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Abstract—In this paper, we propose a new hybrid method that
concatenates directional clustering and advanced nonnegative
matrix factorization (NMF) for the purpose of the specific sound
extraction from the multichannel music signal. Multichannel
music signal separation technology is aimed to extract a specific
target signal from observed multichannel signals that contain
multiple instrumental sounds. In the previous studies, various
methods using NMF have been proposed, but they remain many
problems, e.g., poor convergence in update rules in NMF and
lack of robustness. To solve these problems, we propose a new
supervised NMF (SNMF) with spectrogram restoration and its
hybrid method that concatenates the proposed SNMF after direc-
tional clustering. Via extrapolation of supervised spectral bases,
the proposed SNMF attempts both target signal separation and
reconstruction of the lost target components, which are generated
by preceding directional clustering. In addition, we theoretically
reveal the trade-off between separation and extrapolation abilities
and propose a new scheme for multi-divergence, where optimal
divergence can be automatically changed in each time frame
according to the local spatial conditions. The results of an
evaluation experiment show that our proposed hybrid method
outperforms the conventional music signal separation methods.

I. INTRODUCTION

Music signal separation technologies have attracted con-
siderable interest and been intensively studied [2], [3] in
recent years. These techniques are underdetermined separation
problems because almost all musical tunes are provided in a
stereo format and the number of sources is greater than two.
As a means of addressing underdetermined signal separation,
in recent years, nonnegative matrix factorization (NMF) [4],
which is a type of sparse representation algorithm, has received
much attention. NMF for acoustical signals decomposes an
input spectrogram into the product of a spectral basis matrix
and its activation matrix. The methods of signal separation
based on NMF are roughly classified into unsupervised and
supervised algorithms. The former method attempts separation
without using any training sequences, instead being subjected
to various constraints, as proposed in [5], [6]. However,
these techniques have difficulty in clustering the decomposed
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spectral bases into a specific target sound because the entire
procedure should be carried out in a blind fashion. To solve
this problem, supervised NMF (SNMF) has been proposed
[7]. This method includes a priori training, which requires
some sound samples of a target instrument, and separate the
target signal using supervised bases. SNMF can extract the
target signal to some extent, particularly in the case of a small
number of sources. However, for a mixture consisting of many
sources, the extraction performance is markedly degraded
because of the existence of instruments with similar timbre.

To apply NMF-based separation methods to multichannel
signals, multichannel NMF has been proposed as an unsu-
pervised separation method [8], [9]. This method is a natural
extension of NMF for a stereo or multichannel signal and
is a unified method that addresses the spatial and spectral
separation problems simultaneously. However, such unsuper-
vised separation is a difficult problem, even if the signal
has multichannel components, because the decomposition is
underspecified. Hence, these algorithms involve strong depen-
dence on initial values and lack robustness. For multichannel
signal separation, directional clustering has also been proposed
as an unsupervised method [10], [11]. This method quantizes
directional information via time-frequency binary masking.
However, there is an inherent problem that sources located
in the same direction cannot be separated using only the
directional information.

To cope with these problems, in this paper, we propose
a new SNMF with spectrogram restoration and its hybrid
method that concatenates the proposed SNMF after directional
clustering. Via extrapolation of supervised spectral bases, this
SNMF with spectrogram restoration attempts both target signal
separation and reconstruction of the lost target components,
which are generated by preceding binary masking performed
in directional clustering.

Next, we provide a theoretical analysis of basis extrapo-
lation ability and reveal the mechanism of marked shift of
optimal divergence in SNMF with spectrogram restoration
and trade-off between separation and extrapolation abilities.
Evaluation experiment of the separation using artificial and
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real-recorded music signals show the effectiveness of the
proposed hybrid method.

Finally, on the basis of the above-mentioned findings, we
propose a new scheme for frame-wise divergence selection
in the proposed hybrid method to separate the target signal
using optimal multi-divergence. The results of an evaluation
experiment show that the proposed hybrid method with multi-
divergence can always achieve high performance under any
spatial conditions, indicating the improvement in robustness
of the proposed method.

II. CONVENTIONAL SIGNAL SEPARATION METHODS

A. Conventional Single-Channel Signal Separation Methods

1) Overview of NMF: NMF is a type of sparse representa-
tion algorithm that decomposes a nonnegative matrix into two
nonnegative matrices as

X ≃ V W , (1)

where X(∈ RM×N
≥ 0 ) is an observed nonnegative matrix, which

is an amplitude spectrogram for applying NMF to the acoustic
signal; V (∈ RM×D

≥ 0 ) is often called the basis matrix, which
includes bases (frequently-appearing spectral patterns in X) as
column vectors; and W (∈ RD×N

≥ 0 ) is often called the activation
matrix, which involves activation information of each basis
of V . In addition, M and N are the numbers of rows and
columns of X , and D is the number of bases of V . Figure 1
depicts the decomposition model of NMF, where the number
of bases D equals two. In this figure, the basis matrix includes
two types of spectral patterns as the bases to represent the
observed matrix using time varying gains in the activation
matrix. In the decomposition of NMF, a cost function is
defined to optimize the variables V and W using an arbitrary
divergence between X and V W . The following equation
represents the cost function of NMF:

