
Unit Testing Challenges with Automated Marking
Chakkrit Tantithamthavorn, Norman Chen

Monash University, Australia
Email: {chakkrit, norman.chen}@monash.edu

Abstract—Teaching software testing presents difficulties due to
its abstract and conceptual nature. The lack of tangible outcomes
and limited emphasis on hands-on experience further compound
the challenge, often leading to difficulties in comprehension for
students. This can result in waning engagement and diminishing
motivation over time. In this paper, we introduce online unit
testing challenges with automated marking as a learning tool
via the EdStem platform to enhance students’ software testing
skills and understanding of software testing concepts. Then,
we conducted a survey to investigate the impact of the unit
testing challenges with automated marking on student learning.
The results from 92 participants showed that our unit testing
challenges have kept students more engaged and motivated,
fostering deeper understanding and learning, while the auto-
mated marking mechanism enhanced students’ learning progress,
helping them to understand their mistakes and misconceptions
quicker than traditional-style human-written manual feedback.
Consequently, these results inform educators that the online
unit testing challenges with automated marking improve overall
student learning experience, and are an effective pedagogical
practice in software testing.

Index Terms—Automated Marking, Software Testing Educa-
tion

I. INTRODUCTION

Software testing involves various abstract concepts like test
cases, test plans, coverage criteria, and different types of
testing. Unlike programming where students create tangible
outputs, the success of software testing is often measured by
what is found (i.e., defects, bugs) rather than what is created
(i.e., software, apps). This can quickly be demotivating for
some learners. Therefore, addressing the students’ motivation
and interest in software testing becomes imperative, and teach-
ing software testing with more practical exercises is crucial in
truly understanding testing processes.

However, software quality and testing subjects in many
institutions often have a large number of students enrolled
(e.g., 300+), which can be challenging for educators to perform
effective marking and provide effective timely feedback to
students. Manual feedback can indeed be inconsistent, time-
consuming, and can lead to delayed feedback. This can im-
pact the students’ learning process, leading to confusion for
students who receive mixed feedback about their submissions.

To address these challenges, we introduce online unit test-
ing challenges in order to increase students’ motivation and
engagement in learning software quality and testing. We also
introduce the automated marking mechanism to effectively
provide feedback to students, allowing students to understand
the effectiveness of their test suites (i.e., assessing functionality
completeness, correctness, and code coverage).

II. BACKGROUND AND RELATED WORK

In this section, we provide some background and discuss
the motivation with respect to related work in software testing
education and automated marking in computer science.

A. Software Testing Education

Software testing education is the process of imparting
knowledge and skills related to testing software applications
and systems. It involves teaching individuals various tech-
niques, methodologies, and best practices for ensuring the
quality, reliability, and functionality of software products.
Proper education in software testing is crucial to produc-
ing high-quality software that meets user requirements and
performs effectively in real-world scenarios. In particular,
Lemos et al. [6] found that software testing education often
leads to more reliable software.

Recently, Garousi et al. [4] conducted a systematic mapping
study of 204 papers published between 1992 and 2019. They
found that software-testing education is becoming more active.
Most of the studies focus on proposing novel pedagogical
approaches (i.e., how to teach better) and proposing tools
for teaching software testing. However, there are several
challenges that are not well explored. In particular, Garousi et
al. [4] found that software testing is often not well accepted
by students and the typical teaching practices often increase
the cognitive load when learning software testing. In addition,
Aniche et al. [1] found that Test Coverage is one of the most
difficult topics in software testing. They found that students
commonly either miss tests, i.e., they do not provide all the
expected tests for a given piece of code, or they write tests
that are not totally correct, e.g., the test does not actually test
the piece of code. The findings from prior work suggest that
addressing students’ motivation and interest in software testing
becomes imperative, and making teaching software testing
more practical like real-world practices is needed.

B. Automated Marking in Computer Science

Automated marking [2], [3], [7], also known as automated
grading or automated assessment, refers to the use of tech-
nology or software tools to evaluate and grade assignments,
exams, or assessments in the field of computer science and
other disciplines. This approach aims to streamline and expe-
dite the grading process, reduce the workload on instructors,
and provide timely feedback to students.

