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Abstract—Neural machine translation (NMT) has recently
achieved impressive results. A potential problem of the existing
NMT algorithm, however, is that the decoding is conducted
from left to right, without considering the right context. This
paper proposes an two-stage approach to solve the problem. In
the first stage, a conventional attention-based NMT system is
used to produce a draft translation, and in the second stage,
a novel double-attention NMT system is used to refine the
translation, by looking at the original input as well as the
draft translation. This drafting-and-refinement can obtain the
right-context information from the draft, hence producing more
consistent translations. We evaluated this approach using two
Chinese-English translation tasks, one with 44k pairs and 1M
pairs respectively. The experiments showed that our approach
achieved positive improvements over the conventional NMT
system: the improvements are 2.4 and 0.9 BLEU points on the
small-scale and large-scale tasks, respectively.

I. INTRODUCTION

Neural machine translation (NMT)[1][2][3] has continu-

ously gained attention from both academia and industry,

and has obtained the state-of-the-art performance on many

translation tasks, e.g., English-to-French, English-to-German,

Turkish-to-English, and Chinese-to-English[3][4][5][6][7].

The basic NMT model employs a sequence-to-sequence

architecture[3], where the meaning and intention of the source

sentence is encoded into a representation vector with fixed

dimensions, by which the translation (target sentence) is pro-

duced word by word. This architecture was later extended to an

attention-based model[5][6], which allows the decoder being

aware of the location that it should focus on at each decoding

step. In a typical implementation of the attention-based NMT

architecture, the encoder and decoder are both recurrent neural

networks (RNN), where the hidden units are often some kinds

of gated memory, e.g., long short-term memory units (LSTM)

and gated recurrent units (GRU). The encoder turns the source

sentence into a sequence of semantic representations, or hidden

states. During decoding, the attention mechanism aligns the

state of the decoder to all the hidden states generated by the

encoder, and decides which part of the input should be paid

more attention. By this information, the decoder can translate

the semantic meaning of the input piece by piece.

A feature of this attention-based NMT model is that at each

decoding step, the information of the decoding history, e.g.,

the words that have been produced so far, is utilized to obtain

a smooth translation. This is essentially a kind of language

model. A potential problem here is that we only use the left

context (decoding history), but ignores the right context (future

words), although the right context could be valuable. This

shortage can be partially alleviated by beam search, where

the decision of the target word is delayed by a few steps, so

the ‘future’ information can be employed to impact the ‘past’

decision. However, the potential of this beam search is rather

limited, and we have found that most of the sequences in

the buffer share the same prefix[8]. Thus a better solution is

desired.

In this paper, we propose a two-stage translation approach

to tackle this problem. This approach is based on the idea

of drafting-and-refinement, by which a draft translation is

produced at the first stage, and at the second stage, the

draft is refined by referring to the draft translation. Since the

draft has given a rough idea what the translation would be,

the right context can be obtained and utilized to make the

refinement. In our implementation, the first stage (drafting)

uses a typical attention-based NMT system, and the second

stage (refinement) uses a double-attention NMT model that

we will present shortly after.

The remaining of the paper is structured as follows: the next

section reviews some related work, and Section 3 briefly de-

scribes the attention-based NMT model. Section 4 introduces

the double-attention NMT model, and Section 5 presents the

experiments. Finally, the paper ends up with a conclusion.

II. RELATED WORK

The idea of using the right context to aid translation

has been used in several studies. Sutskever et al. found

that his sequence-to-sequence model achieved a promising

improvement when reversing the source sentence “a, b, c” to

“c, b, a”[9]. They argued that reversing the input may result

in better memory usage during decoding, but it could also

be possible that the right context is more informative when

encoding the source input. The importance of the right context

is also demonstrated by the fact that a significant improvement

could be obtained when using a bi-directional RNN rather than

using a uni-directional RNN[15].

Recently, Novak et al. proposed an iterative translation

approaches[10]. Similar to our two-stage approach, they got

a draft translation using NMT, and then designed a ‘word

correction’ model that can correct the potential errors in the

draft translation. The author raised the a similar argument that

the right context is important to regularize the translation;
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the difference is that they focused on error correction but

we perform a complete new translation. Our approach may

avoid the co-correction problem, i.e., correcting one word may

impact the correctness of other words.

