently than
ever before [2]. The core concept of an ideal traceability
system was described by Kim et al. [3] in 1995, which is
the ability to track products and activities. These activities
include buying, selling, transporting, etc. [4]. All of these
activities can describe the route of the product to solve the
food safety crisis and increase people’s confidence. As a result,
the traceability system is gradually applied in all walks of life.
However, there are still problems with traditional traceability
systems that prevent their widespread use: (1) Data are often
opaque and fabricated [5]. (2) Most traceability systems are

currently based on a centralized database, which is easy to
manipulate [6]. (3) Blocking data communications between
enterprises and centralized databases leads to single points of
failure and business bottlenecks [7].

Blockchain [8] is a popular solution for traceability systems,
which combines cryptography, consensus mechanisms, and
smart contracts to maintain data transparency and reliability.
It can provide an immutable and transparent method for
recording system transactions [9]. In addition to the benefits,
blockchain may also pose difficulties in designing, developing,
and operating traceability systems. Currently, the architecture
design of blockchain-based traceability systems (BTSs) is a
hot but immature research topic [10]. First, the complexity
and breadth of the current business process for BTSs [11]
can lead to a sharp increase in the workload of the de-
velopment, implementation, and maintenance of traceability
systems, especially in smart contracts. Frequent changes in
business affect the normal operation of the function and
reduce the efficiency and precision of traceability, causing
a demand for extensibility [12], [13]. Second, the business
process traceability system is complex, and the supply chain
needs to involve many components like production, supply and
marketing as well as the dependencies among them in each
link, which increases system complexity greatly [14]. Third,
the large amount of business data leads to a degradation in the
performance of blockchain storage, and the changeable data
structure increases the overhead of blockchain data operation
and maintenance [15].

To address the challenges mentioned above, we conducted
this in-depth research considering three motivations: (1) Ex-
plore a common approach to build the architecture for a
complex BTS in the general business domain. (2) Create a
reasonable division schema of business scenarios and delineate
clear dependencies between domains to deal with possible
business changes and domain complexity. (3) Study how to
better maintain reliability under massive data.

Specifically, for the first aspect, we tend to propose a
reference architecture that models the components, functions,
and data flows of complex BTSs. The reference architecture
can shape the overall quality of the system and can be further

ar
X

iv
:2

30
2.

06
18

4v
1

 [
cs

.S
E

]
 1

3
Fe

b
20

23

adjusted to business goals [16], [17]. Through the reference
architecture, we can also ensure the standardization of the
concrete system architectures, achieve system interoperability,
decrease design complexity, and improve development pro-
ductivity [18], [19]. Then, for the second and third aspects,
we utilize the domain-driven design (DDD) with microser-
vices to realize the business scenario division and decrease
domain complexity of a BTS. DDD is a software development
method that can help developers design high-quality software
models [20] and is common to be roughly divided into four
layers. It can establish and separate domain models through
concepts such as domain objects and detailed hierarchical
design [21]. DDD isolates the domain layer, and software
developers can choose the better model and design schemes to
maintain consistency between the code implementation and the
business model [22]. Additionally, through domain division,
transactions can be processed in parallel in different domains,
which can improve overall performance and data workload.
Microservice architecture (MSA) is an architectural solution
that divides the traditional single architecture into multiple
services based on business modules. MSA can significantly
improve development, operation, extensibility, and mainte-
nance efficiency [23], [24]. Moreover, MSA has gradually
become a common way to realize a bounded context in DDD.
In contrast to DDD’s focus on dealing with complex domain,
MSA focuses on independent development, testing, building,
and deployment of architecture modules.

The contributions of this paper are as follows.

• We provide a reference architecture suitable for the design
of complex BTSs. The proposed architecture has better
maintainability and extensibility and can be widely used
in many traceability domains.

• We introduce DDD into the proposed reference archi-
tecture, which controls the complexity caused by com-
plicated and variable business scenarios and the de-
pendencies among different domains, and improves the
development efficiency of the system.

• We provide a method to decompose BTSs according
to the business domain and implement a multi-chain
as microservices, which improves the data processing
capacity compared to the single chain.

• We evaluate our reference architecture following the
architecture trade-off analysis method (ATAM) and im-
plement a prototype in the salmon supply chain scenario.
It not only displays the effectiveness of our solution but
also provides a guide for researchers of other related work
in the future.

The paper is organized as follows. Section II gives back-
ground and related work. Section III presents the generation
of our reference architecture. Section IV describes in detail
the proposed reference architecture. Section V is about the
evaluation of our solution using ATAM. Section VI discusses
threats to validity. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Blockchain-based Traceability Systems

Many studies have explored the architecture design of
Blockchain-based Traceability Systems (BTSs). For example,
Chen et al. [25] presented their framework in the traceability
of drugs and developed a blockchain-based prototype. Li
et al. [26] proposed a master-slave multi-chain blockchain
in seafood product traceability system architecture, which
improves the isolation of private data and solves the problem
of poor load on a single blockchain. Mueen et al. [27] sum-
marized the problems in the drug supply chain and proposed
two different drug traceability systems based on Hyperledger
Fabric and Hyperledger Besu frameworks. Xu et al. [28]
applied blockchain in a real-world project: OriginChain, for
cross-border traceability. However, the current effort still suf-
fers from complicated blockchain-based framework and cannot
balance between the extensibility and efficiency. There are still
shortages in the development and maintenance of BTSs.

B. Reference Architecture

A reference architecture is a reference model mapped
to system components and data flows between them [19],
which can provide clear descriptions of the interrelationships
of complex systems and ensure the consistency of domain-
specific solutions [17]. By reducing the complexity of the
system architecture, reference architectures are very attractive
in complicated systems, especially when the organizations of
the system become large and distributed [29].

