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Abstract— Neural machine translation (NMT) has achieved
notable performance recently. However, this approach has not
been widely applied to the translation task between Chinese and
Uyghur, partly due to the limited parallel data resource and the
large proportion of rare words caused by the agglutinative
nature of Uyghur. In this paper, we collect ~200,000 sentence
pairs and show that with this middle-scale database, an
attention-based NMT can perform very well on Chinese-
Uyghur/Uyghur-Chinese translation. To tackle rare words, we
propose a novel memory structure to assist the NMT inference.
Our experiments demonstrated that the memory-augmented
NMT (M-NMT) outperforms both the vanilla NMT and the
phrase-based  statistical  machine translation  (SMT).
Interestingly, the memory structure provides an elegant way for
dealing with words that are out of vocabulary.

L INTRODUCTION

Uyghur belongs to the Turkic language, Altai family, and is
primarily spoken by Uyghur people, an ethnic group in China
with a population of more than 23 million, mostly distributed
in the Xinjiang Uyghur Autonomous Region of China. Since
people in most of the areas of China use Chinese, translation
between Chinese and Uyghur becomes more and more
important with the increase of cross-region collaboration and
nation integration.

However, this translation turns out to be very challenging.
One reason is that the two languages are rather “distant” in
terms of both phonetics and linguistics. Particularly, the two
languages have different syntactic orders: the order of
Chinese is SOV (subject-object-verb), while the order of
Uyghur is SVO. It implies that a phrase in Chinese probably
cannot be translated into a single phrase in Uyghur, but some
nonconsecutive words instead. As shown in Fig.1, a Chinese
phrase " %" (I love) should be translated to two Uyghur
words " ya" (I) and " y4e23" (love), but these two words are

far from each other in the corresponding Uyghur sentence.
Unfortunately, this phenomenon is not infrequent, and it
greatly increases the difficulty of the conventional phrase-
based SMT that heavily relies on phrase correspondence thus
weak in handling distant word reordering. Another difficulty
of Chinese/Uyghur translation resides in the agglutinative
nature of Uyghur, which means that Uyghur words can be
produced in a very flexible way, by applying some general
morphological rules. Put it more specific, Uyghur has about
30000 root words, 8 prefixes, more than 100 suffixes. A

R E EW & HE
& %

Fig. 1 SOV in Chinese vs. SVO in Uyghur

Uyghur root can be agglutinated with unlimited number of
suffixes, leading to a very large (even unlimited) vocabulary.

For example, the Uyghur word " Soisseidilo]is"

(Probably because 1 can't do it) has eight suffixes
(mSepeere el 0 JB) agglutinated to the root
(J9). A consequence of the flexible agglutination is that most

of the Uyghur words are rare and even out-of-vocabulary
(O0V) for an MT system.

Most of existing studies on Uyghur/Chinese translation
focus on refining the phrase-based SMT architecture. For
example, Dong et al. [1] tackled the syntactic order problem
by reordering Chinese sentences to meet the SOV style of
Uyghur, so that more correct phrase pairs could be obtained.
Mi et al. [5] filtered out unreasonable phrase pairs from SMT
phrase table by a binary classifier. Various morphology
preprocessing techniques were also adopted to fit with
Uyghur's agglutinative nature. These techniques segment
Uyghur words into smaller morphemes: “stems”, “suffixes”
and “prefixes”, and perform MT at the morpheme level [1, 2,
3]. These methods may produce better word alignment and
alleviate the rare word and OOV word problem. All the above
studies improved the Chinese/Uyghur translation to some
extent, but none of them can be seen as a complete and
systematic solution for the specific difficulties with these two
languages.

Recently, neural machine translation (NMT) has attracted
much attention. Different from SMT that relies on phrase
pairs to perform token-by-token translation, NMT uses an
encoder-decoder neural architecture to distill the meaning of
the input, and then perform the translation by referring to the
meaning discovered, leading to a meaning-oriented translation
[16]. Particularly with the attention mechanism [6], the
alignment between the source and target sentences can be
very flexible. We conjecture this flexible alignment will
provide a systematic solution for the syntactic order problem
in the Chinese/Uyghur translation. For example, the Chinese
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word "F %" (I love) can be aligned to two Uyghur words
"oa' (I) and " jaegw" (love) by the attention mechanism, no

matter how distant the two words are in the Uyghur sentence.

However, applying NMT to Chinese/Uyghur translation is
not as easy as the first glance. A major issue is that NMT has
a tendency of overfitting to frequent words, while overlooking
rare words that are not frequently observed. For Uyghur,
unfortunately, most of the words are rare words. More
seriously, the vocabulary of NMT systems cannot be too large
due to the demand on computing resource. This leads to a
severer OOV problem for Chinese/Uyghur translation, as
many Uyghur words would become OOV with the limited
vocabulary.