The drafting-and-refinement idea was also used in

other tasks. For example in automatic Chinese poetry

composition[11], a draft poem was firstly produced, and then

the output was used as the input of the next iteration, to

produce a new poem with better quality. The same approach

was used in image generation[12], by which an image was

drawn step-by-step, and the residual error was minimized at

each step.

III. BACKGROUND: ATTENTION-BASED NMT

Our study is based on the attention-based NMT model[5],

so we give a brief introduction for the sake of completeness.

For simplicity, our introduction is just the basic architecture

presented in [5]. Recent development of the attention-based

NMT using different architectures can be found in [13], [14].

This typical attention-based model is shown in Fig. 1, where

the encoder and decoders are implemented as two RNNs.

Put it in brief, a source sentence X = (x1, x2, ..., xTx
) is

encoded by the encoder RNN into a sequence of annotations

C = (h1, h2, ..., hTx
). Then the decoder RNN initiates a

decoding process from a ‘start’ symbol. At each decoding step

t, the decoder computes the relevance between the decoder

state st−1 and each annotation hi, resulting in the attention

weight αti. The target word is generated by maximizing the

conditional probability p(yt|y<t, C, αti).

A. Encoder

The encoder adopts the form of a bidirectional RNN

(BiRNN)[15], in which the hidden units can be either

GRUs[16] or LSTMs[17]. In this paper, we used the GRU

units. This BiRNN decoder consists of a forward RNN
−−−→
GRU

and a backward RNN
←−−−
GRU . The forward RNN reads the

source sentence from left to right and generates a sequence

of forward annotations:

−→
C = (

−→
h 1,
−→
h 2, ...,

−→
h Tx

),

in which

−→
h i =

−−−→
GRU(xi,

−→
h i−1). (1)

Similarly, the backward RNN reads the input sequence from

right to left and generates a sequence of backward annotations:

←−
C = (

←−
h 1,
←−
h 2, ...,

←−
h Tx

).

The final annotation ht is then obtained by a concatenation

of
−→
h t and

←−
h t, i.e.,

ht = [
−→
h ⊤

t ;
←−
h ⊤

t ]
⊤.

−→

h 1

−→

h 1

−→

h 2

−→

h 2

−→

h Tx

−→

h Tx

←−

h 1

←−

h 1

←−

h 2

←−

h 2

←−

h Tx

←−

h Tx

st−1st−1

x1x1 x2x2 xTx
xTx

…

…

…
stst

yt−1yt−1 ytyt

…

αt1αt1

αt2αt2 αtTx
αtTx

ctct

Fig. 1. The encoder-decoder NMT with attention.

B. Attention

When decoding the tth target word, the attention mechanism

computes the attention weights:

(αt1, αt2, ..., αTx
) = σ(et1, et2, ..., eTx

)

where σ(·) is the softmax function, and

eti = f(st−1, hi),

where st−1 is the hidden state of the decoder at step t, and f(·)
is the attention function that can be implemented by a neural

network. The context vector ct is calculated as a weighted sum

of annotations C, given by:

ct =

Tx∑

i=1

αtihi. (2)

In this way, the decoder will pay attention to the annotations

that are most relevant to the present decoding status, where the

target-relatedness is represented by the attention weight αti.

C. Decoder

As soon as we get the context vector ct from C at decoding

step t, the conditional probability of selecting a word yt is

calculated as:

p(yt|y<t, C) = g(yt−1, st, ct), (3)

where st is the the hidden state of the decoder at the tth step,

and it is updated according to the previous hidden state st−1,

the previous output yt−1, and the context vector ct:

st = GRU(yt−1, st−1, ct). (4)

D. Training

All the parameters in the attention-based NMT model

are optimized by maximizing the following conditional log-

likelihood on the training dataset:

L(θ) =

N∑

n=1

T
(n)
y∑

t=1

log p(y
(n)
t |y

(n)
<t , X

(n), θ), (5)
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where X(n) denotes the nth training sample, i.e., a bi-lingual

sentence pair, and θ represents the model parameters that

we need to optimize. This optimization can be conducted by

any numerical optimization approach, but stochastic gradient

descend (SGD) is the most often used.

IV. TRANSLATION BY LEARNING FROM DRAFT

For the attention-based NMT, the posterior probability for

the target word prediction is in the form p(yt|y<t, X). Notice

that it is conditioned on the entire source sentence X and the

decoding history y<t, which is the left context. However, it

does not involve any right context, although that information

might be useful.