In the context of computer science, automated marking
can be applied to various types of assignments, including
programming projects and coding exercises. With various

ar
X

iv
:2

31
0.

06
30

8v
1

 [
cs

.S
E

]
 1

0
O

ct
 2

02
3

Fig. 1. An Example Screenshot of Unit Testing Challenges in EdStem.

benefits, automated marking has now been used in many
academic institutions. For example, Cheang et al. [2] found
that an Online Judge was successfully employed in the School
of Computing of the National University of Singapore for a
compulsory first-year course that teaches basic programming
techniques with over 700 students. Falkner et al. [3] found that
increasing marking granularity could increase the effectiveness
of the automated assessment. However, the automated marking
of programming assignments (e.g., Online Judge, EdStem)
only focuses on the functional completeness and correctness
of the implementation or coding exercises, without evaluating
the software testing aspects (e.g., how well do students test
the code and how many lines of code are tested).

III. UNIT TESTING CHALLENGES WITH AUTOMATED
FEEDBACK VIA EDSTEM

In this section, we present our unit testing challenges and
the automated feedback mechanism.

A. Online Unit Testing Challenges

The objectives of our online unit testing challenges are
to create interactive learning modules of unit testing that
encourage students to actively participate in constructing their
knowledge, and create unit testing challenges that are more
practical and aligned with real-world scenarios. These will
enable students to apply theoretical concepts in a real-world
context, thus fostering deeper understanding.

To achieve this, we use the EdStem interactive coding plat-
form (https://edstem.org/), which offers instant programming
environments for no-hassle learning. This will ensure that
students can focus on learning unit testing rather than instal-
lation issues (e.g., missing installing libraries, and different
command lines among operative systems). In particular, we use
the Workspace feature in EdStem where students can execute
and experiment with code and their test suite to tackle the unit
testing challenges.

Figure 1 presents an example screenshot of the unit testing
challenges that we developed in EdStem. EdStem’s Code

Fig. 2. An example of the automated marking mechanism with feedback.

Challenge feature provides students with a way to instantly run
and experiment with code with built-in support for general-
purpose programming languages. Students will be provided
with a description and have access to an embedded workspace.
Students are encouraged to follow test-driven development
(TDD) practices by writing the test cases first based on the
specification, then writing the code. In Figure 1, students will
find each unit testing challenge task which may be completed
at their own pace (i.e., self-paced learning). Students will
have access to a full-featured editor that they can implement
their code and test files (i.e., main.py and test_main.py)
starting with the scaffold (i.e., the starting code) as seen in
Figure 1. Students’ workspaces will be identical to the scaffold
when they first open the challenge.

To self-evaluate the effectiveness of students’ test cases,
we configured the Run command to automatically execute
the test cases and generate a code coverage report using the

https://edstem.org/

coverage.py library which indicates how much of the
code is exercised by the students’ written test cases. In this
example, the coverage report shows that there are 2 lines in
the main.py, where 1 line is not executed (i.e., missing
from the test cases), indicating that the test suite in the
test_main.py file only achieves a code coverage of 50%.
Students can use the Mark command to submit their written
code and test suites.

B. Automated Marking Mechanism

Automating certain aspects of marking can help allevi-
ate these challenges. EdStem’s automated marking tool can
execute student-submitted code against a set of private test
cases to determine if the code produces the expected outputs.
However, EdStem’s automated marking is generally applica-
ble to programming tasks, i.e., only checking the functional
correctness and completeness of the submitted code—without
evaluating the software testing aspect (e.g., how well students
test the code).

To address this challenge, we introduced code coverage as
an additional evaluation criterion into EdStem’s automated
marking mechanism. Therefore, the rubrics for the unit testing
challenges will focus on the following three aspects:

• Functional Completeness: All functions must be tested
and executed via the submitted test file.

• Functional Correctness: Each of the functions must be
correctly implemented according to the requirements.

• Code Coverage: All lines of code must be executed by
the student’s test suite (our own contribution to EdStem).

Finally, marks for each unit testing challenge are awarded
according to the percentage of the private set of test cases
that is passed by the students’ code and weighted against
the percentage of code coverage achieved (i.e., marks = %
of passing test cases × % of code coverage). For example,
passing 90% of the private test cases and achieving 85% code
coverage will mean a total of 0.9×0.85×100% = 76.5% marks
being awarded for this task.