Many studies have been carried out in the area of reference
architecture. Ataei et al. [30] provided an event-driven mi-
croservice architecture and has a good degree of applicability.
Geest et al. [31], by applying a domain-driven architecture
approach, designed a reference architecture that could track
and trace goods in Industry 4.0. Bhattacharya et al. [32]
proposed a blockchain-based reference architecture for the
chemical industries, introducing traceability and transparency,
as well as lowering costs in the chemical product supply chain.
A reference architecture for chain-wide transparency systems
in meat supply chains was presented in the study by Kassahun
et al. [33]. The work of Isaja et al. [34] introduced a reference
architecture for industrial automation that takes advantage of
edge computing and blockchain technologies.

C. Domain-Driven Design and Microservices

DDD is a method for the domain analysis and modeling
of complex software systems. The complexity of software
engineering arises from complicated domain business and
design [35], which are difficult to address using traditional ap-
proaches. Evans et al. [20] proposed the four-layer architecture
of DDD, including the presentation, application, domain and
infrastructure layer, and is widely used in numerous scenarios.

DDD includes two processes, strategic design and tactical
design. Strategic design is a method to decompose the prob-
lem space, focusing on model decomposition and complexity
control [36]. The bounded context, an important component of

strategic design, is a division of the solution space. Compo-
nents within a bounded context have common responsibilities,
and the semantics within that scope are explicit. Tactical
design is the detailed design and implementation of the domain
model in each bounded context. An entity is an object with an
identity, and its business changes are tracked during the tactical
design process. Domain events represent events that occur
in the problem space that are of interest to domain experts,
mainly for documenting model history and communication
across boundaries. Repositories encapsulate the persistence
operations of domain entities in the infrastructure layer, de-
coupling the domain layer from the infrastructure layer.

The microservice architecture is a popular architectural
style that supports the extensibility and maintainability of sys-
tems [24]. Each small and independent microservice contains
its own business logic, user-handling functions and back-end
functions, and the most attractive characteristic is the decom-
position of complex applications for better development and
maintenance. Microservices are autonomous and communicate
by open protocols, hence, they can be developed independently
and even with different technologies [37].

This paper provides a reliable reference architecture by
combining DDD and microservices to improve the BTS de-
sign. Each microservice in our architecture has better cohesion,
maintainability, and extensibility and can cope with a complex
business framework and variable requirements.

III. GENERATION OF ARCHITECTURE

A. Problem Identification

To get a clearer picture of BTS design, we conducted liter-
ature research and found that BTSs are widely used in many
application scenarios [11], [38], such as the aquaculture [26],
[39], cold-chain industry [40], pharmaceutical industry [25],
[27], agriculture [41], [42], etc. Each domain has different
business models and requirements, leading to different archi-
tectural solutions and design implementations [15], [43].

The literature review reflects that the architecture designs
of the BTS are immature [10] and it still lacks a common
and powerful architecture design solution [44]. It is difficult
to ensure the overall performance, extensibility, and maintain-
ability of systems [12], [13] with different scenarios. Each
business manages its own system, leading to mismatches
between software and data structures [45]. As mentioned in
Section I, business complexity and massive data have become
the two main constraints. We describe these two problems to
better understand the requirements as follows.

The first problem is the complexity and breadth of the cur-
rent business process for traceability systems. In a traceability
system scenario, products need to go through multiple stages.
Different scenarios have different processes, and it is exhaust-
ing to customize a dedicated blockchain-based architecture
for each scenario independently. Complicated processes also
make traceability more challenging. Additionally, there are
many factors that affect business alignment. Frequent business
variations lead to changes in the traceability process and
data structure, resulting in difficulty in maintenance of smart

contracts and traditional software components. Due to the one-
time deployment and difficulty of modification features of
smart contract, the normal operation of traceability functions
is affected, and also reduces the efficiency and accuracy of
data. Therefore, it is important to ensure that the architecture
is extensible enough to deal with changeable scenarios, which
also leads to a dramatic increase in the complexity of smart
contracts running on the blockchain.

The second problem is the massive and volatile data.
Business scenarios are diverse and extensive, with a large
volume of data and a volatile data structure. The data saved
on the blockchain includes not only business information on
the enterprise side but also user data on the client side. The
huge amount of data leads to degradation and overload of the
performance of the blockchain network, which puts pressure
on the operation and maintenance of decentralized storage.
Moreover, storing such data in a single blockchain may not
be suitable due to the large storage space and frequent change
of data structure.

B. Requirement Definition and Analysis

Based on the above problems identified in current BTSs and
the concept of DDD and microservices, we have defined three
general requirements and corresponding solutions, which is
the initial design of the reference architecture.

Requirement 1. The architecture method needs to be suit-
able enough to describe various scenarios.

We need to identify common points to construct a common
approach to describe various business scenarios. And based
on the literature and our practical experience, we found three
common business processes: (1) Logistics tracking: It monitors
and records the route of products and provides complete
tracking results. (2) Warehouse management: It is also another
important part of warehouse operation, and a reasonable design
can ensure reliable data. (3) Entity information management:
It can keep records of supply chain participants.

Requirement 2. Architecture should deal with frequent
changes in real business

Based on the solution of requirement 1, we introduced the
concept of DDD and microservice to deal with a changing
business process. DDD divides the complex business into
domains using strategic design and tactical design, and we can
use different domains to construct various business processes.
And microservice is a typical method to realize the bounded
context of DDD. Considering the granularity of the service, the
dependency relationship, and the division of the boundaries,
various components of the system are realized for construction.

Requirement 3. Architecture should maintain reliability
and performance under massive data

When DDD divides the entire business into different do-
mains, it also divides the data into different parts. Each domain
needs to maintain its own data, which are relatively isolated
in different domains, so data mixing can be prevented. And
based on the theoretical concept of microservices, a multi-
chain framework is also designed. In this way, load balancing
is achieved between business domains, which improves the

reliability of the traceability system under large workloads.
The load-balancing mechanism can also increase overall per-
formance as transactions in different domains are executed in
parallel on different blockchains.

