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Abstract—Disparity estimation is the process of obtaining the
depth information from the left and right views of a particular
scene. A recent work based on convolutional neural network
(CNN) has achieved state-of-the-art performance for the disparity
estimation task. However, this network has some limitations for
measuring small and large disparities, which compromises the
accuracy of the obtained results. In this paper, a multi-resolution
framework with a three-phase strategy to generate high quality
disparity maps is proposed, which handles both small and large
displacements and retains the details of the scene. The first phase
up/down-samples the images to several different resolutions to
improve the matching process between CNN feature maps where
scaled information is obtained for objects with various sizes and
distances. The second phase uses a deep CNN to estimate the
disparity maps using the resampled versions, and each version is
suitable for a specific range of disparities. Finally, the best fitting
disparity map is adaptively selected. To the best of our knowledge,
our framework is the first to exploit multiple resolutions of
the stereo pair with convolutional neural network for disparity
estimation. Significant performance gain is achieved with this
proposed method, the mean absolute error is reduced to 3.40

from 5.66, the DispNetC performance for the Sintel dataset.
Index Terms—Disparity Estimation, Convolutional Neural

Networks, Multi-Resolution, Up/down-sampling, Stereo Vision,
Depth Estimation.

I. INTRODUCTION

Disparity estimation and 3D reconstruction from stereo

images is an important area of research in both multimedia

and computer vision communities. Several approaches have

been introduced to improve the accuracy and reduce the com-

putational cost of disparity estimation [1]. A dense disparity

map is particularly significant in the fields of 3D Television

(3DTV) [2], Free Viewpoint Television (FTV) [3], autonomous

driving [4], robotics [5], 3D modeling, object recognition [6].

A typical disparity estimation algorithm involves four stages:

matching cost computation, cost aggregation, optimization,

and disparity refinement [1]. The main challenge is known

as the correspondence problem: given two images of the same

scene, the pixels in the first image to the pixels of the second

one must be matched.

Recently, Convolutional Neural Networks have been suc-

cessfully applied to many tasks in the area of computer vision,

including object classification [7] and detection [8]. New

models have been designed to provide per-pixel estimations

like semantic segmentation [9], depth estimation from a single

image [10] and disparity estimation from a pair of stereo

images [11]. In [11], a deep CNN that performs the matching

process between the left and right CNN feature maps is

employed. However, in this network pooling is applied to

input images which reduce the resolution of the features before

the matching process. In addition, the maximum displacement

in the correlation layer is static. Therefore, this network is

unable to estimate reliable and accurate disparity maps for

close objects with large displacements as well as far objects

with small disparities.

Moreover, the displacements between left and right views

can range from small to large values, this makes most stereo

methods suffer in estimating precise and accurate disparity

map that cover large disparities as well as small disparities and

keep the details for the whole scene. This makes each method

suitable to estimate the disparities for some datasets and failed

on others. To overcome the problem, a multi-resolution scheme

is proposed as a possible solution for handling both large and

small disparities for real scenarios.

This work aims to generate an accurate disparity map from

stereo images by providing a new approach for handling

small and large displacements. The input images are down/up-

sampled with different factors to generate different resolutions:

each pair is suitable for disparity estimation with a specific

displacement range between the left and right views. High

resolution pairs allow to improve the matching process and

the proper estimation of disparities for far and small objects,

whereas, low resolution pairs are used to estimate the dispari-

ties for close objects. After that process, several disparity maps

with different resolutions are estimated using the state-of-the-

art deep CNN provided in [11]. Finally, the best disparity map

is adaptively selected. The experimental results demonstrate

that there is significant performance gain over the state-of-

the-art approach [11].

The remainder of this paper is organized as follows. Related

work is reviewed in Section II while, the proposed framework

is described in Section III. We present and discuss the role of

different resampling and our results in Section IV. Finally, we
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present our conclusions in Section V.

II. RELATED WORK

Stereo vision has been an active research field of computer

vision for decades and a lot of efforts have been made

to improve the performance of disparity estimation. Typical

stereo methods generally fall into two broad categories: local

methods [12], [13], [14] tend to be applied in real-time applica-

tions where computational efficiency is valued over accuracy.

On the other hand, global approaches [15], [16] provide an

accurate results but with larger runtime. Between these two

categories some methods provide a trade-off between accuracy

and speed such as SGM algorithm [17].

Convolutional neural networks have been applied to the

task of depth map prediction from a single image. Eigen et

al. [18] use a multi-scale CNN to estimate the depth from

a single image, where a coarse scale network is used to

perform depth prediction with low resolution, and a fine scale

network is trained to perform local depth refinements with

higher resolution. Laina et al. [10] introduce a deep fully

convolutional neural network with residual learning to model

the mapping problem between monocular images and depth

maps. However, estimating the depth from a single monocular

image is still difficult due to the limited geometry information

included in a single image.