In this paper, we propose a memory-augmented NMT that
equips the wvanilla attention-based NMT with a memory
component that stores some source-target word mappings.
This design has two advantages: first, it inherits the superior
of the attention-based NMT in dealing with the syntactic
order problem; second, by using the memory, it can alleviate
the rare word problem and provides an elegant treatment for
OOV words. Our experiments showed that the M-NMT
approach surpassed both the vanilla NMT and the SMT
approaches.

II.  RELATED WORKS

This paper primarily follows our unpublished work in [7]
where we demonstrated that a memory structure can
significantly improve performance of Chinese-English
translation. The idea of memory augmentation was inspired
by the recent advances in Neural Turing Machine [8] and
Memory Networks [9]. Our main difference from them is that
the memory in the M-NMT model is fixed knowledge
resevoir, rather than an updatable RAM. Arthur et al. [10]
held an idea similar to ours and proposed to use some lexical
knowledge to assist the translation. The difference is that we
trained an independent attention on the lexical knowledge
while they re-used the attention information of the NMT
model.

Regarding OOV treatment, Gulcehre et al. [11] equipped
NMT with a pointer network that can restore unknown words
in the source context. This work was followed by Kong et al.
[4], the only NMT study on Uyghur-Chinese translation we
have found so far. Finally, Li et al. [12] proposed a replace-
and-restore approach that replaces unknown words with
similar words. Our model shares the same idea of using
similar words to represent unknown words, but uses a pre-
processing rather than a post-processing.

III. ATTENTION-BASED NMT

Before introducing our M-NMT architecture, we will give a
brief review of our reproduction of the attention-based NMT
model [6]. This model has been regarded as being the state-
of-art and will be used as a baseline in this study.

The attention-based NMT model is basically an encoder-
decoder architecture, where the input word sequence
[x1, %5, ...] in the source language is embedded as a sequence

of hidden states [hl, h,, ) by a bi-directional RNN with
GRU as units, and another RNN is used to generate the target
sequence [y1,¥2, ). To guide the generation at each step to
focus on a particular segment of source sentence, Bahdanau
et al. introduced an attention mechanism. Specifically, when
generating the i-th target word, the attention factor of the j-th
source word is measured by the relevance between the current
hidden state of the decoder, denoted by S;.; and the hidden
state of the encoder at the j-th word h;, given by:
€; j

2 e
where a(-) is the MLP-based relevance function, and @; j 1s
the attention factor of X; at decoding step i. Then the semantic
context that decoder focuses on is:

Ci = Zauhj

The decoder updates the hidden state with a recurrent
function fy, formulated by:

Si = faWi-n Sia, i)

and the next word Y; is generated according to the following
posterior:

;= e;j = a(sy1, hy)

p(yi) = a(yfWz)

z; = g1, Si-1, i)
where 0(*) is the softmax function, g is a single maxout
hidden layer. And being slightly different from the original
model in Ref. [6] which takes W as a parameter matrix, in our
implementation, we take W the same as the target word
embedding E;. Without performance loss, our modification
decreases the number of parameters.

IV. MEMORY-AUGMENTED NMT

A.  Architecture

The architecture of M-NMT is illustrated in Fig. 2. It
involves two parts: the left part is a typical attention-based
NMT which has been presented in Section III; the right part is
a memory component. The outputs from the two parts are
combined to produce the final translation.

As shown in Fig. 2, Memory has a hierarchical generation
process. First of all, there is a big global memory (the bottom-
right in Fig. 2) memorizing many source-target word
mappings, written by [V, X;]. One source word may have
several possible translations. The global memory can be
obtained from either a human-defined dictionary or the word
table got from SMT. Human-defined dictionary is apparently
better, because a word table from SMT may contains
unreasonable mappings. However, collecting human-defined
dictionary is expensive, and therefore we use word mappings
produced by SMT in this study.

Next, based on the source words in each input sentence,
appropriate elements in the global memory are selected
dynamically to produce the local memory, as shown in the
right-middle in Fig. 2. In order to involve the context

APSIPA ASC 2017



fowaw
pabiaw

[
SVEV]
[eoo|

"""""""""""""""""" V11 22 Y 2

x| % | Xq [X4

[

|

I

|

I
XT3
X[ =
=13
ATowsw
[eqo|6

Fig. 2 The architecture of M-NMT

information, X; is replaced by its hidden state h;, written by
[vii, h;i]. Due to the limited computing resource, it is not
possible to choose all the potential translations of each source
word. We therefore select a few candidates according to
p(yj |xl~), i.e., selecting the most possible translations. This
selection method can be seen as a filter of the word mappings,
with the aim of removing unreliable mappings obtained from
SMT.