Based on the requirements with solution described above
and the hierarchical architecture of DDD, we design our
reference architecture, which is introduced in the next section.

IV. REFERENCE ARCHITECTURE FOR TRACEABILITY
BLOCKCHAIN SYSTEM

A. Overall Framework

Based on the above section, we proposed a reference
architecture for BTSs describing the main components, func-
tions, and internal relationships, as shown in Fig. 1. DDD
changes the traditional three-layer architecture into four-layer
architecture, which are: presentation layer, application layer,
domain layer, and technology layer. The presentation layer is
used to handle requests and visual interface. The application
layer is for domain model invocation. In domain layer, we
logically structure it into three sub-layers because they are
key to expressing the core concept of business process and
logic; other roles like value objects or domain events are
included in these sub-layers. At the bottom layer, we use
the term “technology” instead of “infrastructure”, because
compared to the responsibility of data persistence, we intro-
duced blockchain technology to ensure trusted, secure and
decentralized data storage, combined with external dependen-
cies, including middleware and database management systems.
The functionalities are realized by smart contracts running
on the blockchain, which can keep processes reliable while
automating back-end processes.

Besides the four layer structure , there are also include
six domains in our reference architecture. According to our
literature review, we have identified three common processes
in Section III, which are logistics tracking, storage man-
agement and entity information management. Then we split
up the processes into single operations and got 25 different
operations. Because each operation has its own concern, we
can further cluster them into different domains based on the
principle of separation concerns and context mapping patterns
such as anti-corrosion layer, customer/supplier, and conformist
proposed by Evans et al. [20] in DDD. And finally, we get six
domains to describe the whole business as shown in Fig 1.

Presentation layer: The presentation layer presents the
necessary data information to users while receiving feedback
from them, such as the graphical interface, user operation
capture, data forwarding, etc., which is used to interact with
an external user. This layer consists of six functional parts
that correspond to six domains. And the details of the domain
and functionality division will be described below. All the
necessary data in the below layers must be reflected in the
presentation layer. The front end consists of mobile and PC
terminals and is suitable for various situations.

Application layer: The application layer is a thin layer that
defines the tasks to be performed by the software and does
not contain business rules or knowledge. It is responsible for

organizing the flow of the entire application and coordinating
the domain layer objects to perform the actual work. Here, we
have designed it in two parts: API gateway and task scheduling
module. The API gateway can communicate with presentation
layer through HTTP, and task scheduling module’s responsibil-
ity is to coordinate the work of the components such as domain
entities, repository, etc. This layer usually accepts parameters
from the presentation layer and then schedules domain entities
and other components from the six domains to solve problems.

Domain layer: The domain layer is the core layer of the
DDD-based reference architecture.

As for the three sub-layers, the business service sub-layer
is the business/domain logic of each domain, and it can
publish or subscribe domain events and register service for the
business demands. And the domain entity sub-layer consists
of the participant entities including enterprises, common users,
supervise departments, inventories, etc. Finally the repository
sub-layer records the certification and relative information of
the domain entities; it is also the way to communicate with
the blockchain through its blockchain gateway.

And as for the six domains, the domain of user authority is
mainly for user identity authentication, providing services to
users, and blocking illegal access. Enterprises are the main
participants in the supply chain, and the enterprise record
domain is designed to keep detailed records for traceability
and enterprise cooperation. The warehousing domain is to
record the inbound and outbound products and then monitor
and record the route of the product at all times. The inventory
domain, such as transit stations or destination locations of
the route, can identify the quantity and related information
of the product in each inventory. The supervision domain
keeps a close eye on the business entities and their operations
and is the key to keeping the entire system controllable.
The traceability domain is to record the route of products
throughout the supply chain and provide timely feedback
on the request for traceability information. Each domain is
responsible for processing related business processes. The data
accessed on-chain are constructed into domain entities, and the
domain entities operate the business logic in them to provide
services upward.

Among the six domains we mentioned above, there are three
domains that are not the focus of our attention: the user author-
ity domain, the enterprise record domain and the supervision
domain. The domain of user authority and enterprise record
are similar to the traditional access control system and member
information management system. The supervision domain is
mainly used for information modification and supervision,
and its operations do not contain too much business logic.
Therefore, we do not describe these three domain in detail. We
discuss the four remaining types of domain and microservice
in detail in the following section.

Technology layer: The main support technology that we
use is blockchain, combined with other assistive technologies,
including the InterPlanetary File System (IPFS), Nacos, etc.
Here, we only introduce the general structure of a blockchain,
and any blockchain that has a smart contract is suitable.

Domain :
User authority

API gateway

Smart
contract

Blockchain

Consensus mechanism

Underling storage

MQNacos

IPFS

User
authority

Enterprises

Product

Inspection
certificate

Product
batches

Inventory Supervision
departments

QR code

Product
logistics

 User
authority

microservices

Enterprise
record

microservices

Warehousing
microservices

Inventory
microservices

Supervision
microservices

Traceability
microservices

Certification

Blockchain
gateway

User
authority

Enterprise

Product
Inventory Supervision

records Traceability

User
sub-chain

Enterprise
sub-chain

Warehousing
sub-chain

Inventory
sub-chain

Supervision
sub-chain

Traceability
sub-chain

HTTP

Application layer

Domain layer

Technology layer

 Sub-layer:
Domain
entity

 Sub-layer:
Repository

 Certification

Blockchain
gateway

Certification

Blockchain
gateway

Certification

Blockchain
gateway

Certification

Blockchain
gateway

Blockchain
gateway

 Sub-layer:
Business
service

Domain :
Enterprise

record

Domain :
Warehousing

Domain :
Inventory

Domain :
Supervision

Domain :
Traceability

External dependencies

RD

Inspection
certificate

Product
batches

Certification

Presentation
layer

 Task scheduling module

User interface Mobile / PC

 Identity
authentication

Record
enterprise

information

Add
certification
Outbound /

inbound

Declare
inventory

Query
Inventory

Modify
status

Supervise

Generate
QR code

Fig. 1. The Reference Architecture Proposed for BTSs

Blockchain is used to store supply chain information about
products and operations submitted by organizations in the sup-
ply chain. Smart contracts are deployed on each corresponding
sub-chain, respectively, based on domain requirement; thus,
there are six types of smart contract running on the blockchain.