Convolutional neural networks have been also investigated

as a possible solution to the stereo correspondence problem.

Zagoruyko and mokadis [19] exploited CNN architectures to

learn directly from image patches a general similarity function.

In particular, a two channels siamese models were used,

reporting results related to stereo matching as specific case of

image matching. Zbontar et al. [20], [17] used a convolutional

neural network to determine corresponding patches in left and

right traditional stereo images. These reconstruction methods

include semi-global block matching for the estimation of the

depth of each pixel with a series of post-processing steps,

which renders the model computationally intensive. To reduce

the computation time [21] exploited a matching network with

a product layer that computes the inner product between the

two representations of a siamese architectures.

In [11], a CNN is used to predict the disparity map

from stereo images. This CNN includes a contracting part

that progressively decreases the spatial size of the convolu-

tional features, providing large receptive fields for higher-level

convolutional layers, which in turn, enables the network to

capture more global information. However, the pooling in the

contracting part reduces the resolution of the predicted map.

In an attempt to help the network in the matching process, a

correlation layer that performs the matching between the left

and right features maps is employed. One limitation results

from the contracting part, the network loses the ability to

retain the details in the estimated map for the far objects

with small disparities. Moreover, the maximum displacement

in the correlation layer is 40 pixels, which corresponds to 160

pixels in the input images. This renders the network unsuitable

to estimate large disparities of foreground objects as shown

Fig. 1. Examples showing how the DispNetCorr [11] fails, in the first row,
to estimate the disparity map for close objects with large disparities (over 480
pixels), and for far objects with small disparities (less than 13 pixels), in the
second row.

in Fig.1 where the network find difficulty to estimate large

displacements in the first row and could not preserve the

details for far objects with small disparities in the second row.

Furthermore, the network in [11] was trained on Fly-

ingThings3D dataset, and any modification on this network

to handle larger disparities requires a new training set with

larger disparities. However, the available datasets with large

disparities such as Middlebury 2014 [22] are very small which

might lead to heavy overfitting.

The proposed method solves this problem by using an

adaptive spatial resolution method, where the input stereo

images are resampled to several resolutions. Several disparity

maps are generated from stereo images of different resolutions

with the best is adaptivity selected as the final disparity map.

This approach allows to hand large range of disparities and

integrates the convolutional neural network with handcrafted

processing. Nevertheless, it is worth mentioning that the

proposed approach could also be used with other stereo-based

approaches for disparity estimation. The main contributions

of this paper compromises of the following items: First,

an architecture of the multi-resolution approach is proposed,

the network takes a pair of RGB stereo images as input,

and outputs an accurate disparity map that fits the objects’

distances in the scene. Moreover, an evaluation of the proposed

model is provided.

III. PROPOSED WORK

A. CNN Architecture

Given a pair of rectified left and right views, a typical

stereo algorithm computes the disparity using the original

stereo pair without any down/up-sampling. In our work, we

introduce several modifications to the network architecture

compared to [11]. Firstly, we add a resampling layer to the

CNN architecture to resample the input images to different

resolutions. Secondly, since the disparity map estimated using

DispNetC has one-quarter the resolution of the input images

(half horizontally and half vertically), another resampling layer

is introduced to generate a disparity map with the same size as

the original stereo images. The integrated framework is shown

in Fig.2.
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Fig. 2. The multi-resolution framework. The input stereo images are downlupsampled to several resolutioDS to improve the matching process between CNN
feature maps. From each resmapled version a disparity map is generated, each map is suitable for a specific disparity range. Then according the displacements
range in the input stereo images a the most fitting disparity map will be selected.

While disparity estimation needs precise per-pixel local
ization, it also requires finding correspondences between
the stereo images. This involves learning to match them at
different locations in the two images. Down/upsampling of
the input images to several resolutions improves the matching
process between CNN feature maps by using the scaled
information for objects with various sizes and distances.

B. Proposed method
The proposed method is able to produce a precise disparity

map for both close and far objects. We tackle the problem of
estimating small disparities by up-sampling the input images
with different factors as follows: Let X be the input stereo
images of our method with size of H x W. We upsample the
inputs using several factors Sl, S2, ... Sn' Let Uk be the up
sampling method with factor Sk, X;'" denote the up-sampled
versions of X with size of H;'" x W;:" where H;'" = Sk x H
and W: = Sk x W. Let DispNetC be the CNN that generates
the disparity map from Uk(X), The estimated disparity is given
by the following equation:

D:" =DispNetC(uk(X» (1)

