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Abstract—Most existing saliency detection methods utilize low-

level features to detect salient objects. In this paper, we first verify 

that the foreground objects in the scene can be an effective cue for 

saliency detection. We then propose a novel saliency detection 

algorithm which combines low level features with high level object 

detection results to enhance the performance. For extracting the 

foreground objects in a scene, we first make use of a camera array 

to obtain a set of images of the scene from different viewing angles. 

Based on the array images, we identify the feature points of the 

objects so as to generate the foreground and background feature 

point cues. Together with a new K-Nearest Neighbor model, a cost 

function is developed to allow a reliable and automatic 

segmentation of the foreground objects. The outliers in the 

segmentation are further removed by a low-rank decomposition 

method. Finally, the detected objects are fused with the low-level 

object features to generate the saliency map. Experimental results 

show that the proposed algorithm consistently gives a better 

performance compared to the traditional methods. 

I. INTRODUCTION

Saliency detection is a fundamental problem in computer 

vision. Traditional methods focus on estimating salient objects 

using the low-level features such as texture and position [1, 2]. 

An alternative approach namely, co-saliency detection [3-5], 

attempts to estimate saliency maps from two or more images 

that contain similar foregrounds. Because these methods utilize 

inter-image information, they are able to simultaneously 

estimate the salient regions for multiple similar images [3-5]. 

In [4], multiple fixed windows are used to assist with object 

identification in different images, and a voting strategy is used 

to generate the saliency map. In [3], a low-rank model is used 

to determine the weights for combining different single-image 

saliency detection results. Recently, it is found that the depth 

map can be used to assist in saliency map estimation [6, 7]. 

Since the depth maps are estimated from multiple images, these 

methods can also be regarded as a special kind of multiple-

image-based saliency detection approach. However, it remains 

a challenge to obtain highly accurate depth estimates solely 

from multi-view images, especially at the object boundaries.  

The increasing availability of low-cost cameras motivate the 

use of camera arrays for various applications [8]. Through the 

redundancy obtained from the captured multi-view images, it 

is possible to obtain more accurate depth information of a scene 

so that many three-dimensional (3D) operations can be 

efficiently carried out. In this paper, a novel saliency detection 

algorithm using multiple images captured by a camera array as 

shown in Fig. 1 is proposed. The new algorithm is based on the 

idea that the foreground objects have a high probability to be 

the salient ones in a scene. In this paper, we first verify such 

idea by studying two image databases commonly used for 

saliency detection research. For better extracting the 

foreground objects, a new optimization cost function based on 

the foreground and background feature point cues as well as a 

K-Nearest Neighbor (KNN) model is proposed. We then use a

low-rank decomposition method to refine the result and fuse

with the low-level features to detect the salient objects.

Experimental results show that the new algorithm improves

over the traditional methods consistently.

II. THE FOREGROUND OBJECTS AND THE SALIENT OBJECTS

From many experimental results, we observe that foreground 

objects often become the saliency of an image since they show 

distinct appearance from the background. To verify it, we 

analyze two databases CSSD [9] and SED1 [10] commonly 

used in saliency detection research. Since these two datasets 

contain ground truth salient objects, we can compare the 

ground truth with the foreground objects in each image. The 

analysis results are shown in Table I. We find that over 90% of 

the images have the ground truth and the foreground objects 

totally or partially matched. Actually, the reason for most 

totally non-matched cases is there are no foreground objects. 

The result inspires us that we can include the foreground 

objects as a kind of high-level cue with the traditional low-level 

features in the saliency detection algorithms.  

III. FOREGROUND OBJECT EXTRACTION

Accurately extracting the shape of foreground objects is a 

challenging task. Traditional methods often cut along edges of 

Fig. 1. The 5x5 camera array system developed by our team. 

Totally matched 
Partially 

matched 
Totally non-

matched 
CSSD 71% 26% 3% 

SAD1 78% 13% 9% 

Table I. The extent of matching between foreground objects and ground 

truth salient objects. 
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large contrast but can miss the true object boundaries. Here we 

propose an efficient object segmentation algorithm based on a 

new energy cost function. The new cost function makes use of 

the feature point cues obtained from the array images and a new 

KNN model that allow the shapes of the objects to be more 

reliably detected.  

