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Abstract—In recent decades, neural network based methods
have significantly improved the performace of speech
enhancement. Most of them estimate time-frequency (T-F)
representation of target speech directly or indirectly, then
resynthesize waveform using the estimated T-F representation.
In this work, we proposed the temporal convolutional recurrent
network (TCRN), an end-to-end model that directly map noisy
waveform to clean waveform. The TCRN, which is combined
convolution and recurrent neural network, is able to efficiently
and effectively leverage short-term ang long-term information.
Futuremore, we present the architecture that repeatedly
downsample and upsample speech during forward propagation.
We show that our model is able to improve the performance of
model, compared with existing convolutional recurrent networks.
Futuremore, We present several key techniques to stabilize
the training process. The experimental results show that our
model consistently outperforms existing speech enhancement
approaches, in terms of speech intelligibility and quality.

I. INTRODUCTION

Monaural speech enhancement is the task to extract clean

speech from one-microphone noisy signals. The purpose

of speech enhancement is to improve speech quality and

intelligibility. It is widely and successfully applied in

many modern speech applications, such as hearing aids,

communication system, automatic speech recognition (ASR)

and speaker verification, etc[1].

Traditional speech enhancement approaches include spectral

subtraction [2], Wiener filtering [3], nonnegative matrix

factorization [4] etc. These approaches typically rely on the

strong assumption that noise has a stationary statistically

characteristic. However, there are few noises keep stationary

all the time in this complicated world. This makes it hard

for traditional methods to achieve satisfactory performance as

designed.

To deal with annoying nonstationary noise, deep neural

networks (DNNs) [5], [6], [7], [8] are introduced in the speech

enhancement, and obtained unprecedented performance. The

DNN predicts a label for each frame from a small context

window. The limited input makes DNN cannot capture

information of a long-term context. The DNN-based methods

also perform poorly on unseen speakers. The long short-term

memory networks (LSTMs) [9], [10] were introduced into

speech enhancement to alleviate the limits of DNN-based

methods. Chen et al.[10] proposed a four-layer LSTM to

deal with speaker generalization of noise-independent speech

enhancement. Their experimental results showed that the

LSTM model substantially outperforms the DNNs. A more

recent study found that a combination of convolution and

recurrent network (CRN) [11] leads better performance than

LSTM.

Most of the existing approaches are aims to directly

or indirectly estimate T-F representations of target speech.

They are mainly two groups: “mapping-based” methods

and “masking-based” methods. The mapping-based methods

directly predict the T-F representations, while the magnitude

spectrum of STFT is the most popular choice. The masking-

based methods predict a T-F mask at the first stage, then

multiply the estimated mask to the T-F features of mixtures

to obtain clean features of target speech. In earlier studies,

masking-based methods focus on the masks of magnitude

spectrum, including ideal binary mask (IBM), ideal ratio

mask (IRM) [12], spectral magnitude mask (SMM) [6],

phase-sensitive mask (PSM) [9] and so on. Since the

performance of magnitude-masking was limited by noisy

phase reusing, the complex ideal ratio mask (cIRM) [13] was

proposed to improve the performance of speech enhancement.

Theoretically, we can get both perfect magnitude and phase

using cIRM masking. However, the imaginary part of cIRM

exhibits unclear temporal and spectral structure, which is

difficult to estimate. It makes cIRM cannot consistently lead

to a better performance than other methods.

Recently, some works are developed to use neural networks

for speech analysis and synthesis in time domain. Temporal

convolutional layers are trained as filterbanks to extract

features from waveform to improve the performance of ASR

[14], [15], [16]. Compared with hand-crafted mel-filterbank

and gamatone-filterbank features, an ASR system jointly

trained with trainable filterbanks consistently leads lower word

error rate (WER). Sercan et al.[17] utilized group convolution

networks to synthesis waveform conditioned by magnitude

spectrograms. They show that CNN-based methods could

generate higher quality speech than signal processing methods,

like Griffin-Lim [18]. There are also some works attempted to

conduct speech enhancement in time domain. In [19], a CNN-

based autoencoder is proposed to conduct speech enhancement

in time domain, which outperforms the DNN-based methods

in T-F domain. Inspired by these works, we proposed to use

temporal convolutional recurrent network (TCRN) to conduct



the speech enhancement. Compared with LSTMs and CRN,

our proposed model TCRN consistently leads to better speech

intelligibility and speech quality.

The rest of the paper organized as follows: section 2

describes the details of the proposed system. Section 3

describes the loss functions used in this study. Section

4 presents the experimental setup and results. Finally, we

conclude our work in section 5.