One may argue that the backward information has been

involved in the annotations by the BiRNN encoding, therefore

the right context information has been already taken into

account. But this is not the case. The right context we refer

to is nothing to do with the semantic content that have been

encoded; instead, it is a regulation imposed by the target words

that would be decoded.

We designed a two-state translation approach to solve the

problem. By this approach, the source sentence X is firstly

translated into a draft Ỹ = (ỹ1, ỹ2, ..., ỹTỹ
) by an conventional

attention-based NMT system, like the one in [5]. Then a

second-stage translation system will refine or ‘re-translate’ this

draft. In this pipeline, the right context, although not very accu-

rate, can be roughly obtained from the draft. This information

will offer valuable regularization at the second-stage decoding,

thus delivering a refined translation. In practice, we design

a double-attention NMT model to utilize the right context

information. This model accepts both the target draft Ỹ and

the original source sentence X , and pays attention to both the

sequences during decoding. The main architecture is shown in

Fig. 2.

A. Encoder

The double-attention model involves two encoders: the first

encoder GRU1 serves to encode the source sentence X ,

and the second one GRU2 encodes the draft sentence Ỹ .

Both encoders are BiRNNs and generate annotations. The

formulations for the encoding are the same as (1). At each

encoding step i, the annotations hi and h̃i are calculated as:

hi = GRU1(xi, hi−1), (6)

h̃i = GRU2(ỹi, h̃i−1). (7)

Note that GRU1 and GRU2 both concatenate the forward and

backward annotations. The two sequences of annotations are

correspondingly written as C1 = (h1, h2, ..., hTx
) and C2 =

(h̃1, h̃2, ..., h̃Tỹ
).

B. Attention

The double-attention model involves two attention mecha-

nisms, one for the original source input and the other for the

−→

h 1

−→

h 1

−→

h 2

−→

h 2

−→

h Tx

−→

h Tx

←−

h 1

←−

h 1

←−

h 2

←−

h 2

←−

h Tx

←−

h Tx

st−1st−1

x1x1 x2x2 xTx
xTx

…

…

…
stst

yt−1yt−1 ytyt

…

αt1αt1

αt2αt2 αtTx
αtTx

ct1ct1

−→

h̃ 1

−→

h̃ 1

−→

h̃ 2

−→

h̃ 2

−→

h̃ Tỹ

−→

h̃ Tỹ

←−

h̃ 1

←−

h̃ 1

←−

h̃ 2

←−

h̃ 2

←−

h̃ Tỹ

←−

h̃ Tỹ

ỹ1̃y1 ỹ2̃y2
ỹTỹ
ỹTỹ

…

…

α̃t1α̃t1

α̃t2α̃t2
α̃tTỹ
α̃tTỹ

ct2ct2

ctct

Fig. 2. The double-attention NMT model.

draft translation. The final context vector is the concatenation

of the context vectors on the two sequences:

ct = [c⊤t1; c
⊤

t2]
⊤

where t is the decoding step, ct1 is the context vector produced

by the attention mechanism on the original input, and the ct2 is

the context vector produced by the attention mechanism on the

draft translation. These two context vectors are computed ex-

actly as the attention mechanism of the conventional attention-

based NMT model, as presented in the previous section.

C. Decoder

Using the concatenated context vector ct, the decoder per-

forms the translation as the conventional attention-based NMT:

p(yt|y<t, C1, C2) = g(yt−1, st, ct), (8)

where ct = [c⊤t1; c
⊤

t2]
⊤. The hidden state of the decoder is

computed the same as (4), and the initial value of the hidden

state is calculated as an average sum of the first backward

annotations of the two input sequences:

s0 =
1

2
(
←−
h1 +

←−
h̃ 1). (9)

D. Training

The training of the double-attention NMT model is similar

to the conventional attention-based NMT model, though the

log likelihood function now depends on two input sequences

X and Ỹ . This is written as follows:

L(θ) =

N∑

n=1

T
(n)
y∑

t=1

log p(y
(n)
t |y

(n)
<t , X

(n), Ỹ (n), θ). (10)

Note that to simplify the training, the architecture and the

parameters of the first-stage NMT model can be inherited and

re-used in the double-attention model. In our study, all the

word embeddings (both on the source and target sides) are

inherited from the first-stage NMT model and are fixed during

the double-attention model training.
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There are two reasons to keep these embeddings fixed. First

of all, the embeddings have been well learned in the first

stage, and re-using them in the second stage will significantly

simplify the model training. The second and more important,

the double-attention model consists of a large amount of model

parameters, which makes it prone to over-fitting, especially

when the training data is limited. We have observed the over-

fitting problem on the small-scale task in our experiments, and

re-using the word embeddings indeed reduced the over-fitting

risk.