JNMF = D(X∥V W ) , (2)

where D(·∥·) is an arbitrary distance function, e.g., Itakura-
Saito divergence (IS-divergence), generalized Kullback-
Leibler divergence (KL-divergence), and Euclidean distance
(EUC-distance). In this study, we use the following general-
ized divergence called β-divergence [12] in the cost function:

Dβ(B∥A)

=


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+
aβij
β
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β − 1

}
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bij
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}
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∑
i,j

{
bij

aij
−log

bij

aij
−1

}
(β=0)

, (3)

where A(∈ RI×J) and B(∈ RI×J) are matrices whose entries
are aij and bij , respectively. This divergence is a family of
cost functions parameterized by a single shape parameter β
that takes IS-divergence, KL-divergence, and EUC-distance as
special cases (β=0, 1, and 2, respectively).
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Fig. 1. Decomposition model of simple NMF.

The multiplicative update rules for V and W that minimize
the cost function based on β-divergence are given by [13]

vmd←vmd

(∑
n xmnwdn (

∑
d vmdwdn)

β−2∑
n wdn (

∑
d vmdwdn)

β−1

)φ(β)

, (4)

wdn←wdn

(∑
m vmdxmn (

∑
d vmdwdn)

β−2∑
m vmd (

∑
d vmdwdn)

β−1

)φ(β)

, (5)

where xmn, vmd, and wdn are the nonnegative entries of
matrices X , V , and W , respectively. In addition, φ(β) is
given by

φ(β) =


(2− β)

−1
(β<1)

1 (1≤β≤2)

(β − 1)
−1

(β>2)

. (6)

We can optimize V and W by some iterations of these update
rules. The convergence of these update rules is theoretically
proven for any real-valued β.

2) SNMF: The signal separation using NMF is achieved
by extracting only the target spectral bases. However, such
unsupervised approaches have difficultly in clustering the
decomposed spectral patterns into a specific target instruments.
Furthermore, each basis may be forced to include a multi-
instrumental spectral pattern. To solve this problem, SNMF
has been proposed [7]. These supervised scheme consists of
two processes, namely, a priori training and observed signal
separation.

In SNMF, as the supervision, a priori spectral patterns
(bases) should be trained in advance to achieve signal sep-
aration. Hereafter, we assume that we can obtain specific
solo-played instrumental sounds, which is the target of the
separation task. The trained bases are constructed by NMF as

Ytarget ≃ FQ, (7)

where Ytarget(∈ RΩ×Ts
≥ 0 ) is an amplitude spectrogram of the

specific instrumental signal for training, F (∈ RΩ×K
≥ 0 ) is a

nonnegative matrix that involves bases of the target signal as
column vectors, and Q(∈ RK×Ts

≥ 0 ) is a nonnegative matrix that
corresponds to the activation of each basis of F . In addition, Ω
is the number of frequency bins, Ts is the number of frames of
the training signal, and K is the number of bases. Therefore,
the basis matrix F constructed by (7) is the supervision of the
target instrumental spectra.



The following equation represents the decomposition model
in separation process with trained supervision F :

Y ≃ FG+HU , (8)

where Y (∈ RΩ×T
≥ 0 ) is an observed spectrogram, G(∈ RK×T

≥ 0 )
is an activation matrix that corresponds to F , H(∈ RΩ×L

≥ 0 ) is
the residual spectral patterns that cannot be expressed by FG,
and U(∈ RL×T

≥ 0 ) is an activation matrix that corresponds to H .
Moreover, T is the number of frames of the observed signal
and L is the number of bases of H . In SNMF, the matrices
G, H , and U are optimized under the condition that F is
known in advance. Hence, ideally, FG represents the target
instrumental components, and HU represents other different
components from the target sounds after the decomposition.
This supervised method can separate the target signal to some
extent, particularly in the case of a small number of sources.
However, for the case of a mixture consisting of many sources,
such as more realistic musical tunes, the source extraction
performance is markedly degraded because of the existence
of instruments with similar timbre.

B. Conventional Multichannel Signal Separation Methods

1) Directional Clustering: Decomposition methods em-
ploying directional information for the multichannel signal
have also been proposed as unsupervised separation techniques
[10], [11]. These methods quantize directional information via
time-frequency binary masking under the assumption that the
sources are completely sparse (double disjoint) in the time-
frequency domain. Such directional clustering works well,
even in an underdetermined situation. However, there is an
inherent problem that sources located in the same direction
cannot be separated using the directional information. Fur-
thermore, the extracted signal is likely to be distorted because
of the effect of binary masking.