Due to the large number of certification documents involved
in each organization in the traceability system, we used IPFS
as the system’s file storage platform, which supports the on-
chain and off-chain storage strategy to alleviate blockchain
storage pressure. We introduce the QR code to record stocks
and check products in the system, as it is ideal to accelerate
inventory control [43]. Other information that does not affect
business critical operations can be stored directly in the
relational database (RD).

The system also introduces middleware that provides basic
functions to ensure the integrity of the architecture, such
as Nacos, a service registration and discovery middleware
required for communication between microservices, enhancing
the availability and reliability of the system. Moreover, the
introduction of distributed message queues (MQs) provides the
fundamental service for communication using domain events

in each service, which can ensure timely publication and
subscription of domain events in the system.

B. Blockchain Network Architecture

Microservice architecture is an architectural concept that
divides complex systems into multiple modules. Each module
focuses on one function, is highly cohesive internally but
low-coupled. Based on the theoretical concept combined with
blockchain technology, we establish a master-slave blockchain
framework corresponding to the supply chain domains. Each
sub-chain responsible for a specific domain including user
authentication, enterprise, warehousing, inventory, traceability,
and supervision of the supply chain. The reference architecture
adopts a master-slave multi-chain storage model to manage
traceability data and to construct a product traceability infor-
mation management model, thus achieving overall monitoring
of products in the supply chain. As shown in Fig. 2, based
on the principle of microservice, the entire blockchain system
is divided into six sub-chains with a main chain. Each sub-
chain is registered with organizations that have access to the
sub-chain’s ledger by using the certification.These sub-chains

undertake different business domain and connect to the main-
chain through the smart contract.

The main chain only records metadata and indexes to
facilitate data location when users and other entities send
traceability requests. All companies in the supply chain are
supposed to jointly maintain the main chain.

In this network, data privacy is protected. Only the organi-
zations registered to the sub-chain have access to data in the
ledger. Since the supervising organization has the demand of
supervision, it is registered to all sub-chains. Only the public
information of the product can be accessed by a traceability
query and private data must be authorized by its owner.

Considering the large number of system users and trans-
action traffic, we are supposed to use non-Byzantine fault-
tolerant consensus protocols such as Raft to improve perfor-
mance. Besides, the world state database of blockchains should
be as lightweight as possible, such as CouchDB. The smart
contract design process should also try to avoid serious CPU-
consuming operations and IO-intensive operations.

Smart contracts should be consistent with the granularity of
domain entities for extensibility and modifiability. When the
requirements of the system change, the developer only needs to
modify the smart contract corresponding to the specific domain
entity, without unnecessary upgrading of other contracts.

C. Domain-Driven Design

(1) Strategic Design
Here, we will discuss the formation and mapping of

bounded contexts. Based on the common process we have
found, the user stories are identified and decomposed, and
we initially obtain four user stories. Then we conduct further
decomposition, until the sub-user stories are focused on only
a single domain problem or become an operation. Next,
each sub-user story is clustered according to the problem its
concerns, and we obtain the six domains mentioned above.
The bounded context is designed to define domain boundaries
and we designed six bounded contexts, respectively.

In addition, combined with business logic, we introduced
context mapping patterns to confirm the dependencies and re-
lationships among these contexts. We utilized the anticorrosion
layer in the supervision context because of its dependence
on multiple contexts including the enterprise context, the in-
ventory context, and the warehouse context. The warehousing
context’s operation will be recorded in the traceability con-
text, which is a customer/supplier relationship. The enterprise
context relies on detailed information in the user context and
the inventory context, so it forms a conformist relationship.

(2) Tactical Design
Based on the above strategic design, we will discuss four

domains in detail. For each domain, we outline its basic
functionality and describe it through flowcharts.

The warehousing domain is responsible for recording the
inbound and outbound products. The key process is shown
in Fig. 3. When the product is received from the upstream
supplier, the enterprise first checks the receipt. If there is a QR
code for traceability, the system will automatically inbound the

product by scanning the QR code. Users of the enterprise need
to search for the ID of the cargo batch through inspection and
quarantine certifications because a certification ID is assigned
to multiple batches of cargo that have been endorsed by the
quarantine bureau. If there is no certification information for
a certain batch of cargo, users should first update the relevant
information in the system.

When users perform an inbound product operation, the
warehouse will be checked according to the outbound informa-
tion from the upstream supplier. If something is incorrect, an
exception will be thrown. Otherwise, the warehousing domain
will send warehousing events through the domain entity, then
traceability domains and inventory domains will handle the
warehousing events accordingly after monitoring them. After
the outbound operation, the warehousing domain also sends
domain events to the message queue.

The inventory domain serves the inventories and is respon-
sible for the quantity of the product and related information.
The inventory domain management flow chart is shown in
Fig. 4. Here is the detailed process: the front-end receives
the qualification uploaded by the user, which will be sent and
stored in IPFS storage system of the back-end. After the file
is successfully stored, an IPFS hash code of a specific proof
file will be passed back to the front-end. When users submit
the warehousing qualification information in the front-end,
the hash code will be submitted together. The warehousing
qualification information will be uploaded to the blockchain.
When the warehousing qualification is approved by the super-
vision department, enterprise users can use the warehousing
management function to query inventory data.