A. Feature Point Cues

Given an array image set, we have shown in [11] that the 

feature points of the background and foreground objects in a 

scene can be detected by applying the Random Sample 

Consensus (RANSAC) algorithm to the array images. To 

remove the outliers when classifying the feature points, the 

Ordering Points to Identify the Clustering Structure (OPTICS) 

algorithm [12] is adopted. Fig. 2 shows an example of the 

classification result. It can be seen that the feature points of the 

foreground are well detected. Based on the detected feature 

points, we define the foreground feature point cue as follows:  

𝐶𝐹𝐹𝑃(𝑝) = 𝛼 ∙ ∑ 𝑔(𝑝, 𝑓𝑗)𝑗 , (1) 

𝑔(𝑝, 𝑓𝑗) = {
exp(−𝑑(𝑝, 𝑓𝑗)/2𝛿2)  𝑖𝑓 𝑑(𝑝, 𝑓𝑗) < 𝜌

0  𝑒𝑙𝑠𝑒
(2) 

where 𝐶𝐹𝐹𝑃(𝑝) denotes the foreground feature point cue for

pixel 𝑝 of an image selected from the array image set of which 

the foreground object is to be detected. 𝑑(𝑝, 𝑓𝑗) represents the

Euclidean distance between pixel 𝑝 and a foreground feature 

point 𝑓𝑗; 𝛼 and 𝛿 are two strength-controlling constants, and 𝜌

is a threshold. The above foreground feature point cue is 

defined based on the assumption that the region around a 

foreground feature point has a high probability of also within 

the foreground. However, this probability should decrease as 

the distance from the feature point increases. Based on the 

same principle, we can define the background feature point cue 

𝐶𝐵𝐹𝑃(𝑝) in a similar way. The foreground and background cues

are used in the proposed energy cost function described below. 

B. New Energy Cost Function

For foreground object segmentation, the Markov Random 

Field (MRF) technique has been generally adopted. However, 

traditional MRF based algorithms often fall into the trap of 

cutting along wrong high-contrast boundaries thus some dense 

outliers can connect to the segmentation target. Additional 

manual pixel labeling is needed to correct the errors. Similar to 

the traditional MRF, the proposed energy function in (3) is 

defined so that its minimum corresponds to a good 

segmentation of the foreground object. However, we make use 

of the array images to generate the feature point cues as in (1) 

for using in the data term 𝐷𝑝 of the cost function. Besides, as

inspired by the recent research on KNN matting [13], we define 

the smoothness term 𝑉𝑝,𝑞 of the cost function in a way that the

coherence of a few nearby and similar pixels is considered 

instead of restricting to the neighboring pixels as in MRF.  

arg min
𝐿

𝐸(𝐿) = ∑ 𝐷𝑝(𝐿𝑝) + ∑ 𝑉𝑝,𝑞(𝐿𝑝, 𝐿𝑞)

𝑝,𝑞𝜖𝑆𝐾𝑁𝑁𝑝𝜖𝑃
 (3) 

𝐷𝑝(𝐿𝑝) = 𝐶𝐹𝐹𝑃(𝑝)(1 − 𝐿𝑝) + 𝐶𝐵𝐹𝑃(𝑝)𝐿𝑝 (4) 

𝑉𝑝,𝑞(𝐿𝑝, 𝐿𝑞) = 𝛾exp(−‖𝑠(𝑝) − 𝑠(𝑞)‖2
2)[𝐿𝑝 ≠ 𝐿𝑞] (5) 

In (3), L and P are the label set and pixel set of the entire image. 

𝐿𝑝 ∈ 𝐿 is the label of pixel 𝑝 ∈ 𝑃. We set 𝐿𝑝 = 0 and 1 if p is

classified as background and foreground respectively. As 

shown in (4), the data term 𝐷𝑝 will penalize the cost function if

a wrong classification is made. In (5), [𝐿𝑝 ≠ 𝐿𝑞] = 1 if 𝐿𝑝 ≠

𝐿𝑞; and 0 otherwise. Thus the term 𝑉𝑝,𝑞  of two pixels p and q

will be zero if they have the same label. Otherwise, 𝑉𝑝,𝑞  is

evaluated based on their difference in s, where 𝑠(𝑝) =
[𝑅(𝑝) 𝐺(𝑝) 𝐵(𝑝)  𝑥(𝑝) 𝑦(𝑝)]𝑇  is a vector of the RGB value

and position of p. Note that 𝐸(𝐿)  in (3) is evaluated by 

accumulating 𝑉𝑝,𝑞 for all pixel pairs {𝑝, 𝑞} within the SKNN set,

which is defined as the set of K nearest neighboring pixels of p 

measured by the similarity in RGB values and distance. 