2) Multichannel NMF: Multichannel NMF, which is a
natural extension of NMF for a stereo or multichannel music
signal, has been proposed as an unsupervised signal separation
method [8], [9]. These algorithms employ Hermitian positive
definite matrix that models the spatial property of each NMF
basis and each frequency bin. Therefore, multichannel NMF
utilizes a frequency-wise transfer function between signal
source and microphone as a cue for basis clustering. However,
such unsupervised separation is a difficult problem, even if the
signal has multichannel components, because the decomposi-
tion is underspecified. Hence, these algorithms involve strong
dependence on initial values and lack robustness.

III. SNMF WITH SPECTROGRAM RESTORATION AND ITS
HYBRID METHOD

A. SNMF with Spectrogram Restoration

1) Motivation and Strategy: To separate the target source
utilizing directional information, we can guess a hybrid
method that concatenates SNMF after directional clustering
(hereafter referred to as naive hybrid method ). This hybrid
method can effectively extract the target instrument because
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Fig. 2. Example of spectrum of signal separated by directional clustering.
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the directionally clustered signal contains only few instru-
ments. Moreover, the residual interfering signal in the same
direction can be removed by SNMF.

However, such naive hybrid method has a problem that the
extracted signal may suffer from the generation of considerable
distortion. This is due to the binary masking in directional
clustering. The signal in the target direction, which is obtained
by directional clustering, has many spectral chasms because
the assumption of sparseness in the time-frequency domain
does not always hold completely. In other words, the resolution
of the spectrogram clustered as the target-direction component
is degraded by time-frequency binary masking. Figure 2 shows
an example of the spectrum of a signal separated by directional
clustering. The obtained spectrum has many chasms owing
to the binary masking. These spectral losses may deteriorate
the performance of separation because SNMF is forced to
incorrectly fit these spectral chasms using supervised bases.
To solve this problem, in this section, we propose a new
SNMF with spectrogram restoration as an alternative to the
conventional SNMF for the hybrid method.

Figure 3 shows a signal flow of the proposed hybrid method
that includes SNMF with spectrogram restoration. The algo-
rithm of SNMF with spectrogram restoration utilizes index
information determined in directional clustering. For example,
if the target instrument is localized in the center cluster along
with the interference, SNMF is only applied to the existing
center components using index information (active binary
mask). Therefore, the spectrogram of the target instrument
is reconstructed using more matched bases because spectral
chasms are treated as unseen, and these chasms have no impact
on the cost function in SNMF with spectrogram restoration.



Center RightLeft
Direction

s
o
u

rc
e
 c

o
m

p
o

n
e

n
t

(a) Target source

F
re

q
u

e
n

cy
 o

f
Observed
spectra

Center RightLeft
Direction

s
o

u
rc

e
 c

o
m

p
o

n
e

n
t

(b)

F
re

q
u
e

n
c
y 

o
f

After
directional
clustering

Center RightLeft
Direction

s
o
u

rc
e
 c

o
m

p
o

n
e

n
t

(c)

Extrapolated

F
re

q
u

e
n

cy
 o

f

After
SNMF with

target source
spectrogram
restoration

Fig. 4. Directional source distribution of (a) observed stereo signal, (b) separated components in center cluster, and (c) component separated and extrapolated
by spectrogram restoration.

In addition, the components of the target instrument lost after
directional clustering can be extrapolated using the supervised
bases. In other words, the deteriorated target spectrogram is
recovered with the spectrogram restoration by the supervised
basis extrapolation.

To illustrate the separation mechanism step by step, Fig. 4
(a) shows the configuration of source components in the stereo
signal, (b) shows the separated components that are clustered
around the center direction by directional clustering, and (c)
shows the separated target component obtained by SNMF with
spectrogram restoration. In Fig. 4 (a), the source components
are distributed in all directions with some overlapping. After
directional clustering (Fig. 4 (b)), the center sources lose some
of their components (i.e., the tails on both sides), and the other
source components leak in the center cluster. After SNMF with
spectrogram restoration, the proposed algorithm restores the
lost components using the supervised bases (Fig. 4 (c)).

However, this basis extrapolation includes an underlying
problem. If the time-frequency spectra are almost unseen in
the spectrogram, which means that the indexes are almost zero,
a large extrapolation error may occur. Then, incorrect bases
are chosen and fitted to a small number of spectral grids by
incorrectly modifying the activation matrix G. In the worst
case, the activation matrix G contains very large values and
the extracted signal is overloaded. To avoid this, we should
add a new penalty term in the cost function, as described in
the next section.