The warehouse operation can trigger the sending of domain
events, and the event listener in the inventory service listens to
the inbound and outbound domain events in a timely way. If
there is an outbound event, the inventory microservice invokes
the smart contract on the blockchain inventory sub-chain to
transfer the goods and assets. While it is an inbound event, the
inventory microservice invokes the smart contract to modify
the corresponding status field. All of the operations will be
reflected on the front-end.

The traceability domain access information on the route of
products throughout the supply chain. The key process of the
traceability domain is shown in Fig. 5. When organizations in
the traceability supply chain receive a product, they first verify
whether the package has a traceability QR code. If there is no
QR code or it is damaged, the enterprise needs to download the
QR code from the system and re-code the product. Enterprises
can also print an outbound receipt with the QR code, which
will be sent to the downstream company, where they can easily
record the inbound product by scanning the QR code on the
outbound receipt. Finally, any unit that gets a product with the
correct QR code can be traced. When scanning the QR code in
the package, the system immediately receives the traceability
data on the blockchain and displays the result on the front end.

In general, by combining the reference architecture with
DDD and microservices, the system achieves better cohesive-
ness, maintainability, and extensibility. Each domain service

Sub-chain :
 User

authentication

Main-chain

Smart Contract Certification

Node

Node Node

Organization :
 User authentication

Sub-chain :
 Enterprise

Node

Node Node

Organization :
Enterprise

Sub-chain :
Warehousing

Node

Node Node

Organization :
Warehousing

Sub-chain :
 Inventory

Node

Node Node

Organization :
 Inventory

Sub-chain :
 Traceability

Node

Node Node

Organization :
 Traceability

Sub-chain :
Supervision

Node

Node Node

Organization :
Supervision

Node Node Node Node Node Node Node

Fig. 2. The Blockchain Network Architecture

tmp1�

Start

�Traceability��
QR�code?

No

Product
inbound�

Update
certification�

Yes

No

Throw
exception

No
Yes

Requiring��
outbound?

Product
outbound�

Yes No

End

Inbound�
����permission？

Search�
�cargo�batch

�

Quarantine��
certification？

�
Scan�the
�QR�code

Fig. 3. The Key Process for the Warehousing Domain

tmp2�

Render�on
the�front-end

End

Start

qualification
information

Upload�to
blockchain

�Qualification�
approved？

Query�inventory
data

Invoke
transfering

Modify�status
field

InboundOutbound

No Yes

Listen�event�

Send�file

Send�hash

Inbound�or��
outbound?

IPFS��
storage

Fig. 4. The Key Process for the Inventory Domain

tmp4�

End

Having�
traceability��
QR�code?

Start

No

Download
code�

Scan�
QR�code

Traceability
information�

Obtain�
on-chain�data

Download
receipt

Yes

No Yes

Re-code�the
product�

Requiring�to�
print�receipt?�

Fig. 5. The Key Process for the Traceability Domain

can be run separately and deployed independently. When
business changes, such as adding new logistics lines or in-
troducing new companies, the functions of the system can be
quickly expanded by releasing and integrating new services.
Since domain services are relatively isolated, transactions will
be distributed and paralleled. For example, the traceability
service focuses on querying the transaction process, while the
warehousing service focuses on writing product and inven-
tory information, which can improve system efficiency and
availability. In addition, due to the high cohesion of domain
services, each team can focus on and choose the domain
services they are good at for development and maintenance,
improving agility and development efficiency.

V. EVALUATION

Given the high level of abstraction in the reference architec-
ture, it is a challenge to evaluate an abstract architecture [46].
At this stage, we confirm and verify the viability and ap-
plicability of the reference architecture proposed by ATAM
(architecture tradeoff analysis method) [47]. ATAM has been

used for over a decade to evaluate architectures and is also a
comprehensive approach to measure architecture’s fitness with
respect to multiple competing quality attributes.

Thus, we implemented a reference architecture prototype
to introduce the ATAM. In general, the evaluation follows
two phases. In phase 0, we need to clarify the partnership
and prepare for informal meetings between stakeholders and
architects and to work out the details of the architecture. In
phase 1, everyone needs to begin to analyze what the system
is about, including the overall architectural approaches, the
quality attributes, the most typical scenes, and finally generate
the document. Considering the necessity and space limitations,
we are not going to talk about each detail of each step in
ATAM, and all the key steps and results are shown below.

A. Phase 0

The evaluation was conducted with a blockchain research
institute in China and applied to existing and new workflows.
This research institute conducts research, development, and
application of blockchain technology. More than 5,000 enter-
prises have been granted credit interaction on the platform,
with more than 40 core independent intellectual property
rights. The institute’s advisory team includes experts and se-
nior professors from home and abroad. And the core technical
team of the institute includes technical experts from IBM,
experienced system architects in blockchain technology.

We introduced them to ATAM and the stakeholders pre-
sented their business case. Due to China’s import policy,
companies are required to verify the traceability information
of imported Norwegian salmon, and transactions need a series
of traceability information. Therefore, we could demonstrate
and evaluate the core functions through the case of “The
traceability information of imported Norwegian salmon”.

B. Phase 1

In this phase, we implemented a prototype of our reference
architecture. Our prototype is based on the popular consortium
blockchain platform, Hyperledger Fabric. Under the guidance
of DDD and microservices, we analyzed the requirements of
the seafood traceability system and obtained its core function,
which was then combined with the quality requirement. Six
bounded contexts of the system domain were identified and we
further developed microservices, respectively. Spring Gateway
was used to integrate various microservices. Additionally,
we used IPFS to store business data to ensure security and
performance. Finally, we also implemented the user interface
for each role of the traceability system, which could ensure
that the entire system was truly usable.

We then describe our architecture and quality attribute
design to stakeholders and project managers to identify ar-
chitecture approaches, build quality attribute utility trees, and
analyze architectural approaches in priority scenarios.