Normally, all pixels within the SKNN set should have the same 

label due to the smoothness of object texture. If a pixel q within 

the set is wrongly classified, the classification of p will still 

follow the majority in the set since 𝑉𝑝,𝑞 is small. In the situation

that p is wrongly classified such that it is different from most 

other in the set, a large sum of 𝑉𝑝,𝑞  will be generated. It

penalizes the cost function and forces the label of p to change. 

The proposed KNN model is particularly effective at object 

boundaries where incorrect classifications happen frequently. 

Since the KNN model will cluster similar pixels, a pixel at the 

boundary tends to follow the classification of the same object. 

It is on contrary to the traditional MRF which considers only 

the neighboring pixels where the classification can be rather 

random at the object boundaries. The minimization of the cost 

function in (3) can be achieved by using the max-flow/min-cut 

methods. Fig. 3(a) and (b) show the results using the traditional 

MRF and the proposed approach. It is seen that the shape of the 

objects is better retrieved by the proposed approach. However, 

some outliers appear which can be further removed using a 

low-rank decomposition method as described below.  

     (a)                      (b)                        (c)                         (d) 
Fig. 3.  (a) Input image. (b) Segmentation results using the traditional 

neighboring graph structure method. (c) Segmentation results using the 

proposed method. (d) Results refined by the low rank decomposition.  

     (a)                                  (b)                       (c) 

Fig. 2. (a) The original image. (b) Initial result of foreground feature point 
detection. (c) Result after further refinement with OPTICS. 
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IV. LOW-RANK DECOMPOSITION TO REFINE THE RESULTS 

To remove the outliers, we first align the detected masks to 

the perspective of the reference view. It is achieved by means 

of the homographies estimated from the object feature points 

obtained in Section III. Because of parallax, alignment of the 

foreground implies misalignment of the background. So the 

foreground part of the aligned masks will be very similar, thus 

having low rank; the background outliers however can be quite 

different, thus having high rank. By retaining only the low rank 

part of the aligned masks, we can remove the background 

outliers. More specifically, let 𝑀 =
[𝑣𝑒𝑐(𝑊1𝐴1), 𝑣𝑒𝑐(𝑊2𝐴2) … 𝑣𝑒𝑐(𝑊𝑛𝐴𝑛)] , where 𝑊𝑖  is the 

alignment operator for the ith array image; 𝐴𝑖 is the ith mask 

estimated in Section III. 𝑣𝑒𝑐(. ) is an operator that converts an 

image into a column vector. So 𝑀 is a matrix of which each 

column represents an aligned foreground mask developed in 

Section III. An objective function is then defined as follows: 

arg min
𝑍

𝐽(𝑍, 𝑆) = ‖𝑍‖∗ + 𝜉‖𝑆‖1,   s.t. M=Z+S (6) 

where Z is the low-rank part of M, which is the foreground 

region that we desire; S is the sparse background outliers; and 

𝜉 is a constant. Rather than directly minimizing J according to 

the rank of Z, we consider the nuclear norm of 𝑍 and the 𝑙1-

norm of 𝑆 in (6) to allow the problem to be solved using a 

convex approach. We use the Augmented Lagrange Multiplier 

(ALM) method plus the Alternating Direction Method (ADM) 

to solve (6). Fig. 3(d) shows the refined segmentation results. 

It can be seen that almost all outliers are removed. 

We also define a confidence value in (7) for measuring the 

certainty of each detected object,  

𝐶 = {
𝑚𝑒𝑎𝑛(𝑍)𝑒𝑥𝑝(−𝑣𝑎𝑟(𝑍)/𝜏1

2) 𝑖𝑓 𝑍 ≠ ∅

0 𝑖𝑓 𝑍 = ∅
 (7) 

𝑍 = {𝑍|𝑍 > 0}  

where 𝜏1  is a constant. 𝑍 with large mean and low variance 

mean the intensity is high and stable. Note that 𝐶 = 0 if the 

scene consists of only a plane without any foreground object. 