2) Cost Function and Update Rules: In this section, we
derive the update rules of SNMF with spectrogram restoration
based on β-divergence. Here, the index matrix I(∈ RΩ×T

{0, 1} ) is
obtained from the binary masking preceding the directional
clustering. This index matrix has specific entries of unity
or zero, which indicates whether or not each grid of the
spectrogram belongs to the target directional cluster. The cost
function in SNMF with spectrogram restoration is defined
using the index matrix I as

J (Θ)=
∑

ω,tiωtDβ(yωt∥
∑

kfωkgkt+
∑

lhωlult)

+λ
∑

ω,tiωtDβR(0∥
∑

kfωkgkt)+µ∥FTH∥2F, (9)

where yωt, fωk, gkt, hωl, and ult are the nonnegative entries
of the matrices Y , F , G, H , and U , respectively, Θ =
{G,H,U} is the set of objective variables, iωt is an entry of
the index matrix I , λ and µ are the weighting parameters for
each term, and iωt represents the binary complement of each
entry in the index matrix. The first term represents the main
cost of separation in SNMF. Since the divergence Dβ(·∥·)
is only defined in grids whose index is one, the chasms in

the spectrogram are ignored in this SNMF decomposition.
The second term forces the minimization of the value of∑

k fωkgkt. Hence, the supervised bases are chosen so as to
minimize the scale of FG in proportion to the number of zeros
in the index matrix I in each frame to avoid the extrapolation
error. In other words, this penalty term regulates the extrapola-
tion. In addition, the third penalty term forces the other bases
H to become as different as possible from the supervised
bases F and can improve its separation performance [14].

The update rules based on (9) are obtained by the auxiliary
function approach, similarly to [13]. Here, we can rewrite the
cost function (9) using β-divergence as

J (Θ) = J1 + λJ2 + µJ3, (10)

J1 =
∑

ω,tiωt

(
zβωt/β − yωtz

β−1
ωt / (β − 1)

)
, (11)

J2 =
∑

ω,tiωt (
∑

kfωkgkt)
βR /βR, (12)

J3 =
∑

k,l (
∑

ωfωkhωl)
2
, (13)

where constant terms are omitted and

zωt =
∑

kfωkgkt +
∑

lhωlult. (14)

First, we define the upper bound function for J1. The first
term of J1 is convex for β ≥ 1 and concave for β < 1, and
the second term is convex for β ≥ 2 and concave for β < 2.
Applying Jensen’s inequality to the convex function and the
tangent line inequality to the concave function, we can define
the upper bound function J +

1 using auxiliary variables αωtk≥
0, γωtl≥0, η1≥0, η2≥0, and σωt that satisfy

∑
k αωtk =1,∑

l γωtl=1, and η1+η2=1 as

J1 ≤ J +
1 =

∑
ω,tiωtP(β)

ωt , (15)

where

P(β)
ωt =


N (β)

ωt − yωtM(β−1)
ωt (β<1)

M(β)
ωt − yωtM(β−1)

ωt (1≤β≤2)

M(β)
ωt − yωtN (β−1)

ωt (β>2)

, (16)

M(β)
ωt =

1

β

∑
k

(fωkgkt)
β

(αωtkη1)
β−1

+
1

β

∑
l

(hωlult)
β

(γωtlη2)
β−1

, (17)

N (β)
ωt = σβ−1

ωt (zωt − σωt) + σβ
ωt/β. (18)

Second, we define the upper bound function for J2. This
term is convex for βR≥1 and concave for βR<1. Similarly to
(15)–(18), we can define the upper bound function J +

2 using
auxiliary variables αωtk and ρωt as

J2 ≤ J +
2 =

∑
ω,tiωtS(βR)

ωt , (19)



where

S(βR)
ωt =


ρβR−1
ωt (

∑
k fωkgkt−ρωt)+

ρβR

ωt

βR
(βR<1)

1

βR

∑
k αωtk

(
fωkgkt

αωtk

)βR

(1≤βR)

. (20)

Third, we define the upper bound function for J3 using
auxiliary variables δklω≥0 that satisfy

∑
ω δklω=1 as

J3 ≤ J +
3 =

∑
k,l,ω

f2
ωkh

2
ωl

δklω
. (21)

Finally, using (15), (19), and (21), we can define the upper
bound function J +(Θ, Θ̂) as

J(Θ) ≤ J +(Θ, Θ̂) = J +
1 + λJ +

2 + µJ +
3 , (22)

where Θ̂ is the set of auxiliary variables. The update rules with
respect to each variable are determined by setting the gradient
to zero.

From ∂J +(Θ, Θ̂)/∂gkt=0, we obtain∑
ωiωt (Vβ −Wβ) + λXβR = 0, (23)

where

Vβ =

{
σβ−1
ωt fωk (β<1)

gβ−1
kt (αkωtη1)

1−β
fβ
ωk (1≤β)

, (24)

Wβ =

{
yωtg

β−2
kt (αkωtη1)

2−β
fβ−1
ωk (β≤2)

yωtσ
β−2
ωt fωk (2<β)

, (25)

XβR
=


∑

ω iωtρ
βR−1
ωt fωk (βR<1)∑

ω iωtfωk

(
fωkgkt

αωtk

)βR−1

(1≤βR)
. (26)

By solving (23) for gkt under the nonnegativity and substitut-
ing the equality condition for each auxiliary variable, we can
obtain the update rule of gkt as follows:

gkt ← gkt

( ∑
ω iωtyωtfωkz

β−2
ωt∑

ω iωtfωkz
β−1
ωt + λRG

)φ(β)

, (27)

where RG is given by

RG =
∑

ωiωtfωk (
∑

k′fωk′gk′t)
βR−1

. (28)

The update rules of the other variables are similarly obtained
as follows:

hωl←hωl

( ∑
t iωtyωtultz

β−2
ωt∑

t iωtultz
β−1
ωt + 2µRH

)φ(β)

, (29)

ult←ult

(∑
ω iωtyωthωlz

β−2
ωt∑

ω iωthωlz
β−1
ωt

)φ(β)

, (30)

where RH is given by

RH =
∑

kfωk

∑
ω′fω′khω′l. (31)

The convergence of these update rules is theoretically proven
for any real-valued β and βR.