IV. HOW DO THE ONLINE UNIT TESTING CHALLENGES
WITH AUTOMATED MARKING IMPACT STUDENT LEARNING?

In this section, we present the research methodology that we
used to answer this research question followed by the results.

A. Designing a Subject with Learning Theories

The Software Quality and Testing subject holds a cen-
tral position in the curriculum of the Bachelor of Software
Engineering undergraduate degree program at our university.
This subject is tailored for undergraduate students at Level 2
(second-year) of their studies. This subject focuses on modern
software quality assurance and testing tools and techniques
to assure the quality of software systems. Students will learn
different quality aspects of quality attributes, design test cases,
and apply systematic testing techniques.

Designing a Subject: We used a responsive and iterative
curriculum design approach to develop the Software Quality
and Testing subject at our university in order to enhance the

learning experience for students and ensure that the course
content remains relevant and effective. The subject is taught
over a duration of 12 teaching weeks. For each teaching week,
the learning activities are designed as a one-hour traditional
lecture-style teaching together with a two-hour studio class
focused on practical hands-on experience. In the current year
of 2023, the subject has a total of 321 enrolled students. There
are 12 studio sessions being run each teaching week, and these
sessions are facilitated by two teaching associates to enhance
the learning experience. On average, each session accommo-
dates around 26.75 students, leading to a balanced student-
to-staff ratio of approximately 13.38. The studio sessions are
used to emphasize student engagement and participation in
the learning process (active learning). Such learning activities
will enable students to actively practise software testing with
the lectures and materials they are learning, rather than just
passively receiving information. We also used EdStem to help
students construct their understanding of knowledge about
unit testing through interactions and hands-on practices via
EdStem (constructivism). For each week, we run a survey to
gather feedback from students as a continuous feedback loop.
This allows educators to design, develop, and improve the
subject that is adaptable to the needs, interests, and abilities of
the students (student-centered). For each week, the materials
are designed to follow the journey of a software tester (e.g.,
starting from requirement analysis, writing acceptance testing,
designing test cases, executing test cases, and defect report-
ing), highlighting the importance of learning through direct
experiences (experiential learning).

Designing Unit Testing Challenges. Unit testing challenges
are practical activities designed to help students practice
and improve their skills in writing unit tests for their code.
We integrated unit testing challenges into the weekly studio
practice tasks (problem-based learning), which could be an
effective way to enhance the understanding and application
of unit testing concepts among learners. For each teaching
week that involves content on unit testing techniques, there
will be 4-6 unit testing challenges for a duration of 2 hours.
These challenges typically involve writing test cases based on
a specification to verify the correctness of specific functions
or methods within the codebase. Students are encouraged to
follow the Test-Driven Development (TDD) approach, mean-
ing that students should design test cases first, and then
write the code in order to pass the test cases. Feedback
will be promptly provided through the automated marking
mechanism. The feedback typically includes which test cases
are passed or failed, and how much code coverage is achieved.
Such prompt feedback will help students understand their
knowledge gaps (e.g., incorrect implementation, missing test
cases), reduce cognitive load, and better provide experiential
learning opportunities.

B. Survey Design

We used an anonymous survey questionnaire to investigate
the impact of unit testing challenges with automated marking
on student learning, which can be used to inform educators to

1%

0%

6%

7%

9%

94%

92%

86%

76%

60%

4%

8%

8%

17%

31%More Effective Feedback

Enhanced Learning Progress

Enhance Overall Learning Experience

Foster Deeper Understanding

More Engaged and Motivated

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 3. Survey results.

enhance student learning experiences in designing a software
quality and testing subject. The survey is also approved by the
Human Research Ethics Committee of the University.

Participants. We invited a total of 315 enrolled students
who enrolled in the subject in 2023 to participate in the
survey. The participants are recruited by other teaching staff
members (who do not belong to this research team) using
EdStem announcements and during their lecture/studio classes.
The EdStem announcement includes a link to the explanatory
statement stating that participation in this study is entirely
voluntary and anonymous and that students may withdraw
from participation at any stage with no negative repercussions
from such a choice.