V. FUSION WITH LOW LEVEL FEATURES 

With the refined foreground objects 𝑍 and the confidence 

value 𝐶, the final saliency map can be obtained by fusing with 

some low level features used in the traditional Robust 

Background Detection (RBD) [14] saliency detection method. 

min 𝑂(𝑠𝑖) = ∑ 𝑤𝑏𝑖𝑠𝑖
2 + ∑ 𝑤𝑓𝑖(𝑠𝑖 − 1)2  

+ ∑ 𝑤𝑖𝑗(𝑠𝑖 − 𝑠𝑗)
2
, 

(8) 

𝑤𝑏𝑖 = (1 − 𝜉𝑤)𝑤𝐵𝑛𝑑(𝑠𝑖) +  𝜉𝑤(1 − 𝐹(𝑠𝑖)) (9) 

𝑤𝑓𝑖 = (1 − 𝜉𝑤)𝑤𝐶𝑡𝑟(𝑠𝑖) +  𝜉𝑤𝐹(𝑠𝑖) (10) 

𝜉𝑤 = min(𝛾𝐶,   0.8) (11) 

In (8), 𝑠𝑖 represents the results of region division using SLIC 

[15].  𝐹(𝑠𝑖) is the sum of the values of 𝑍 in region 𝑠𝑖. 𝑤𝑏𝑖 and 

𝑤𝑓𝑖  are the weights for non-salient and salient regions, 

respectively. 𝑤𝐵𝑛𝑑(𝑠𝑖) measures the extent to which region 𝑠𝑖 

touches the image boundary and 𝑤𝐶𝑡𝑟(𝑠) is a measure of the 

region contrast as discussed in RBD. In (10), 𝜉𝑤 is an adaptive 

weight that is used to balance the low-level and object-level 

features. It has a large value if the object confidence is high 

(after scaling by a constant 𝛾), and is capped to 0.8 to ensure 

the low-level features can assist in detecting the salient objects. 

VI. EXPERIMENTS AND EVALUATION 

A series of experiments were carried out to compare the 

performance of the proposed algorithm with the state-of-the-art 

saliency detection methods. Since there is no existing multi-

view image dataset for saliency detection, we captured 30 

groups of images using our camera array, and manually labeled 

the ground truths. We compared our method with 8 single-

image saliency detection methods. They include: context-

aware saliency detection (CA) [16], dense and sparse 

reconstruction (DSR) [17], absorbing Markov chain (MC) [18], 

PCA [19], RBD, sparse signal mixing (SS) [20], region 

covariances (COV) [21], and hierarchical saliency model (HS) 

[9]. Two co-saliency detection methods were also compared, 

which include: self-adaptively weighted co-saliency detection 

(SWC) [3] and cluster-based co-saliency detection (CO) [5]. 

We also compared with the depth-enhanced saliency detection 

method (DES) [6] with the depth map obtained using the 

classic method described in [22]. Fig. 4 shows the quantitative 

comparison results evaluated in the situation that foreground 

objects exist. Two criteria are considered: the precision-recall 

(PR) curve, and the receiver operator characteristic (ROC) 

curve. It can be seen that the proposed method always achieve 

the best results. Fig. 5 shows the qualitative comparison results 

evaluated in the situations that foreground objects exist. It is 

seen that the proposed method enhances the intensities of the 

salient object and has much fewer background outliers in the 

saliency map. Note that in the situations that the scene has no 

foreground objects, the proposed algorithm will be similar to 

RBD according to (8)-(11). Fig. 6 shows the results for scenes 

without foreground objects to verify this. 

     
                           (a)                                                      (b) 

 
                            (c)                                                       (d)             
Fig. 4. Left: PR and ROC curves of single-image-based methods. Right: PR 

and ROC curves of multiple-image and depth-based methods.  
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VII. CONCLUSIONS 

In this paper, we investigated the relationship between the 

foreground objects and salient objects, and proposed a new 

saliency detection algorithm by combing the high level 

foreground object detection result with the low-level object 

features. For foreground object segmentation, we proposed the 

reliable feature point cue and a novel KNN model to better the 

process. A low-rank decomposition method is then applied to 

remove the outliers. After fusing with low-level features, the 

proposed approach showed impressive performances in 

identifying the salient objects over the traditional approaches. 
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Fig. 6. Saliency detection results for scenes without foreground objects. 
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Fig. 5. Examples of the saliency maps obtained using various state-of-the-art methods and our proposed method in situations with foreground objects. 

 