B. Theoretical Analysis of Basis Extrapolation Based on Gen-
eration Model

1) Optimal Divergence for Basis Extrapolation and Gen-
eration Model: The proposed method attempts both signal
separation and basis extrapolation using the supervised bases
F . In previous studies, the analysis of optimal divergence only
for signal separation has been discussed [14], [15]. However,
there has been no discussion on the optimal divergence for
the extrapolation techniques using NMF. In this section, we
analyze the extrapolation ability based on a statistical gen-
eration model of the observed data Y , and determine the
optimal divergence for basis extrapolation w.r.t. various β and
βR values.

In NMF decomposition, the minimization of β-divergence
between Y and FG corresponds to a log-likelihood max-
imization under the assumption of the generation model of
Y for each β [16]. The minimization of Dβ(yωt∥ϑ) is
equivalent to the maximization of exp(−Dβ(yωt∥ϑ)), where
ϑ =

∑
k fωkgkt represents a parameter of the maximum

likelihood estimation. A probability density function (p.d.f.)
is given by

yωt ∼ p (yωt) =



1

ϑ1
exp

(
−
yωt

ϑ1

)
(β=0)

ϑ2
yωt

Γ (yωt + 1)
exp (−ϑ2) (β=1)

1
√
2πϑ3

exp

(
−

(yωt − ϑ4)
2

2ϑ3
2

)
(β=2)

C exp

(
ϑ5

β−1yωt

β − 1

)
(β≥3)

,

(32)

where Γ(·) is a gamma function. These generation models
of β =0, 1, and 2 are equivalent to exponential distribution,
Poisson distribution, and Gaussian distribution, respectively.
The generation models for β≥3 correspond to a distribution in
which the probability increases exponentially with increasing
yωt. Strictly, this distribution is not a p.d.f. because it diverges
when yωt increases. Thus, we set the upper bound of yωt

to a constant M and define the corresponding p.d.f. with
normalization coefficient C, which is given by

C = ϑβ−1
5 (β − 1)

−1

(
exp

(
ϑβ−1
5

β − 1
M

)
− 1

)−1

. (33)

Using (32), we can generate the most probable spectrogram
for each β.

2) Simulation Conditions: To analyze the net extrapolation
ability, we simulate the spectrogram restoration task. In this
simulation, we generated random i.i.d. values, which obey
the corresponding generation model (32) for each β, as the
observed data matrix Y . We compared β = 0, 1, 2, 3, 4
and βR = 0, 1, 2, 3, and we used the same divergence β
in the training and separation processes. The size of this
data matrix was set to Ω = 5000 and T = 200. We set the
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parameters of each p.d.f. to ϑ1=1, ϑ2=5, ϑ3=10, ϑ4=50,
ϑ5=2, and M=15. These parameters are determined so as to
generate the nonnegative random i.i.d. values that obey each
corresponding generation model. Note that the parameters θ1–
θ5 simply determine the scales of the input random variables,
and basically can be set to arbitrary value without loss of
generality. In addition, we used two types of data-missing
patterns I , in which 75% or 98% of the grids were missing
in a uniform manner, and the missing data I ◦ Y imitated
the binary-masking procedure. The supervised bases F were
obtained by training using the same data matrix Y , namely,
Ytarget =Y in (7) and (8). The number of supervised bases,
K, was 100, which is the half size of T , and the number of
other bases, L, was 30. Therefore, the task was to reconstruct
original Y from the observations with missing data, I ◦ Y ,
using the trained bases.

3) Simulation Results and Discussion: We used sources-
to-artifacts ratio (SAR) defined in [17] as the accuracy of
the extrapolation,where SAR indicates the absence of artificial
distortion. Figure 5 shows the SAR result for each divergence
and regularization. From this result, it is confirmed that a
higher β provides better basis extrapolation regardless of the
type of regularization (βR). In NMF decomposition, if we set
β to a large value, the trained bases tend to become anti-sparse
(smooth). In contrast, if β is close to zero, the trained bases
become more sparsity-aware, and this property is suitable
for normal NMF-based music source separation because of
the inherent sparsity of music spectrograms (e.g., β = 1 is
recommended in [14], [15]). However, for basis extrapola-
tion, sparse bases are not suitable because it is difficult to
extrapolate them only from the observable data. Therefore,
we speculate that the optimal divergence in SNMF with
spectrogram restoration, which attempts to fit the trained bases
using spectral components except for chasms, is shifted to
β>1 rather than KL-divergence (β=1) because of the trade-
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Fig. 7. Scores of each part.