1) Identifying architectural approach
We use the IEEE standard for a software quality metrics

methodology [48], [49] as a reference quality attributes model
in our architecture design. According to the standard, the

extensibility is the effort required to improve or modify the
efficiency and functionality of the software. To determine
the architecture approach, we obtained information on per-
formance and extensibility from the archetype.

• For performance, we realized that domain division and
transactions can be processed in parallel in different
domains.

• For extensibility, we discussed the need for the system to
have high extensibility to cope with business changes.

We explore the trade-offs, sensitivities, and risks of each
quality attribute.

2) Utility tree elicitation
Scenarios specify the stimuli that need to be captured

and to which the architecture must respond. These captured
stimuli are used to test the ability of the system to satisfy
functional and non-functional requirements. In this step, we
asked stakeholders to propose several different scenarios. Then
we asked each stakeholder to vote on each scenario. In total,
more than 25 scenarios were created, of which four have been
selected. We describe those four scenarios as two journeys:

• Before shipping seafood, business users must record
information about the current product with the upstream
and downstream suppliers of the company in the system
so that supervisors can track and review the products.

• Business users, supervisors, and consumers can use the
terminal device to obtain the traceability information of
seafood by scanning the code on the product.

We have learnt that security, extensibility and performance
are the most concerned attributes according to the stakehold-
ers. For security, a portion of the data on-chain has a relatively
high commercial value, and data leakage is unaffordable.
Besides, different entities have different responsibilities , and
illegal data access is forbidden no matter it is unintentional or
malicious. Thus, security is crucial because it affects the whole
system. For extensibility, there will definitely be business
expansion or update in the future, so it is necessary to reduce
the effort of code modification. And for performance, lower
latency and higher throughput can bring a better experience
for customers, and can also facilitate data cooperation between
enterprises. Based on their feedback, we adjusted the quality
attributes and generated a utility tree, as shown in Fig. 6.

tmp5�

Security

Performance

ExtensibilityUtility

Data�leakage�prevention

Permission�control

Code�modification�<�2%

Request�processing�delay�<�1500�ms

Throughput�of�query�>�2500�TPS

Fig. 6. The Utility Tree

3) Analyze architectural approaches
Based on the scenarios identified in the utility tree, we map

our architectural approaches to business scenarios and quality
attribute requirements and identify trade-off points.

Based on the salmon supply chain scenario, we imported
real data into the prototype. Relevant components and events
have also been created in the corresponding microservices
of different domains. We also create different accounts for
different roles in the traceability system, which can simulate
the functions of a traceability system throughout the salmon
supply chain to satisfy the demands of different typical sce-
narios. The three key quality attributes are discussed below.

Security: Our architecture is based on blockchain and IPFS
storage, which are distributed and decentralized databases.
The malicious have to invade more than half of the nodes
in the system network to modify the record. In addition,
all data are stored off-chain: only metadata, data hash, and
references to data files are stored online; the malicious cannot
find the data online directly. Also, different domains of data
are stored in different databases and participants in different
domains cannot access the data of others. The privacy and
confidentiality of the data are well protected.

Extensibility: Through the combination of DDD and mi-
croservices, we divide the traceability business into several
domains, and each domain in our architecture has better
extensibility. We also design domain events with monitoring
and handling functions to realize the decoupling of business
logic and to facilitate cooperation between domain entities.

Performance: To have a better understanding of the perfor-
mance, we conducted the test using the Hyperledger Caliper
tool, which is a framework to benchmark the performance of
blockchains for blockchain networks. The result shows that the
querying throughput is about 2800 TPS, and the average la-
tency is about 1.4s, which can satisfy the requirement. We use
multiple sub-chains to deal with transactions parallel, which
can balance load and reduces data storage and computing
stress of each sub-chain.

There are two trade-off points in this reference architecture,
i.e., the database system and the storage method. First, we
use IPFS to store business data, which has better data security
and privacy, but can significantly increase storage overhead
compared to a traditional system like MangoDB. Second, our
storage method is hash-storaged on-chain, whereas data are
stored off-chain. This storage method keeps data confidential
and complete, while there is a sacrifice in interoperability
compared to the choice of storing data directly on the chain.

VI. THREATS TO VALIDITY

In the design and execution of this study, an extremely
cautious attitude was taken to mitigate threats. Specifically,
the main threats to validity and the corresponding mitigation
strategies were considered when designing the reference ar-
chitecture and conducting the evaluation.

Conclusion Validity: The threat to the validity of the con-
clusion could be the lack of expert evaluation. To mitigate this
threat, we conducted the evaluation in authoritative blockchain
research institude with a team of top experts, since interpreting
the evaluation results and pointing out critical hidden facts
often require experts’ deep knowledge about the context.

Internal Validity: The architecture can behave differently
in different scenarios and is more complex than traditional
ones. To migrate this threat, we conducted sufficient research
on primary studies and literature reviews and carefully de-
signed our reference architecture to keep it reasonable.

Construct Validity: Experimenter bias occurs when re-
searchers evaluate the architecture in their own perception. To
migrate this threat, we reached a consensus with stakeholders
to finalize quality attributes and generate a utility tree for
objective evaluation.

VII. CONCLUSION AND FUTURE WORK

The development of global supply chains has increased
the requirement for traceability, and the construction of a
blockchain-based traceability system is a promising solution.
However, this increases the difficulty and complexity of de-
sign, development, and operation. Therefore, we designed a
reference architecture for a traceability system based on DDD,
blockchain, and microservices, which control the complexity
of system design, development, and operation. By utilizing
multiple sub-chains, we improve the data processing capacity
compared to a single-chain solution. Through a salmon BTS
prototype and evaluation with stakeholders and business man-
agers, we have demonstrated that our reference architecture
meets quality requirements and can be widely used in many
different scenarios. In the future, we plan to improve other
QAs such as interoperability of our reference architecture,
scale up the prototype, and achieve scenario customization
for BTSs of different domains. Additionally, we will continue
to perform a more solid evaluation with various real-world
systems and iteratively improve our reference architecture.