In DispNetC, the feature maps used in the matching process
are obtained after two convolutional layers with stride 2, in
other words the features are obtained after downsampling with
a factor 4 which removes many details especially for the
far objects. Using the upsampled images X;,,, aims to use
the upscaled information for the generation of features with
larger resolutions keeping the fine details for the far objects
before the matching process. Consequentially, a more accurate
disparity map will be estimated. In a similar way, we solve
the problem of estimating large disparities by downsampling
the input images using several factors Y1, Y2, ... Yn' Let Uk
be the upsampling method with factor Yk, X;" denote the
up-sampled versions of X with size of H;" x W;", where

H;" = H/Yk and W;" = W/Yk. The estimated disparity for
the downsampled version is given by the following equation:

Dt" = DispNetC(dk(X» (2)

The multi-resolution versions require an interpolation tech
nique that allows the generation of different different dispar
ity maps of the same scene. Some interpolation techniques
have been defined: linear interpolation, Bessel interpolation,
Hermite interpolation, and so on. We have used bicubic
interpolation method.

Therefore, the network makes a series of disparity predic
tions, starting from the lowest resolution, as an initial stage
for the proposed approach. Because the DispNetC estimates
a disparity map with one-quarter the resolution of the input
images, we resampled the predicted disparity maps to have the
same resolution of the original stereo pair H x W.

Consequentially, a three-phase strategy for generating a high
quality disparity map based on previous steps is used as
follows:

• Firstly, the input stereo images are down-sampled by
factor 2 with an initial disparity map estimated using the
CNN.

• Secondly, the maximum disparity in the estimated dispar
ity map is measured.

• Then according to the maximum disparity value of the
predicted map a suitable resampled version of the input
images Hk x Wk that fits the disparity range will be
selected as input of the CNN. This is because each of
the resampled version is suitable for a specific range of
disparities. In other words, a down/upsampled version
will be adaptively chosen to match the disparity range.

IV. EXPERIMENTS
In this section, we compare the performance of the proposed

approach with other state-of-the-art works.



Sintel FlyingThings3D KITTI2015 Middlebury2014

disparities≤40 disparities≤80 disparities>160 disparities≤80 disparities≤80 disparities>160

Original stereo images 1.26 1.99 14.29 0.88 1.59 18.82

Down-sampled by 2 2.70 4.35 8.04 2.48 2.97 9.65

Up-sampled by 2 0.63 1.26 30.65 0.49 1.30 30.36

Up-sampled by 4 0.44 1.49 69.82 1.25 4.45 85.12

TABLE I
DISPARITY ERRORS. ALL MEASURES ARE MEAN ABSOLUTE ERRORS (IN PIXELS) OF THE SEVERAL RESAMPLED VERSIONS COMPARED TO DISPNETC

[6]. THE RESULTS INCLUDE THE ERRORS FOR THE IMAGES WITH SMALL AND LARGE DISPARITIES AVAILABLE IN EACH DATASET. FOR EXAMPLE IN THE

MIDDLEBURY 2014 DATASET ALL THE IMAGES CONTAIN CLOSE OBJECTS WITH DISPARITIES LARGER THAN 160 PIXELS.

A. Real and Synthetic Datasets

The evaluation was performed on real stereo benchmark

datasets including the Middlebury dataset [22] which contains

81 image pairs with a disparity that reaches 600 pixels

and the KITTI2015 dataset [23] with 200 image pairs. The

evaluation was also performed on synthetic datasets including

FlyingThings3D which contains 4760 frames for testing as

well as the Sintel dataset [24] which contains 1064 image

pairs. We evaluated disparity estimation accuracy using the

mean absolute error (MAE) which is one of the standard error

measures used for Middlebury stereo evaluation:

MAE =
1

T

∑

i∈T

|di − d
gt
i | (3)

where T is the total number of the pixel set, di and d
gt
i are

estimated and ground-truth disparity values for pixel i.

Fig. 3. MAE versus disparity analysis for the Sintel dataset.

B. Results

In the reported experiments, the input stereo images were

horizontally and vertically up-sampled by factor 2 and 4

to improve the disparity for far and small objects, and the

input images were down-sampled with a factor 2 for large

disparities. We found that up-sampling the input images by

2 in general leads to good performance. Meanwhile, with

upsampling by factor 2 the obtained disparity has the same

size of the input stereo images without down/up-sampling after

the disparity estimation. For down/up-sampling, the bicubic

method is used. We ran several experiments to analyze the

MAE versus disparities for the different resampling factors.

We found that each resampled version is suitable for a

specific range of disparities, as shown in Fig. 3 for the Sintel.

The MAE results are obtained using the whole Sintel dataset.

We observe that:

• Upsampling by factor 4 is suitable if the disparities range

in the input stereo images is between [0, 40].

• Upsampling by factor 2 is suitable if the disparities range

is between [40, 80].

• the original input stereo images are suitable if the dispar-

ities range is between [80, 160].

• Downsampling by factor 2 is suitable for [0, max disp]

where max disp > 160.