TABLE I
COMPOSITIONS OF MUSICAL INSTRUMENTS

Dataset Melody 1 Melody 2 Midrange Bass
C1 Oboe Flute Piano Trombone
C2 Trumpet Violin Harpsichord Fagotto
C3 Horn Clarinet Piano Cello

off between separation and extrapolation abilities, as illustrated
in Fig. 6. This issue will be confirmed experimentally in the
next section.

C. Comparison Between Proposed Hybrid Method and Con-
ventional Methods

1) Experimental Conditions: We conducted objective eval-
uation to confirm the effectiveness of the proposed hybrid
method described in the previous section. In this experiment,
we compare the separation performance of five methods,
namely simple directional clustering [10], multichannel NMF
[9], simple SNMF [14], naive hybrid method described in
Sect. III-A1, and the proposed hybrid method including SNMF
with spectrogram restoration after directional clustering, in
terms of their ability to separate music artificial and real-
recorded signals. Also, we compared some evaluation scores
with various β and βR for SNMF, naive hybrid method, and
the proposed hybrid method by setting five divergences and
three regularizations, namely, β = 0, 1, 2, 3, 4 and βR = 0,
1, 2. We used the same divergence (β) in the training and
separation processes for SNMF, naive hybrid method, and
proposed hybrid method. In this experiment, we conducted
two experiments to consider artificial signal and real-recorded
signal cases. We used stereo signals containing four melody
parts (depicted in Fig. 7) with three compositions (C1–C3) of
instruments shown in Table I. These signals were artificially
generated by a MIDI synthesizer. In particular, these stereo
signals were mixed down to a monaural format only when we
evaluate the separation accuracy of SNMF because SNMF is
a separation method for a monaural input signal.

In the artificial signal case, the observed signals Y were
produced by mixing four sources with the same power. The
observed signal contained one source in the left and right
directions and two sources in the center direction based on
a sine law (see Fig. 8 (a)). The target instrument is always
located in the center direction along with another interfering
instrument, and we prepared two patterns in which the left
and right sources are located at 45◦. In addition, we used the
same MIDI sounds of the target instruments as supervision
for a priori training. The training sounds contained two octave
notes that cover all the notes of the target signal in the



1

Center

Right

4

2 3

Left

Center

RightLeft

Dummy head

1

4

2 3

1.5 m

2.5 m

(a) (b)

Fig. 8. Location of four sources with sine law used in (a) artificial signal and
(b) real-recorded signal cases. Numbered black circles represent locations of
instruments in stereo format.

observed signal. The sampling frequency of all signals was
44.1 kHz. The spectrograms were computed using a 92-ms-
long rectangular window with a 46-ms overlap shift. The
number of iterations for the training and separation were 500.
Moreover, the number of clusters used in directional clustering
was 3, the number of a priori bases, K, was 100, and the
number of bases for matrix H , L, was 30. The weighting
parameters λ and µ were empirically determined.

In the real-recorded signal case, we recorded each instru-
mental solo signal and the supervision sound, which are the
same as those in the artificial signal case, using binaural micro-
phone NEUMANN KU-100 in an experimental room whose
reverberation time was 200 ms. The levels of background
noise and the sound source measured at the microphone were
37 dB(A) and 60 dB(A). A geometry of the loudspeaker and
binaural microphone is shown in Fig. 8 (b), where θ=45◦. The
target source and the supervision sound are always located
in No.1 position in Fig. 8 (b). The observed signal Y was
produced by mixing these recorded signals as the same power.
Other conditions were the same as those of the artificial signal
case.

2) Experimental Results: We used the signal-to-distortion
ratio (SDR), source-to-interference ratio (SIR), and SAR de-
fined in [17]. SDR indicates the quality of the separated target
sound, and SIR indicates the degree of separation between the
target and other sounds. Therefore, SDR indicates the total
evaluation score that involves SIR and SAR.

Figure 9 shows the average SDR, SIR, and SAR of the
proposed hybrid method and the other methods for each
divergence (β) and each regularization (βR) in the artificial
signal case, where the four instruments are shuffled with 12
combinations in each of compositions C1–C3. Therefore, these
results are the averages of 36 input signal patterns. Also,
Fig. 10 shows the average SDR, SIR, and SAR in the real-
recorded signal case. From the SDRs in Figs. 9 and 10, we
can confirm that directional clustering does not have suffi-
cient performance because this method cannot discriminate
the sources in the same direction. Multichannel NMF also
cannot achieve the sufficient separation because this method
strongly depends on the initial value and lack robustness. In
contrast, the methods using SNMF can give better results and
the proposed hybrid method using SNMF with spectrogram
restoration outperforms all other methods in both artificial
and real-recorded signal cases. The naive hybrid method is
inferior to SNMF when β ≤ 1 whereas this hybrid method
utilizes both directional clustering and SNMF. This is because
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Fig. 9. Average scores in artificial signal case: (a) shows SDR, (b) shows SIR,
and (c) shows SAR for conventional and proposed methods.