Finally, a particular target word may correspond to multiple
source words in local memory. To save memory and load
target words as many as possible, we propose a merge
operation that consolidate elements with the same target word
into a single element, given as follows:

=[5 e
w5 = D plyph
L
Noted that p(y,- |xi) and p(x;|y;) are both obtained from word

mappings in global memory. This leads to a merged memory
as shown in Fig.2

B.  Memory Attention
In order to use the memory to improve translation, an
attention mechanism is designed, following the same
inspiration in the attention-based NMT. At each translation
step 1, denote the attention factor of each memory element Uy,
by @]k, and assume it is derived from a relevance function €/i:
eik
Zf:k e’TI:l
where K is the number of target words in the merged memory.
In this study, €jy is designed as a simple neural net as follows:

e = (v™)"tanh (W™sq + Wwe + Wyyiq)

m _
Qi =

where S;.q is the current decoder state, Y;.q is the word
generated at the previous step, 8™ = {vm, W™, W, Wym]
represents the model parameters.

The attention factor @) can be used in different ways. Here

we simply treat it as a posterior of the words in the vocabulary
and combine it with the posterior p(;) produced by the

neural model part, resulting in a consolidated posterior, given
by:

POy = Baj + (1= Bp()

where [ is a pre-defined interpolation factor. This simple
combination enables the memory component to be trained
independently. The objective of the training is to let the
memory attention as accurate as possible. Given the n-th
training sentence, at each step I, the target attention should be
1 on the current word ;' and 0 elsewhere. So, the objective
function is defined as the cross entropy between the target
attention and the memory attention, written by:

L@O™) = Z Z log (agy)

where k' is the position of Y;* in the merged memory.

Note that joint training of the memory part and neural
model part is possible, but it requires much more memory and
suffers from the risk of overfitting. Therefore, in this study,
we first train the neural model, and then keep it fixed and
train the memory attention.

C. OOV Treatment

The memory approach also provides an elegant way to
address OOV words. In our study, OOV words are words
absent in the vocabulary of the source or the target languages.
Specifically, if an OOV word is encountered in the source
sentence, the vector of a similar word is borrowed so that the
OOV can be involved in the encoding. In contrast, if an OOV
word is encountered on the target side during the memory
construction, the vector of a similar word is likewise
borrowed to represent the OOV word in memory. By this
approach, OOV words can be represented, encoded and
decoded as frequent words. Note that the selected similar
word should not have appeared in the sentence, otherwise
confusion will be caused. The similar word selection can be
either manually defined by human, or based on word vector
similarity. In this study, we simply use human definition.

V. EXPERIMENTS

TABLE 1
STATISTICAL INFORMATION OF CORPUS
Uyghur Sent. Token. Vocab.
Train 180612 2868046 177420
Dev 1985 28945 10476
Test 992 15446 6666
Chinese Sent. Token. Vocab.
Train 180612 2823872 130790
Dev 1985 28012 8706
Test 992 15009 5509
A. Data

We collected more than 200,000 Uyghur-Chinese sentence
pairs. After text cleaning, 183,589 sentence pairs were
remained. We split the entire database into three sets: training
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(Train), development (Dev) and testing (Test). The statistical
information of the three data sets is shown in Table I.

B.  Systems & Settings

SMT baseline: For SMT, we used the state-of-art Moses
toolkit [13]. We used SRILM [14] to train a 5-gram language
model, and the GIZA++ toolkit to align the training data in
both directions. The produced word alignments were used in
both the SMT system and the M-NMT system.

NMT baseline: For NMT, we reproduced the attention-
based NMT model [6]. The implementation was based on
Tensorflow!. Both the encoder and encoder used one-layer
RNN with GRU cells, and the encoder was a bi-directional
RNN. The size of the vocabulary, the number of hidden units,
and the number of output units were set to be 30000, 1000,
500 respectively. The batch size of the training was 80, and
the optimization algorithm was Adam [15] with the learning
rate setting to 0.0005. The decoding was based on a beam
search algorithm, where the beam size was set to 12.

M-NMT system: The M-NMT system was the
combination of the NMT baseline and a memory structure

present in Section IV. When training the memory structure, i.e.

the memory attention, the NMT component kept unchanged.

The training and decoding settings were all the same as with

the NMT baseline. The interpolation factor 3 was set to % .
Evaluation metrics: For the evaluation, we use the BLEU

score computed by multi-bleu.perl in Moses, which is the
average of 1 to 4 gram BLEUs multiplied by a brevity penalty.

C. Performance

First of all, the whole training data, about 180,000 sentence
pairs, was used to train both the Chinese-Uyghur and Uyghur-
Chinese translation models, using SMT, NMT and M-NMT
respectively. Table II presents the performance of these
systems. The values shown in this table are BLEU scores.

interesting observation is that our model not only gives better
1-4 gram BLEU scores, but also has a more reasonable
brevity penalty than NMT. This means that our model has
alleviated the “under translation” problem of the vanilla NMT
model.

