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Tracking objects using 3D object proposals
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Abstract—3D object proposals, quickly detected regions in a
3D scene that likely contain an object of interest, are an effective
approach to improve the computational efficiency and accuracy
of the object detection framework. In this work, we propose a
novel online method that uses our previously developed 3D object
proposals, in a RGB-D video sequence, to match and track static
objects in the scene using shape matching. Our main observation
is that depth images provide important information about the
geometry of the scene that is often ignored in object matching
techniques. Our method takes less than a second in MATLAB on
the UW-RGBD scene dataset on a single thread CPU and thus,
has potential to be used in low-power chips in Unmanned Aerial
Vehicles (UAVs), quadcopters, and drones.

I. INTRODUCTION

The rapid development of low-powered Unmanned Aerial
Vehicles (UAVs), drones and service robots has introduced a
need for automatic detection of interesting objects present in
a scene. Such applications may not only assist in navigation
of these devices but also help in localizing, tracking and
identifying the objects that are present in a scene. This paper
presents a framework where we leverage on color and depth
information, per frame, to obtain a global heatmap of the
scene. This heatmap is used to find interesting 3D objects in
the scene. Using RGB-D SLAM enables us to locate these 3D
objects in the scene. We use Jaccard index to match objects
in the scene. We show that using a simple Intersection over
Union (IoU) is much faster than using complex techniques
such as 3D feature matching for static objects in the scene,
while maintaining similar accuracy.

The popularity of depth cameras in scientific community has
led to explosion of recent discoveries of various applications in
computer and robot vision [6]-[10], including object recogni-
tion [11]]. While 3D object proposals are a relatively new idea
[1], they are heavily inspired from 2D object proposals [2]]—
[S]. 2D object proposal techniques have become immensely
popular in object detection systems. Instead of finding precise
and exclusive boundaries for objects, modern 2D object pro-
posal techniques quickly identify regions (potentially highly
overlapped) that are very likely to contain an object. 3D object
proposals build on this idea. An effective way to obtain true
shape, size, and orientation of 3D objects is to use depth
cameras. 3D object proposals utilize depth information to
estimate scene geometry and use the additional information
to extend the 2D objects proposals to 3D by estimating 3D

cuboids for each object on interest. 3D proposals are inherently
more useful than 2D object proposals as they provide us with
accurate physical dimensions of the objects of interest that are
present in the scene which can be used for various tasks such
as object manipulation and scene understanding.

In this work, we utilize online 3D object proposals for
RGB-D video input of a static scene with the main focus on
matching objects. We use the results obtained per-frame by
existing 3D proposal techniques as an input to our system. We
leverage on segmentation cues provided by depth information
and aggregate them over consecutive frames in 3D by estimat-
ing the camera poses using RGB-D SLAM. This enables us
to obtain accurate 3D boundaries of the objects of interest in
the scene and use these boundaries as cues to match objects
in the scene.

More specifically, this work focuses on indoor, static scenes
containing a major supporting plane. However, it can be easily
extended to multiple supporting planes. The objects are al-
lowed to occlude each other and partially seen in some images
as long as their complete view is covered over a consecutive
number of frames. Note that we do not assume their distance
to the camera. We make the following contributions:

o« We use the camera pose estimated by a depth based
SLAM technique to efficiently register the frames to a
global point cloud. We constantly update our global 3D
object proposals as the camera moves around in the scene.

e« We match the current frame’s 3D object proposals to
global 3D object proposals using shape matching to find
matching objects in the scene. Any new object seen
is added to the global object dataset and tracked from
thereon.

Our paper is structured as follows. In Section |lI, we review
other works that are related to our research topic. In Section
we provide a brief overview of 3D object proposals.
Section presents the proposed 3D shape matching steps
in detail, highlighting our contributions and observations at
each stage. We report our results in Section Finally, in
Section [VI| we conclude this paper and discuss future research
directions.