Table I reports the mean absolute error for different re-

sampled versions compared with the original stereo images

without resampling. The results show that whereas the upsam-

pled versions improve the accuracy for small disparities. The

downsampled versions helps to enhance the estimated disparity

for foreground objects with large disparities.

We evaluated our approach with several existing disparity

methods on KITTI 2012, KITTI 2015, Driving, FlyingTh-

ings3D and Sintel datasets. We evaluate the performance of

two networks DispNets and DispNetsCorr1D in [11], Zbontar

and LeCun [25] and the popular Semi-Global Matching [17]

approach with a block matching implementation. Results are

shown in Table II . The results show that the proposed

approach has superior performance compared with the other

methods on both synthetic and real stereo images for close and

far objects. The DispNetC was trained using the FlyingTh-

ings3D dataset with original size of the input setereo images

which leads to slightly better performance than our method.

For visual results, Fig. 4 depicts some disparity estimation

examples using different resampling factors in comparison

with DispNetC. In the first row, the stereo images pair comes

from the Middlebury dataset where the maximum disparity
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TABLE II
DISPARITY ERRORS. ALL MEASURES ARE MEAN ABSOLUTE ERRORS (IN PIXELS) OF THE SEVERAL RESAMPLED VERSIONS COMPARED TO SEVERAL

OTHER METHODS. THE RESULTS INCLUDE THE ERRORS FOR THE IMAGES WITH SMALL AND LARGE DISPARITIES AVAILABLE IN EACH DATASET.

Method KITTI 2012 KITTI 2015 Driving FlyingThings3D Sintel clean Time

train train test train

Proposed method 1.50 1.57 12.3 1.79 3.40 0.62s

DispNetC[11] 1.75 1.59 16.12 1.68 5.66 0.06s

DispNet [11] 2.38 2.19 15.62 2.02 5.38 0.06s

SGM [25] 10.06 7.21 40.19 8.70 19.62 1.1s

MC-CNN-fst [17] - - 19.58 4.09 11.94 0.8s

Fig. 4. Examples of disparity estimation using our method on both real and synthetic stereo datasets. Each column from left to right: left view, ground
truth disparity, disparity estimated using our method and the disparity estimated using DispNetC. Rows from top to down: Middlebury 2014, FlyingThings3D
(clean), Sintel(clean), KITTI 2015.

is 430 pixels. Since the maximum disparity is larger than

160, we used the down-sampled version by 2 to estimate the

disparity. Our results are shown in the third column, where

the network was able to measure the disparity accurately. In

the second and fourth rows where the disparities are around

80 pixels, we found that using the up-sampled version by a

factor 2 provides the most accurate results. In the third row,

the disparities are less than 40; therefor up-sampling with a

factor 4 is adopted, allowing the recognition of the far objects

in detail. DispNetC fails to estimate reliable disparities for

large and small disparities.

C. Various Resampling Methods

Resampling is used for several different purposes in com-

puter vision. When resampling an image into a different size

of the orginal size, an interpolating function is used to preserve

the image quality. Since in our approach we down/upsample

the image to different resolutions in this section, we investigate

and compare several well known interpolation methods such

as bicubic, nearest neighbor, bilinear, No-alteration( keeping

the original pixels with no modification and an average value

is used for the down/upsampling) interpolation method.

We evaluated the performance of these resampling methods

on two datasets. Table II reports the mean absolute error, We

can notice that: bicubic is the best for downsampling whereas

the nearest method is the best for upsampling.
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TABLE III
DISPARITY ERRORS. COMPARISION BETWEEN DIFFERENT RESAMPLING METHODS.

Resampling method
KITTI 2015 KITTI 2015

DownSampling-2 UpSampling-2 UpSampling-3 DownSampling-2 UpSampling-2 UpSampling-3

bicubic 3.00 1.82 3.78 3.02 1.54 2.33

bilinear 3.01 1.87 3.77 3.02 1.54 2.23

nearest neighbor 3.03 1.82 3.63 3.03 1.54 2.25

No-alteration 3.03 1.85 3.95 3.06 1.56 2.44

Average 3.02 1.84 3.78 3.03 1.55 2.31

V. CONCLUSION

In this paper, a three-phase method for estimating accurate

disparity map for close/far objects with large/small displace-

ments has been proposed. Firstly, the input stereo images

are resampled to different resolutions, then a deep CNN is

used to predict several disparity maps from each pair of the

resampled versions. High resolution pairs allow the proper

estimation of the disparities of far objects, whereas, low

resolution pairs are employed to estimate the disparities for

close objects. Experiments performed on the Middlebury2014

and KITTI2015 benchmarks demonstrate the accuracy of

the proposed methodology. Future work will be devoted to

generate a CNN-based merging approach.
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