II. SYSTEM DESCRIPTON

A. Model Architecture

The proposed temporal convolutional recurrent network

(TCRN) is constructed by stacking TCRBs, as showed in

figure 1. Compared with the previous methods in time

domain [19], the proposed TCRN repeatedly downsample and

upsample signals during forward propagation. This makes

it possible to use a residual connection between waveforms

and waveform’s hidden representation. We demonstrate the

efficiency of this architecture in the section IV.

TCRB
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Fig. 1. The proposed TCRN with combined loss.

B. TCRB Module

We first described the basic building blocks called TCRB,

illustrated in Fig. 2. TCRB is consists of a 1-D convolutional

layer (Conv), followed by a batch normalization (BN), a

LSTM and a 1-D deconvolution (Deconv). TCRB is a powerful

module for mapping the noisy waveforms to clean waveforms.

The input sample sequence is first convolved with K large

1-D convolutional filters. These filters explicity model the

local pattern of the waveform within the receptive field. The

convoluton outputs are normalized by BN layer and activated

by a Parametric ReLU (PReLU) non-linearity. We use a LSTM

to lervege long-term context. The combination of convolution

and LSTM can respectively process speech at frame and

utterance level. Finally, we stack a deconvolution on top to

resynthesize the waveform. Note that we use the symmetry

convolution and deconvolution configuration to keep the sigal

time-resolution unchanged. There are two residual connections

in each TCRB: adding the input of LSTM to the output of

LSTM, adding the input of TCRB to the output of Deconv

layer. We find that these residual connections are critical

for training a deep stacking TCRB architecture. We give the

details of each layers in following sections.

LSTM

Deconv

Conv

BN

Fig. 2. TCRB: building block of the proposed model

C. Temporal Convolution

The first component of TCRB is a bank of temporal 1-

D convolutional filters, which caputure the different local

patterns of speech signals. The different feature maps

correspond to the different periodic signal components. From

a perspective of signal processing, convolutional kernels can

be viewed as a group of finite-impulse-response (FIR) filters.

Such a layer has the ability to approximate standard filterbanks

[20]. Therefore, outputs of the time-convolution is regarded as

a hidden T-F representation.

The raw waveform of speech is densely distributed along

time. For example, if the speech signals sampled at 16 kHz,

then a 20-ms, which is typically used in speech enhancement,

will contain 320 samples. This requires the convolution

layer has a large receptive field. Some works used deep

stacking dilated convolution layers to obtain such a large

receptive filed [21], [22]. In our work, we show that simply

using large convolutional kernel is also worked in speech

enhancement. The similar design is successfully applied in

speech recognition [14]. We find that this quite simple and

shallow architecture is efficient to model raw waveform in

speech enhancement. Furthermore, the outputs of temporal

convolutional

A 1-D discrete convolution operator, which convolves signal

F with kernel k of size m is defined as:

(F ∗ k)(p) =
�

s+t=p

F (s)k(t) (1)

where ∗ denotes the convolution operator, and t ∈
[−m,m] ∩ Z. In signal processing, window functions are

usually conducted to taper segments of signals. A window



pre-processing in time domain helps later subsequent analysis

produce more meaningful results. Consequently, we proposed

and implemented the kernel-windowed 1-D convolution as:

(F � k)(p) =
�

s+t=p

F (s)W (t)k(t) (2)

where � denotes the kernel-windowed convolution operator,

and W could be any window functions used in digial signal

processing area. In this work, we configured W as symmetric

(also called periodic) Hann window, which is commonly used

in speech enhancement. During training, the weights of kernel

k(t) is updated by gradient descent, but the window W (t) is
a group of constant values. We found that kernel-windowed

convolution could accelerate the convergence of the model in

our experiments.

D. Batch Normalization and LSTM

As mentioned above, the output of 1-D time-convolution

is regarded as T-F representations of the raw waveform. For

speech enhancement, the T-F features are usually normalized

to zero mean and unit variance at each channel. Therefore,

a batch normalization layer [23] is introduced to imitate

such an operation. After the batch normalization layer, the

normalized convolution output is passed to LSTM to get

sequential features of target speech.

E. Temporal Deconvoluton

We utilized a 1-D temporal transposed convolution to

upsample the hidden T-F representation back to raw

waveforms. The transposed convolution is also called

deconvolution. For brevity, we use the name “deconvolution”

in the rest of this paper.

s=2

k=3

s=2

k=4

Fig. 3. Up: a 1-D deconv with “uneven overlap”, where kernel size k is 3 and
stride s is 2. Bottom: a 1-D deconv with “even overlap”, where k is 4 and s is
2. We treat the yellow unit in the top layer as the hidden T-F representation,
and the blue unit is the results of upsampling operation, where deep blue
represent overlapped upsampleing results.