V. EXPERIMENTS

A. Datasets and evaluation metric

The experiments were conducted on two Chinese-English

translation tasks, one using the large-scale NIST dataset and

the other using the small-scale IWSLT dataset. The NIST

training data consisted of 1M sentence pairs, which involved

19M source tokens and 24M target tokens. We used the NIST

2005 test set as the development set and the NIST 2003 test

set as the test set. The IWSLT training data consisted of 44K

sentences sampled from the tourism and travel domain. The

development set was composed of the ASR devset 1 and devset

2 from IWSLT 2005, and the test set was the IWSLT 2005 test

set. As for the evaluation metric, we used the case-insensitive

4-gram NIST BLEU score[18].

B. Comparison systems

We compared our two-stage system with two baseline

systems: one is a conventional SMT system and the other is an

attention-based NMT system (which is actually the first stage

of our two-stage system).

1) Moses: Moses[19] is a widely-used SMT system and

a state-of-the-art open-source toolkit. Although NMT has

developed very quickly and outperforms SMT in some large-

scale tasks, SMT is still a strong baseline for small-scale tasks.

In our experiments, the following features were enabled for

the SMT system: relative translation frequencies and lexical

translation probabilities on both directions, distortion distance,

language model and word penalty. For the language model, the

KenLM toolkit[20] was employed to build a 5-gram language

model (with the Keneser-Ney smoothing) on the target side of

the training data.

2) Attention-based NMT: We reproduced the attention-

based NMT system proposed by Bahdanau et al.[5]. The

implementation was based on Tensorflow1. We compared our

implementation with a public implementation using Theano2,

and got a comparable performance on the same data sets with

the same parameter settings.

C. Settings

For a fair comparison, the configurations of the attention-

based NMT system and the two-stage NMT system were

intentionally set to be identical. The dimensionality of word

embeddings, the number of hidden units and the vocabulary

1https://www.tensorflow.org/
2https://github.com/lisa-groundhog/GroundHog/

TABLE I
BLEU SCORES ON CHINESE-ENGLISH TRANSLATION

SYSTEM NIST IWSLT

Moses 30.6 52.5

Attention-based NMT 30.83 43.83

Double-attention NMT 31.71 46.32

size were empirically set to 620, 1000, 30000 respectively for

the large-scale task and were halved for the small-scale task.

In the training process, we used the minibatch SGD algorithm

together with the Adam algorithm[21] to change the learning

rate. The batch size was set to be 80. The initial learning rate

was set to be 0.0001 for the large-scale task and 0.001 for the

small-scale task. The decoding was implemented as a beam

search, where the beam size was set to be 5.

D. Results

The BLEU results are given in Table I. It can be seen

that our two-stage NMT system delivers notable performance

improvement compared to the NMT baseline. On the large-

scale task (NIST), the two-stage system outperforms the NMT

baseline by 0.9 BLEU points, and it also outperforms the

SMT baseline by 1.1 points. On the small-scale task (IWSLT),

the two-stage approach outperforms the NMT baseline by 2.4

BLEU points, though it is still worse than the SMT baseline

(mainly because the SMT model is able to capture most details

in the language pairs while the NMT model tends to seize the

generalities and treats rare details as noise, which is common

when dataset is small). These results demonstrated that after

the refinement with the double-attention model, the quality of

the translation has been clearly improved.

VI. CONCLUSIONS

The attention-based NMT model performs the decoding

from left to right, which can not fully utilize the right

context. In this paper, we propose a two-stage translation

approach that obtains a draft translation by a conventional

NMT system, and then refines the translation by considering

both the original input and the draft translation. By this way,

the right context can be obtained from the draft and utilized

to regularize the second-stage translation. Our experiments

demonstrated that the two-stage approach indeed performs

better than the conventional attention-based NMT system. In

the future work, we will investigate a better architecture to

integrate the draft translation. Moreover, the memory usage of

the double-attention model needs to be reduced.
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