Survey Questions. Students were asked to complete surveys
lasting approximately 10 minutes to gather their perceptions
and the impact of online unit testing challenges with automated
marking on their learning. We asked the following questions:

• (Q1-Likert): Do you find that unit testing challenges have
kept you more engaged and motivated in learning unit
testing compared to traditional lecture-style teaching?

• (Q2-Likert): Do you agree that the unit testing challenges
foster deeper understanding and learning of the unit
testing concepts and practices?

• (Q3-OpenEnded): Why do you find unit testing chal-
lenges are (or are not) helpful?

• (Q4-Likert): Do you agree that the automated marking
enhances your overall learning experience in the unit?

• (Q5-Likert): Do you find that our automated marking
has enhanced the learning progress and helped you un-
derstand your mistakes and misconceptions quicker than
traditional-style human-written manual feedback?

• (Q6-Likert): Do you find that automated marking is more
effective than human grading in objectively evaluating
your answers (i.e., test files)?

• (Q7-OpenEnded): Have you encountered any challenges
or concerns with automated marking? If yes, please
describe briefly.

C. Students’ Responses

We received a total of 113 responses, of which we excluded
21 responses due to participants not explicitly indicating their
consent in the survey questionnaire. Thus, only 92 responses
will be used for the analysis, which is equivalent to a response
rate of 29% (92

315).
For the unit testing challenges, we found that:
• 94% of the participants agreed that unit testing challenges

have kept them more engaged and motivated in learning
unit testing compared to traditional lecture-style teaching.

• 92% of the participants agreed that the unit testing
challenges foster deeper understanding and learning of
the unit testing concepts and practices.

In addition, based on the analysis of the open-ended ques-
tions, we found that unit testing challenges also increase their:

• Self-regulated learning skills:1 “It helps me understand
how to code it myself without just giving me the an-
swers.”)

• Problem-solving skills:2 “Challenges the students to pay
more attention to the small details.”

For the automated marking mechanism, we found that:
• 86% of the participants agreed that the automated mark-

ing enhances the overall learning experience in the
subject. For example, “Automatic feedback is good be-
cause it allows you to quickly check your answers then
look for bugs if they are not passing. I think the fact that
the cases are hidden is good as well as you can’t just
find the error from that.”

• 76% of the participants agreed that the automated mark-
ing has enhanced the learning progress and helped
them understand their mistakes and misconceptions
quicker than traditional-style human-written manual feed-
back.

1Self-regulated learning refers to one’s ability to understand and control
one’s learning environment.

2Problem-solving refers to one’s ability to identify challenges, develop
solutions, and implement strategies to overcome obstacles.

However, only 60% of the participants agreed that au-
tomated marking is more effective than human grading in
objectively evaluating your answers (i.e., test files). Students
encountered the following challenges with automated marking:

• Suboptimal feedback in supporting students’ learning.
For example, “It may be helpful to give more in-depth
instructions in that case (e.g., Hint: make sure to validate
input types”).” “Hidden test cases that fail should provide
a hint on what is the test case about and what to do in
order to pass the test case, like ”Hint: What if the input
type is not what you expected?)””

• Increasing cognitive workload when dealing with failed
test cases. For example, “They are good for building
general understanding but because test cases are hidden
... it creates an overall annoying and long debug process
for relatively simple problems.”

Based on the challenges encountered with automated mark-
ing as described, several valuable lessons can be learned:

• Clear and Comprehensive Feedback is Crucial: Stu-
dents expressed dissatisfaction with the feedback pro-
vided by automated marking systems. To enhance the
effectiveness of automated grading, it’s important to offer
clear and effective feedback that not only points out mis-
takes but also provides guidance on how to rectify them.
This could involve offering more in-depth instructions,
hints, and explanations tailored to the failed test cases.

• Holistic Approach to Assessment: Automated marking
should not solely focus on grading but also support a
holistic assessment approach. This means considering
factors beyond correctness, such as code quality [5],
problem-solving strategies, and creativity. Incorporating
these elements into the grading process can provide a
more comprehensive evaluation of a student’s skills.