Deconvolution layers allow the model to use every T-F

representa=tion vector to generate a longer waveform segment.

However, deconvolution can easily have “uneven overlap”,

causing strange checkerboard pattern of artifacts as illustrated

in Fig. 3. Particularly, deconvolution has “uneven overlap”

when the kernel size is not divisible by the stride. In this

study, we configured the stride as half of the kernel size, so

that the output is evenly balanced, to avoid the checkerboard

artifacts.

In addition, we also use a window function for the

convolutional kernel in deconvolution layers as described in

Eq. (2). The deconvolution outputs are divided by the sum-

square envelope of a window function, to remove the effects

included by windowing observations. We truncate the sum-

square of the window function to [0.1, 1] to avoid the numeric
problems.

III. LOSS FUNCTION

In supervised speech separation, loss functions should be

correlated with speech quality. We consider the combination

of the loss functions defined both in time domain and T-F

domain.

A. Time Domain Loss

We introdued waveform error (Lwe) as the time domain

loss function. For the estimated time domain sigal ŝ and the

corresponding target signal s with N samples. We defined Lwe

as:

Lwe =
1

N

N�

i=1

(si − ŝi)
2

The proposed model could be trained with Lwe in time domain

directly.

B. T-F Domain Loss

The estimated time domain sigal can also be evaluated in

T-F domain. By transforming the estimated output into T-

F domain, we compare the it with the target speech signal

with the T-F domain loss function. To transform the estimated

signal into T-F domain, we use the temporal 1-D convolution

described in 2.2 with special and fixed weights to imitate the

STFT.

The STFT can be divided into two meaningful parts: the

magnitude and the phase in the polar coordinates. Spectral

phase is highly unstructured along either time or frequency

domain, so fitting errors of the raw phase is also very difficult.

We tried it but found that minimizing phase errors makes the

training process unstationary. Therefore, we only minimizing

the STFT-magnitude loss introduced in [17] as:

Lmag =
�|STFT (s)| − |STFT (ŝ)|�F

�|STFT (s)|�F
(3)

where �·�F is Frobenius norm. We found that the denominator
�|STFT (s)|�F reducing the oscillation of Lmag in training.

C. Loss Combination

In consideration of that the analysis window duration

contains different information. We compute the STFT-

magnitude losses Lmag320 and Lmag2560, using a short

window (320 points) and a longer window (2560 points),

respectively. Due to the loss term Lwe and Lmag has different

numeric range, we use weight α to balance the importance of

all loss term. The combined loss is defined as:

Lcomb = Lwe + α

�
Lmag320 + Lmag2560

2

�
(4)



TABLE I
MODEL COMPARISONS IN TERMS OF STOI(%) AND PESQ SCORES ON TRAINED NOISE

SNR System
Factory Babble SSN Destroyengine Destroyerops Average

STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ

-5dB

Mixture 56.6 1.40 54.3 1.30 59.4 1.39 54.7 1.27 55.2 1.41 56.0 1.36
LSTM 76.8 1.99 73.1 1.98 71.2 1.88 69.9 1.87 71.5 1.88 72.9 1.92
CRN 77.2 2.14 76.6 2.00 73.3 1.97 79.3 2.07 77.9 2.03 76.4 2.04
TCRN 78.2 2.18 77.7 2.12 76.0 2.16 82.5 2.35 82.2 2.35 79.3 2.23

0dB

Mixture 68.8 1.66 66.1 1.65 69.7 1.77 66.2 1.60 67.0 1.74 67.6 1.69
LSTM 84.8 2.39 81.8 2.33 81.5 2.28 80.1 2.25 81.0 2.25 82.0 2.30
CRN 84.2 2.46 84.1 2.38 82.3 2.33 86.6 2.44 84.8 2.40 84.2 2.40
TCRN 86.7 2.56 86.9 2.51 85.6 2.52 89.9 2.73 89.2 2.69 87.7 2.60

5dB

Mixture 80.1 1.96 77.4 2.01 78.8 2.16 77.6 1.97 77.7 2.09 78.3 2.04
LSTM 89.0 2.67 86.6 2.60 86.6 2.59 86.1 2.57 86.5 2.56 87.0 2.60
CRN 89.0 2.76 88.9 2.69 88.2 2.69 91.4 2.79 89.2 2.73 89.3 2.73
TCRN 90.9 2.82 91.4 2.82 90.5 2.82 92.5 2.94 92.2 2.93 91.5 2.87