II. RELATED WORK

Object proposals: A lot of work has been done recently on
2D object proposals. Traditionally, sliding windows are used
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Fig. 1: Scene data is captured using a RGB-D camera. The
aligned color and depth images are used for camera pose
estimation (illustrated by the red trajectory). Our approach uses
this information along with any generic 2D object proposals
to fuse and filter the data in 3D and output precise 3D object
proposals (denoted by colored 3D bounding-boxes).

along with a detector to identify objects in a given scene.
Many of the state-of-the-art techniques in object detection have
started using a generic, object-class agnostic proposal method
that finds anywhere between 100-10, 000 bounding boxes in an
image. These areas are considered to have the maximum likeli-
hood to contain an object in them. Such methods vary widely
from using linear classifiers, BING [2f, graph cuts, CPMC
[3]], graph cuts with an affinity function [12], normalized cuts,
MCG [4]] to using random forests, and edge-boxes [5]]. Ren
et al. [|13]] use deep learning in a supervised manner to find 2D
object proposals and perform object detection simultaneously.
Unfortunately, these algorithms have limited repeatability [[14].
Even changing one pixel exhibits markedly different outcomes.
3D object proposals [1] try to overcome these issues by
leveraging on depth and temporal information. They use the
depth information to filter out majority of redundant object
proposals and exploit scene planarity to identify and remove
underlying planes in the scene.

Depth based SLAM: RGB-D SLAM [15]-[17] allows to
quickly acquire colored 3D pointcloud of the indoor scenes
with a hand-held RGB-D camera such as Kinect. It uses visual
features to identify matching points in acquired images, and
uses RANSAC to robustly estimate the 3D transformation
(camera pose) between them.

3D feature matching: Usually 3D feature descriptors [|18]]-
[20] are used for matching objects in 3D. However, these
methods usually come with an extremely large memory foot-
print and matching complexity which is not needed for static
objects. For example, the three most commonly used 3D
feature descriptors - SHOT, FPFH, and RoPS have a
dimensionality of 352, 33, and 135 respectively.

III. 3D OBJECT PROPOSALS

We start by giving an overview of the 3D object proposals
technique [[1]]. At high level, the algorithm is designed to fuse
the depth information with the generic 2D object proposals
obtained from color images to obtain 3D object proposals
per frame. This enables us to exploit using 3D geometry of
the scene. These object proposals are improved as the camera
moves around in the scene. Figure [T]illustrates the basic setup
of the problem and an example result obtained.

Before presenting the main components of our approach,
we first introduce the initialization process with 3D object
proposals. We collect IV video frames per scene using a RGBD
camera. Every i*" video frame consists of a color image I;,
a depth image Z;, and the pose of the camera P;, using
a depth based SLAM method such as Dense Visual SLAM
[21]. The camera pose contains the rotation and translation
measurements of the camera in the world coordinate frame of
reference: P; = [R;, t;]. The RGB-D camera is assumed to
be pre-calibrated. The camera intrinsic parameters - the focal
length in x and y directions and optical center are denoted by
fas fy» [cas cy], respectively. Together, these are represented by
the intrinsic calibration matrix K. We use a generic 3D object
proposal technique [1] to obtain M 3D object proposals per
frame:

BBj:[xjvyjaZjaljijvhj]v j€17'~'7M7 (l)

rl = [ri,ri,ri]? ()

where, [z, y, z] denote the top-left 3D coordinate of the
bounding box, and [, w, and h refer to the length, width
and the height in x,y and z directions respectively. r refers to
the rotation of the bounding box to align it to the horizontal
direction of the scene so that the bounding boxes “rest” on the
underlying planes such as table and floor. A few 3D proposals
are shown in Fig. [I] These 3D object proposals per image are
treated as an input for our framework. Thus, the dimensionality
of our feature descriptor is only of size nine which makes our
shape matching extremely fast.

IV. SHAPE MATCHING USING 3D OBJECT PROPOSALS

In this section, we describe how we use 3D object proposals
to identify and label 3D objects in the scene using shape
matching.

Let us assume that we obtain M 3D objects after processing
first frame in a given scene using [I]. These objects are
labelled sequentially from 1 to M. After each frame, we
update the 3D heatmap of the scene as shown in Fig. [2}
Every frame update provides us with two new heatmaps -
an updated global heatmap and the current frame’s heatmap.
We use the current heatmap to estimate the 3D boundaries
of objects present in the current frame. As we estimate the
camera per frame using RGB-D SLAM, we can transform
these object boundaries to the first frame of reference. These
object boundaries are compared with the existing database
of object boundaries present in the scene. If the new object
boundary overlaps significantly with an existing object, it is
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Fig. 2: We identify matching and non-matching points across
consecutive points using RGB-D SLAM. The heat value and
average location of the 3D points representing the matching
points is updated after every frame. The non-matching points
are identified as new points in the scene and added to the
global 3D heatmap.