• Managing Cognitive Workload: Dealing with failed test
cases can increase the cognitive workload for students,
especially when debugging becomes a time-consuming
process. Automated marking systems should be designed
to minimize this burden. Providing step-by-step debug-
ging guides or highlighting common mistakes can help
streamline the process and prevent students from getting
discouraged.

V. CONCLUSION & DISCUSSION

In this paper, we introduce the online unit testing chal-
lenges via EdStem and the automated marking mechanism.
Then, we conduct a survey to investigate the impact that
the unit testing challenge with automated marking on student
learning. The results from 92 participants showed that the
online unit testing challenges have kept the students more
engaged and motivated, fostering deeper understanding and
learning, while the automated feedback mechanism enhances
the student’s learning progress, helping them understand their
mistakes and misconceptions quicker than traditional-style
human-written manual feedback, which finally enhancing their
overall learning experience. These results inform educators and

learning designers that the online unit testing challenges with
automated marking are an effective pedagogical practice to
enhance student learning experiences in software testing.

Nevertheless, students encountered two main challenges
with automated marking, i.e., suboptimal feedback in support-
ing students’ learning and the increasing cognitive workload,
suggesting that clear and comprehensive feedback with a
holistic approach to assessment to reduce cognitive workload.

Despite the challenges posed by online unit testing, in-
corporating automated marking can yield numerous benefits,
particularly in the realm of large-scale teaching. For example,

• Motivation and Interest: Addressing students’ moti-
vation and interest in software testing becomes more
feasible with the inclusion of online unit testing chal-
lenges. The interactive and dynamic nature of automated
marking systems can make the learning process engaging
and stimulating. Therefore, students are likely to become
more enthusiastic about mastering software testing con-
cepts than traditional lecture-style teaching.

• Timely and Actionable Feedback: One of the most
significant advantages of automated marking is the ability
to provide students with prompt feedback on their assign-
ments. This immediate feedback loop enables students to
grasp their mistakes and understand the concepts they
need to improve upon.

• Iterability for Mastery: Automated marking facilitates
an iterative approach to learning. Students can revisit
their unit testing challenges, apply the feedback they’ve
received, and resubmit their work for marking. This
iterative process allows them to refine their skills and
understanding over time, promoting a deeper grasp of
the subject matter.

VI. ACKNOWLEDGEMENT

We would like to thank Emma Yench and Paula Galvao de
Barba for providing feedback on the paper, the FIT2107 2023
teaching team, and the participants.

REFERENCES

[1] M. Aniche, F. Hermans, and A. Van Deursen, “Pragmatic software testing
education,” in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 2019, pp. 414–420.

[2] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated grading
of programming assignments in an academic institution,” Computers &
Education, vol. 41, no. 2, pp. 121–131, 2003.

[3] N. Falkner, R. Vivian, D. Piper, and K. Falkner, “Increasing the effec-
tiveness of automated assessment by increasing marking granularity and
feedback units,” in Proceedings of the 45th ACM technical symposium
on Computer science education, 2014, pp. 9–14.

[4] V. Garousi, A. Rainer, P. Lauvås Jr, and A. Arcuri, “Software-testing
education: A systematic literature mapping,” Journal of Systems and
Software, vol. 165, p. 110570, 2020.

[5] C. Iddon, N. Giacaman, and V. Terragni, “Gradestyle: Github-integrated
and automated assessment of java code style,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET). IEEE, 2023, pp. 192–197.

[6] O. A. L. Lemos, F. F. Silveira, F. C. Ferrari, and A. Garcia, “The impact of
software testing education on code reliability: An empirical assessment,”
Journal of Systems and Software, vol. 137, pp. 497–511, 2018.

[7] J. C. Paiva, J. P. Leal, and Á. Figueira, “Automated assessment in
computer science education: A state-of-the-art review,” ACM Transactions
on Computing Education (TOCE), vol. 22, no. 3, pp. 1–40, 2022.

	Introduction
	Background and Related Work
	Software Testing Education
	Automated Marking in Computer Science

	Unit Testing Challenges with Automated Feedback via EdStem
	Online Unit Testing Challenges
	Automated Marking Mechanism

	How do the online unit testing challenges with automated marking impact student learning?
	Designing a Subject with Learning Theories
	Survey Design
	Students' Responses

	Conclusion & Discussion
	Acknowledgement
	References