the naive hybrid method is affected by the spectral chasms and
cannot reconstruct such lost components. Furthermore, we can
confirm that the EUC-distance-based cost function (β = 2)
is an optimal divergence for the proposed hybrid method,
whereas KL-divergence (β = 1) is the best divergence even
for conventional SNMF [14], [15]. This marked shift of the
optimal divergence in SNMF with spectrogram restoration is
due to the trade-off between the separation and extrapolation
abilities, as predicted in Sect. III-B. In addition, the regular-
ization with KL-divergence (βR=1) is slightly better than the
other divergences but the difference is not significant, except
for the case of βR=0.

IV. SNMF WITH SPECTROGRAM RESTORATION BASED ON
MULTI-DIVERGENCE

A. Divergence Dependency on Local Chasms Condition

In the previous section, we revealed the mechanism of
optimal divergence shift in the SNMF methods. This diver-
gence shift is due to the trade-off between separation and
extrapolation abilities. The optimal divergence for SNMF
with spectrogram restoration depends on the rate of spectral
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Fig. 10. Average scores in real-recorded signal case: (a) shows SDR, (b) shows
SIR, and (c) shows SAR for conventional and proposed methods.

chasms in each time frame of the spectrogram obtained by
preceding directional clustering. Therefore, the optimal diver-
gence temporally fluctuates because the spatial condition is not
consistent in the general music signal, and the divergence of
SNMF should be changed in each time frame automatically.
To solve this problem, in this section, we propose a new
scheme for frame-wise divergence selection to separate the
target signal using optimal divergence.

If there are many chasms in a frame of the binary-masked
spectrogram, SNMF is preferred to have high extrapolation
ability. In contrast, if the rate of chasms is low value, the
separation ability is required rather than the extrapolation.
Therefore, it is expected that EUC-distance should be used
in the frames that have many chasms, and KL-divergence
should be used in the other frames. To improve total separation
performance of SNMF with spectrogram restoration for any
types of input signals, we introduce a multi-divergence-based
cost function as described in the next section.

B. Cost Function and Update Rules

Considering the above-mentioned divergence dependence
on the local chasm condition, we propose to adapt the di-

vergence in each frame of the spectrogram to the optimal
one according to the rate of chasms in each frame rt and
a threshold value τ (0≤ τ ≤ 1), where the rate of chasms rt
can be calculated from the index matrix I . Straightforward
but naive extension to this purpose is to apply independent
SNMF with spectrogram restoration to the short time-period
data with switching the divergence in an online manner
(hereafter referred to as online hybrid method). In this method,
however, the size of each input matrix becomes small and
the dimensionality is reduced. This degrades the separation
performance because the trained bases F can represent any
small-dimension matrix and no component is pushed into the
interference HU .

To cope with the problem and maintain the sufficient
dimensionality of the matrix, we propose a new batch SNMF
with spectrogram restoration that includes a multi-divergence-
based cost function covered onto the whole input matrix (see
Fig. 11). The proposed cost function Jm is defined as

Jm=
∑

tJt, (34)

Jt=



∑
ω iωtDβ=2(yωt∥s(E)

ωt )

+λ(E)
∑

ω iωtDβR(0∥
∑

k f
(E)
ωk gkt)

+µ(E)∥F (E)TH∥2Fr (rt≥τ)∑
ω iωtDβ=1(yωt∥s(K)

ωt )

+λ(K)
∑

ω iωtDβR
(0∥
∑

k f
(K)
ωk gkt)

+µ(K)∥F (K)TH∥2Fr (rt<τ)

, (35)

s
(∗)
ωt =

∑
kf

(∗)
ωk gkt +

∑
nhωnunt, (36)

rt =
∑

ωiωt/Ω, (37)

where F (K)(∈ RΩ×K
≥ 0 ) and F (E)(∈ RΩ×K

≥ 0 ) are the supervised
basis matrices trained in advance using KL-divergence-based
NMF and EUC-distance-based NMF, respectively. Also, f (K)

ωk

and f
(E)
ωk are the entries of F (K) and F (E), respectively, µ(∗)

and λ(∗) are the weighting parameters for each term, and
∗= {K,E}. The divergence is determined from rt and τ in
each frame. Therefore, this method can be considered as multi-
divergence-based SNMF to achieve both optimal separation
and extrapolation. Similarly to Sect. III-A2, we can derive the
update rules based on (34) by the auxiliary function approach
as follows:

gkt←


gkt ·

∑
ω iωtyωtf

(E)
ωk∑

ω iωtf
(E)
ωk s

(E)
ωt +λ(E)R

(E)
G

(rt≥τ)

gkt ·
∑

ω iωtyωtf
(K)
ωk s

(K)
ωt

−1∑
ω iωtf

(K)
ωk +λ(K)R

(K)
G

(rt<τ)