considered as the same object seen previously and assigned
the corresponding label. However, if the object boundary does
not overlap with any current existing objects in the scene, it is
considered a new object and assigned a new label and added
to the existing object database. We use Intersection over Union
(IoU) in 3D to find the overlap value of the i*" current 3D
object proposal as follows:

(BBc(i) NBB,(j)

IoU(¢) = max BB.() UBB.(j)

‘ ) Vi e l,...,M (3)
J

where BB, (i) refers to the i'" 3D bounding box of the current
frame’s 3D object proposal and BB,(j) refers to the ;"
3D bounding box of the existing objects in the scene. The
intersection and union in 3D are computed similar to their
corresponding 2D versions as:
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There are various benefits of using shape matching. It is
extremely fast as we only need to compute the 3D boundaries
of objects. The IoU can be computed in O(M), where M is
the number of existing objects in the scene. Moreover, we use
the actual position of the objects in the scene. If an object
is occluded by another object temporarily and seen later, it is
immediately re-identified as the original object and assigned
the same label as previously. Using 3D feature matching
is slow and sensitive to conditions such as lighting and

camera orientation. Meanwhile, shape matching overcomes
these issues as it relies on the 3D pose and location of the
objects in the scene.

V. RESULTS

We use UW-RGBD scene dataset [22] to conduct our
experimental analysis and evaluation. The dataset contains 14
scenes reconstructed from RGB-D video sequences containing
furniture and some table-top objects such as caps, cereal boxes
and coffee mugs. The scenes contain depth and color frames
from a video collected by moving around the scene. The
dataset provides a globally labelled 3D point cloud.

After we obtain a 3D heatmap per frame, we use multi-view
information to fuse this information together. We used Dense
Visual SLAM [21]] to obtain the camera pose per frame to fuse
the frames together. The entire process takes 3.03s for VGA
resolutions on average in MATLAB. However, a majority of
the time (> 2.0s) is spent in storing and accessing the 3D
point cloud. As we aim for a fast and efficient algorithm that
is capable of online processing of 3D object proposals, we
downsample the images by 2. This reduces the time taken
per frame to less than one second in MATLAB on a single-
core CPU while maintaining a similar accuracy in matching
and tracking objects. We obtain on average 6.57 3D object
proposals per scene. Our results can be further improved with
an improved camera pose estimation, as in some cases the
objects break into two or more discontinuous point clusters
due to noisy camera poses. This results in multiple distinct
object proposals for one object, essentially dividing the object
into two or more pieces.

Figures [3] [ show some sample frames in the video se-
quence. Full videos can be accessed here. We observe that
our shape matching technique is able to match static objects
successfully in most occasions. The white soda can is hiding
behind the cereal box and the green soda can is assigned
label 5 in Fig. 3fa). Once it is seen in frame 93 in Fig. 3[b),
it is assigned label 12. The green soda can is occluded by
cereal box in frame 522, but as soon as it is observed again,
it is reassigned the same label 5 as shown in Fig. 3[f). We
observe the same behavior in Fig. ] where the green soda
can is initially hidden behind cereal box and all the objects
occluded by the cereal box are identified as same objects seen
before once they reappear in the scene. This shows that, for
static objects, we can use an extremely fast shape matching
in a RGB-D video sequence rather than expensive feature
descriptors [18]—[20] that are storage and computationally
intensive.

VI. CONCLUSION

In this paper, we have used 3D object proposals to track and
label objects in the scene. In future work, we aim to optimize
our system towards real-time 3D object tracking over even
larger environments by exploring multi-scale representations
for memory and computational efficiency. Ultimately, we in-
tend to to improve the accuracy of existing SLAM techniques
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(g) Frame: 616 (h) Frame: 768 (i) Frame: 834

Fig. 3: We show our shape matching results for a sample scene
in the UW-RGBD scene dataset. The objects maintain the same
label throughout the capturing process. The objects occluded
by the cereal box retain their label as soon as they are visible
again in the scene.

(g) Frame: 600 (h) Frame: 644 (i) Frame: 742

Fig. 4: We show another sample scene in the UW-RGBD scene
dataset for our shape matching approach. Full video can be
accessed herel

by integrating our system to create a semantic SLAM by
treating the detected objects as fixed landmarks in the scene.
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