TABLE II
MODEL COMPARISONS IN TERMS OF STOI(%) AND PESQ SCORES ON UNTRAINED NOISE

SNR System
Factory2 M109 Cafe Street Pedestrian Average

STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ

-5dB

Mixture 65.2 1.56 68.2 1.70 55.2 1.34 67.2 1.59 61.1 1.55 63.4 1.55
LSTM 78.4 2.18 79.5 2.29 65.4 1.69 78.1 2.21 71.7 1.92 74.7 2.06
CRN 81.1 2.27 81.2 2.32 65.9 1.74 80.5 2.26 73.2 1.98 76.3 2.11
TCRN 83.9 2.41 83.5 2.39 69.0 1.80 83.0 2.34 76.7 2.05 79.2 2.20

0dB

Mixture 75.3 1.93 77.7 2.07 66.3 1.66 75.4 1.95 72.5 1.89 73.4 1.90
LSTM 85.1 2.53 85.4 2.59 77.8 2.13 84.3 2.53 81.8 2.31 82.9 2.42
CRN 87.2 2.61 87.4 2.67 78.2 2.15 86.3 2.61 83.2 2.39 84.5 2.48
TCRN 90.2 2.76 90.0 2.73 82.6 2.28 89.6 2.70 86.6 2.47 87.8 2.59

5dB

Mixture 84.0 2.29 85.2 2.41 77.0 2.03 83.1 2.34 81.9 2.23 82.2 2.26
LSTM 88.8 2.79 88.8 2.82 85.4 2.51 88.1 2.78 87.3 2.62 87.7 2.70
CRN 91.0 2.92 91.3 2.96 86.6 2.56 90.5 2.92 89.2 2.72 89.7 2.82
TCRN 93.0 3.01 92.9 3.00 89.8 2.67 92.7 2.97 91.2 2.80 91.9 2.89

IV. EXPERIMENTS

A. Experimental Setup

In our experiments, we evaluate the models on the TIMIT

dataset [24]. 2000 utterances from TIMIT training set are

randomly chosen as the training set. All 192 utterances from

the TIMIT core test set are used for test. Five types of

noise are used for training: babble, factory1, destroyerengine,

destroyerops noise from NOISEX-92 dataset [25] and a

speech-shaped noise (SSN). These five types of noise are also

used in the noise-depend evaluation. For noise-independent

evaluation, we use 5 different noises from different datasets:

pedestrian, cafe, street noises from CHiME-4 [26] dataset and

factory2, tank (m109) from NOISEX-92. These noises are all

highly non-stationary, which makes speech enhancement be a

challenging task. The training set are formed by mixing all

the speech and the noises at {-5, 0} dB signal-to-noise ratio
(SNR). Each utterance in the training set is repeatedly used 5

times with mixed with different segments of noises, producing

2000(utterances) × 5(noise) × 2(SNR) × 5(repeat) =
100000 training mixtures in total. The test mixtures are

constructed by mixing random cuts from noises with test

utterances at {-5, 0, 5} dB SNR, which contains one unseen
SNR (5 dB) in training. All signals are resampled to 16 kHz

before mixing.

We use the Adam [27] optimizer with learning rate 0.001

to minimize the combined loss. We train the models using a

batch size of 32. Within a mini-batch, all sequences are zero-

padded to the length divisible by 160. In our experiments, the

α in combined loss is set to 0.1.

B. Baselines

We use TCRN with four TCRB layers to compare with

LSTM and CRN baselines. The LSTM baseline has 161,

1024, 1024, 1024, and 1024, 161 units, respectively. For CRN,

we configured the network using the same hyper-parameters

described in [11], that are well tuned. Both baseline models are

mapping from 161-D magnitude spectrum of noisy speech to

161-D magnitude spectrum of target speech. And the phase

of noisy speech is used to reconstruct the waveforms. In

addition, the proposed method TCRN and baselines are all

causal systems, do not use future information.

C. Experimental Results

In this study, speech enhancement performance is evaluated

in terms of short-term object intelligibility (STOI) and

perceptual evaluation of speech quality (PESQ) [28]. For both

metrics, a higher score means better performance.

Tab. I and Tab. II present STOI and PESQ scores of

unprocessed and processed signals for trained noise and

untrained noise, respectively. In each case, the best result

is highlighted by boldface. As shown in Tab. I and II. The

proposed TCRN significantly outperforms the LSTM baseline

with a large margin. And the propose TCRN also leads to



consistently better metrics than CRN. Comparing the results in

Tab. II, we can find that TCRN has better noise generalization

ability than baselines.

V. CONCLUSIONS

In this study, we proposed a temporal convolutional

recurrent network to deal with speech enhancement in time

domain. The proposed TCRN is consistently superior to

LSTM and CRN in the T-F domain. We believe that the

proposed model lays a sound foundation for supervised

speech enhancement in time domain. Future research includes

exploring the proposed TRCN for speaker separation or music

source separation in time domain.
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