TABLE III
1-4 GRAM BLEUS AND BREVITY PENALTY
Systems 1-gram 2-gram 3-gram 4-gram Brevity
BLEU BLEU BLEU BLEU penalty
SMT 54.5 34.6 26.6 22.1 1.000
NMT 57.7 39.8 31.9 27.0 0.939
M-NMT 58.8 40.8 324 27.1 0.968

To test our hypothesis that our model provides better
treatment for rare words, we count the number of “recalled
words” in the test set, e.g. the number of unique words
appeared in the translation. In the Chinese-Uyghur translation
task, the reference of the test set contains 6666 unique words.
In the translation result of the SMT, NMT and M-NMT
systems, the numbers of recalled words are 3680, 3509, 3560
respectively. It can be seen that our system recalls more
words than the NMT system but less than the SMT system,
which is consistent with our expectation that our model can
alleviate the rare word problem of NMT.

Besides, we study the influence of the volume of the
training data. As shown in Table IV, we compare the
performance when 100%, 50% and 25% of the training data
are used to build the three systems. It can be observed that
NMT can perform better than SMT even if half of the training
data, ~90,000 sentence pairs, are used. When the 25% of the
training data are used, NMT cannot surpass SMT, but our M-
NMT model still outperforms SMT. This means that M-NMT
can leverage the power of SMT by using the memory
structure (produced by SMT) and deliver good performance
even with limited training data.

TABLE II
PERFORMANCE OF DIFFERENT TRANSLATION SYSTEMS
BLEU
Systems SMT NMT M-NMT
Ch-Uy 32.44 3524 36.88
Uy-Ch 32.24 36.67 37.86

TABLE IV
PERFORMANCE WITH DIFFERENT AMOUNT OF TRAINING DATA
BLEU
Data used SMT NMT M-NMT
100% 32.44 35.24 36.88
50% 21.97 2230 23.70
25% 17.30 16.75 18.72

As illustrated in Table II, when the whole training data was
used, both NMT and M-NMT have a better performance than
SMT. And our model, M-NMT, performs best. For Chinese-
Uyghur translation, our model brings 4.41 and 1.66 BLEU
improvement over SMT and NMT respectively. For Uyghur-
Chinese translation, our model surpasses SMT and NMT by
5.62 and 1.19 BLEU score respectively.

To investigate why our model performs better, we observe
the BLEU scores with different n-gram orders and the brevity
penalty that trade-off the length of the translation. Table III
shows results on the Chinese-Uyghur translation task. An

1 https://www.tensorflow.org/

Finally, we give an example to demonstrate that the M-
NMT model, accompanied by the similar word approach, can
deal with OOV words. The source sentence is “ZZ % 1] 45§
AL I E—#% o ”, which means “Lizu’s wedding is unique”.
The word “Z2J%” (Lizu, an ethnic group in China) is an OOV
word. We use a similar word in the vocabulary “# 37 % ”
(another ethnic group in China) to represent this OOV word.
By this similar word replacement, “¥Ls”, the translation of
“48 $i k7, is obtained but redirected to the correct word
“350”, the correct translation of the original OOV word “%¢
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%>, The translation result is shown in Fig. 3. It can be seen
that the M-NMT model obtains a correct translation.

Src: B B &AL BAE—% .

Ref: 3 e T R

NMT: Gaiald gHpad Hall Bs};558 el fe 598 _TUNK
M-NMT+OO0V: c4uS338 deusd asusl)da (593 Eliitdlis 55

Fig. 3 An example of M-NMT OOV treatment

VI. CONCLUSIONS

In this paper, we demonstrated that the attention-based
NMT approach can perform well in translation tasks between
Chinese and Uyghur, partly due to the attention mechanism
that can solve the synaptic order discrepancy between the two
languages. Additionally, we introduced a memory-augmented
NMT, which equips NMT with an external memory to
memorize some translation pairs. We conjecture that this
memory may alleviate the rare word problem caused by the
agglutinative nature of Uyghur. Our experiment demonstrated
the M-NMT approach can significantly improve Chinese-
Uyghur translation, especially on rare words. It also
demonstrated that the memory mechanism provides an
elegant way for OOV treatment when accompanied by a
similar word strategy.

Two drawbacks exist in our model. Firstly, the quality of
the OOV treatment heavily relies on the quality of the similar
word selection. If the similar words are not truly similar, the
performance will drop dramatically. A better OOV word
embedding approach will be investigated to improve the OOV
treatment. Secondly, the present memory structure does not
include any phrase mapping, though the advantage of using
phrases is well known in MT. We will extend word memory
to phrase memory in the future work.
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