ACKNOWLEDGMENT

This work is jointly supported by the National Key Research
and Development Program of China (No.2019YFE0105500)
and the Research Council of Norway (No.309494), the Key
Research and Development Program of Jiangsu Province
(No.BE2021002-2), the National Natural Science Founda-
tion of China (No.62072227 and No.62202219), as well as
the Intergovernmental Bilateral Innovation Project of Jiangsu
Province (No.BZ2020017).

REFERENCES

[1] G. Rochefort, A. Lapointe, A.-P. Mercier, G. Parent, V. Provencher, and
B. Lamarche, “A rapid review of territorialized food systems and their
impacts on human health, food security, and the environment,” Nutrients,
vol. 13, no. 10, p. 3345, 2021.

[2] P. Olsen and M. Borit, “The components of a food traceability system,”
Trends in Food Science & Technology, vol. 77, pp. 143–149, 2018.

[3] H. M. Kim, M. S. Fox, and M. Gruninger, “An ontology of quality
for enterprise modelling,” in Proceedings 4th IEEE Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WET
ICE’95). IEEE, 1995, pp. 105–116.

[4] M. Bevilacqua, F. Ciarapica, and G. Giacchetta, “Business process
reengineering of a supply chain and a traceability system: A case study,”
Journal of Food Engineering, vol. 93, no. 1, pp. 13–22, 2009.

[5] S. Zhang, J. Ye, and G. Li, “Research and implementation of blockchain
technology scheme for cold chain logistics,” Comput. Eng. Appl, vol. 56,
no. 3, pp. 19–27, 2020.

[6] X. Zhang, Y. Sun, Y. Sun, and H. Chen, “Research on cold chain
logistics traceability system of fresh agricultural products based on
blockchain,” Intell. Neuroscience, vol. 2022, jan 2022. [Online].
Available: https://doi.org/10.1155/2022/1957957

[7] U. Bodkhe, S. Tanwar, K. Parekh, P. Khanpara, S. Tyagi, N. Kumar,
and M. Alazab, “Blockchain for industry 4.0: A comprehensive review,”
IEEE Access, vol. 8, pp. 79 764–79 800, 2020.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[9] M. M. Queiroz, R. Telles, and S. H. Bonilla, “Blockchain and supply
chain management integration: a systematic review of the literature,”
Supply Chain Management: An International Journal, pp. 241–254,
2019.

[10] G. M. Hastig and M. S. Sodhi, “Blockchain for supply chain traceability:
Business requirements and critical success factors,” Production and
Operations Management, vol. 29, no. 4, pp. 935–954, 2020.

[11] D. I. Handayani and I. Vanany, “Blockchain application in halal supply
chain: Literature review and future research,” in 2021 IEEE International
Conference on Industrial Engineering and Engineering Management
(IEEM). IEEE, 2021, pp. 1387–1391.

[12] Z. Zhao and K. J. Min, “Blockchain traceability valuation for perishable
agricultural products under demand uncertainty,” International Journal
of Operations Research and Information Systems (IJORIS), vol. 11,
no. 4, pp. 1–32, 2020.

[13] N. Adamashvili, R. State, C. Tricase, and M. Fiore, “Blockchain-based
wine supply chain for the industry advancement,” Sustainability, vol. 13,
no. 23, p. 13070, 2021.

[14] S. Islam, J. M. Cullen, and L. Manning, “Visualising food traceability
systems: A novel system architecture for mapping material and infor-
mation flow,” Trends in Food Science and Technology, vol. 112, p. 708
– 719, 2021.

[15] G. Mirabelli and V. Solina, “Blockchain and agricultural supply chains
traceability: Research trends and future challenges,” Procedia Manufac-
turing, vol. 42, pp. 414–421, 2020.

[16] J. Kohler and T. Specht, “Towards a secure, distributed, and reliable
cloud-based reference architecture for big data in smart cities,” in Big
Data Analytics for Smart and Connected Cities. IGI Global, 2019, pp.
38–70.

[17] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone,
“The concept of reference architectures,” Systems Engineering, vol. 13,
no. 1, pp. 14–27, 2010.

[18] R. Haesevoets, D. Weyns, and T. Holvoet, “Architecture-centric support
for adaptive service collaborations,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, no. 1, pp. 1–40, 2014.

[19] S. Angelov, P. Grefen, and D. Greefhorst, “A framework for analysis and
design of software reference architectures,” Information and Software
Technology, vol. 54, no. 4, pp. 417–431, 2012.

[20] E. Evans and E. J. Evans, Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley Professional, 2004.

[21] F. Rademacher, S. Sachweh, and A. Zündorf, “Deriving microservice
code from underspecified domain models using devops-enabled model-
ing languages and model transformations,” in 2020 46th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2020, pp. 229–236.

[22] F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges of domain-
driven microservice design: A model-driven perspective,” IEEE Soft-
ware, vol. 35, no. 3, pp. 36–43, 2018.

[23] P. Ray and P. Pal, “Extending the semat kernel for the practice of de-
signing and implementing microservice-based applications using domain
driven design,” in 2020 IEEE 32nd Conference on Software Engineering
Education and Training (CSEE&T). IEEE, 2020, pp. 1–4.

[24] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang, “Microservice
architecture in reality: An industrial inquiry,” in 2019 IEEE international
conference on software architecture (ICSA). IEEE, 2019, pp. 51–60.

[25] E. K. Kambilo, H. B. Zghal, C. G. Guegan, V. Stankovski, P. Kochovski,
and D. Vodislav, “A blockchain-based framework for drug traceability:
Chaindrugtrac,” in Proceedings of the 37th ACM/SIGAPP Symposium
on Applied Computing, ser. SAC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1900–1907. [Online].
Available: https://doi.org/10.1145/3477314.3507118

[26] M. Li, D. Xu, H. Yu, and C. Sun, “Design and implementation of aquatic
products blockchain traceability information management system based
on master-slave multi chain,” Fishery modernization, vol. 48, no. 3, pp.
80–89, 2021.