, (38)

hωl ← hωl ·
∑

t iωtyωtultNωt∑
t iωtultDωt+Pωl

, (39)

ult←


ult ·

∑
ω iωtyωthωl∑
ω iωthωls

(E)
ωt

(rt≥τ)

ult ·
∑

ω iωtyωthωls
(E)
ωt

−1∑
ω iωthωl

(rt<τ)

, (40)
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where R
(∗)
G , Nωt, Dωt, and Pωl are given by

R
(∗)
G =

∑
ωiωtf

(∗)
ωk

(∑
k′f

(∗)
ωk′gk′t

)βR−1

, (41)

Nωt =

{
1 (rt≥τ)

s
(K)
ωt

−1 (rt<τ)
, (42)

Dωt =

{
s
(E)
ωt (rt≥τ)

1 (rt<τ)
, (43)

Pωl =

{
µ(E)

∑
k f

(E)
ωk

∑
ω′ f

(E)
ω′khω′l (rt≥τ)

µ(K)
∑

k f
(K)
ωk

∑
ω′ f

(K)
ω′khω′l (rt<τ)

. (44)

C. Evaluation Experiment

1) Experimental Conditions: To confirm the effectiveness
of the proposed algorithm, we compared six methods, namely,
SNMF based on KL-divergence and EUC-distance [14], sim-
ple directional clustering [10], multichannel NMF [9], the con-
ventional hybrid method based on KL-divergence and EUC-
distance, the online hybrid method described in Sect. IV-B,
and the proposed hybrid method that uses multi-divergence.

In this experiment, similarly to Sect. III-C1, we produced
the artificial and real-recorded stereo signals containing four
melody parts (depicted in Fig. 12) with three compositions
(C1–C3) of instruments shown in Table I. These stereo signals
were mixed down to a monaural format only when we evaluate
the separation accuracy of SNMF. In addition, we prepared
four spatially different dataset patterns of the observed signals,
SP1–SP4, as shown in Table II. In the hybrid method, many
chasms were produced by directional clustering in the mea-
sures where θ=45◦ compared with those of θ=0◦. Therefore,
we can expect that EUC-distance-based hybrid method is
suitable for SP4 rather than the dataset of SP1. The threshold
value τ , was set to 20%, and the type of regularization was
βR =1. The other experimental conditions were the same as
those in Sect. III-C1.

2) Experimental Results: Figures 13 and 14 show the av-
erage SDR, SIR, and SAR scores for each method and each
dataset pattern, where these results are the averages of 36 input
signal patterns, similarly to Sect. III-C1. The SDR scores of
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Fig. 12. Scores of each part. The observed signal consists of four measures.

TABLE II
SPATIAL CONDITIONS OF EACH DATASET

Spatial Measure
pattern 1st 2nd 3rd 4th

SP1 θ=45◦ θ=0◦ θ=0◦ θ=0◦

SP2 θ=45◦ θ=45◦ θ=0◦ θ=0◦

SP3 θ=45◦ θ=45◦ θ=45◦ θ=0◦

SP4 θ=45◦ θ=45◦ θ=45◦ θ=45◦

SNMF are the same for any datasets because the input signals
for SNMF are mixed down to a monaural format.

From this result, the KL-divergence-based hybrid method
achieves high separation accuracy for the dataset of spatial
patterns SP1 and SP2 because these signals do not have many
spectral chasms. On the other hand, the EUC-divergence-based
hybrid method achieves high separation accuracy for SP4.
This dataset has many spectral chasms because the signals
are always mixed with a wide panning angle (θ=45◦), which
yields many chasms, and high extrapolation ability is required.
In addition, the proposed hybrid method with multi-divergence
can always achieve better separation for any dataset regardless
of whether or not many chasms exist. This is because the
proposed method selects the appropriate divergence and can
automatically apply the optimal divergence to each time frame.

V. CONCLUSION

In this paper, first, we proposed a new multichannel signal
separation method, i.e., a hybrid method that concatenates
SNMF with spectrogram restoration after directional clus-
tering. The proposed SNMF with spectrogram restoration
attempts both target signal separation and reconstruction of
the lost target components, which are generated by preceding
binary masking performed in directional clustering.

Secondly, from the theoretical analysis, it was revealed that
the optimal divergence in SNMF with spectrogram restora-
tion is shifted to an anti-sparse divergence rather than KL-
divergence. This was due to the fact that there exists the trade-
off between separation and extrapolation abilities in SNMF.
Evaluation experiment of the separation using artificial and
real-recorded music signals showed the effectiveness of the
proposed hybrid method.

Finally, on the basis of this finding, we also proposed
an improved hybrid method based on multi-divergence. The
proposed method adapts the divergence in each frame to the
optimal one using a threshold value for the rate of chasms to
separate and extrapolate the target signal with high accuracy.
Experimental results showed that our proposed method can
always achieve high separation accuracy under all spatial
conditions.
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