[27] M. Uddin, “Blockchain medledger: Hyperledger fabric enabled drug
traceability system for counterfeit drugs in pharmaceutical industry,”
International Journal of Pharmaceutics, vol. 597, p. 120235, 2021.

[28] X. Xu, Q. Lu, Y. Liu, L. Zhu, H. Yao, and A. V. Vasilakos, “Designing
blockchain-based applications a case study for imported product trace-
ability,” Future Generation Computer Systems, vol. 92, pp. 399–406,
2019.

[29] G. Muller and P. v. d. Laar, “Researching reference architectures,” in
Views on Evolvability of Embedded Systems. Springer, 2010, pp. 107–
119.

[30] P. Ataei and A. Litchfield, “Neomycelia: A software reference ar-
chitecturefor big data systems,” in 2021 28th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2021, pp. 452–462.

[31] M. van Geest, B. Tekinerdogan, and C. Catal, “Design of a reference ar-
chitecture for developing smart warehouses in industry 4.0,” Computers
in industry, vol. 124, p. 103343, 2021.

[32] P. Bhattacharya, A. Verma, and G. Sharma, “Blockchain-driven and iot-
assisted chemical supply-chain management,” in Emerging Technologies
for Computing, Communication and Smart Cities. Springer, 2022, pp.
779–791.

[33] A. Kassahun, R. J. Hartog, and B. Tekinerdogan, “Realizing chain-wide
transparency in meat supply chains based on global standards and a
reference architecture,” Computers and Electronics in Agriculture, vol.
123, pp. 275–291, 2016.

[34] M. Isaja, J. Soldatos, and V. Gezer, “Combining edge computing and
blockchains for flexibility and performance in industrial automation,”
in International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM), 2017, pp. 159–164.

[35] F. Ashfaq, I. Bajwa, R. Kazmi, A. Khan, and M. Ilyas, “An intelligent
analytics approach to minimize complexity in ambiguous software
requirements,” Scientific Programming, vol. 2021, pp. 1–20, 03 2021.

[36] V. Vernon, Implementing domain-driven design. Addison-Wesley, 2013.
[37] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A.

Babar, “Understanding and addressing quality attributes of microservices
architecture: A systematic literature review,” Information and Software
Technology, vol. 131, p. 106449, 2021.

[38] P. Dutta, T.-M. Choi, S. Somani, and R. Butala, “Blockchain technology
in supply chain operations: Applications, challenges and research oppor-
tunities,” Transportation research part e: Logistics and transportation
review, vol. 142, p. 102067, 2020.

[39] A. Parreño-Marchante, A. Alvarez-Melcon, M. Trebar, and P. Filippin,
“Advanced traceability system in aquaculture supply chain,” Journal of
food engineering, vol. 122, pp. 99–109, 2014.

[40] I. Masudin, A. Ramadhani, and D. P. Restuputri, “Traceability system
model of indonesian food cold-chain industry: A covid-19 pandemic
perspective,” Cleaner Engineering and Technology, vol. 4, p. 100238,
2021.

[41] X. Yang, M. Li, H. Yu, M. Wang, D. Xu, and C. Sun, “A trusted
blockchain-based traceability system for fruit and vegetable agricultural
products,” IEEE Access, vol. 9, pp. 36 282–36 293, 2021.

[42] S. Saurabh and K. Dey, “Blockchain technology adoption, architecture,
and sustainable agri-food supply chains,” Journal of Cleaner Production,
vol. 284, p. 124731, 2021.

[43] J. Qian, L. Ruiz-Garcia, B. Fan, J. I. R. Villalba, U. McCarthy, B. Zhang,
Q. Yu, and W. Wu, “Food traceability system from governmental,
corporate, and consumer perspectives in the european union and china:
A comparative review,” Trends in Food Science & Technology, vol. 99,
pp. 402–412, 2020.

[44] G. Varavallo, G. Caragnano, F. Bertone, L. Vernetti-Prot, and O. Terzo,
“Traceability platform based on green blockchain: An application case
study in dairy supply chain,” Sustainability, vol. 14, no. 6, p. 3321, 2022.

[45] P. W. Khan, Y.-C. Byun, and N. Park, “Iot-blockchain enabled optimized
provenance system for food industry 4.0 using advanced deep learning,”
Sensors, vol. 20, no. 10, p. 2990, 2020.

[46] S. Angelov and P. Grefen, “An e-contracting reference architecture,”
Journal of Systems and Software, vol. 81, no. 11, pp. 1816–1844, 2008.

[47] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere, “The architecture tradeoff analysis method,” in Proceedings.
fourth ieee international conference on engineering of complex computer
systems (cat. no. 98ex193). IEEE, 1998, pp. 68–78.

[48] “IEEE standard for a software quality metrics methodology,” IEEE Std
1061-1992, pp. 1–96, 1993.

[49] “IEEE standard for a software quality metrics methodology,” IEEE Std
1061-1998, pp. 1–20, 1998.

https://doi.org/10.1155/2022/1957957
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3477314.3507118

	I Introduction
	II Background and Related Work
	II-A Blockchain-based Traceability Systems
	II-B Reference Architecture
	II-C Domain-Driven Design and Microservices

	III Generation of Architecture
	III-A Problem Identification
	III-B Requirement Definition and Analysis

	IV Reference Architecture for Traceability Blockchain system
	IV-A Overall Framework
	IV-B Blockchain Network Architecture
	IV-C Domain-Driven Design

	V Evaluation
	V-A Phase 0
	V-B Phase 1

	VI Threats to Validity
	VII Conclusion and Future Work
	References

