
RobustL2S: Speaker-Specific Lip-to-Speech
Synthesis exploiting Self-Supervised Representations

Neha Sahipjohn∗ Neil Shah∗† Vishal Tambrahalli∗ Vineet Gandhi∗
∗ CVIT, Kohli Centre for Intelligent Systems, IIIT Hyderabad, India

† TCS Research, Pune, India

Abstract—Significant progress has been made in speaker-
dependent Lip-to-Speech synthesis, which aims to generate speech
from silent videos of talking faces. Current state-of-the-art
approaches primarily employ non-autoregressive sequence-to-
sequence architectures to directly predict mel-spectrograms or
audio waveforms from lip representations. We hypothesize that
the direct mel-prediction hampers training/model efficiency due
to the entanglement of speech content with ambient information
and speaker characteristics. To this end, we propose RobustL2S, a
modularized framework for Lip-to-Speech synthesis. First, a non-
autoregressive sequence-to-sequence model maps self-supervised
visual features to a representation of disentangled speech content.
A vocoder then converts the speech features into raw waveforms.
Extensive evaluations confirm the effectiveness of our setup,
achieving state-of-the-art performance on the unconstrained
Lip2Wav dataset and the constrained GRID and TCD-TIMIT
datasets. Speech samples from RobustL2S can be found at
https://neha-sherin.github.io/RobustL2S/

I. INTRODUCTION

Understanding lip movements offers a distinct advantage
in situations where auditory cues are unavailable. It proves
particularly valuable for individuals with hearing impairments,
speech disorders and aids in speech rehabilitation by providing
visual feedback [1]. The synthesis of accurate speech from lip
movements can assist in tasks such as movie dubbing [2], lan-
guage learning, forensic investigations [3], video conferencing
in noisy conditions, voice inpainting [4] or giving artificial
voice to people who cannot produce intelligible sound.

The problem of Lip-to-Speech synthesis is inherently ill-
posed because a sequence of lip movements can correspond to
multiple possible speech utterances [5]. Additional challenges
arise from factors such as head pose movements, non-verbal
facial expressions, variations in capture quality, and ambient
noise, which further complicate the problem. Reliance on
contextual information, such as environment, place, topic, etc.,
can help alleviate the Lipreading challenges [6], [7]; however,
such information may not always be available.

Most existing approaches constitute an encoder-decoder
architecture; the encoder maps the lip sequence to intermediate
representations, which are then directly decoded into mel-
spectrograms. The major drawback of this approach is that
apart from speech content, the decoder is also forced to predict
the time-varying speaker and ambient noise characteristics
present in the ground truth Mel. We hypothesize that this
dependence hurts the model’s performance in terms of speech
intelligibility, reducing its usability for various downstream
applications [8]. Our work addresses these limitations by

Fig. 1. The proposed RobustL2S model utilizes lip encoder and speech
encoder to extract SSL representations from lip sequences and their corre-
sponding speech. A Seq2Seq model maps the lip representations to speech
representations, which are then decoded to synthesize speech.

taking a modularized approach, exploiting the advances in
Self-Supervised Learning (SSL) in audio and audio-visual
scenarios.

Fig. 1 illustrates the proposed RobustL2S framework. In
contrast to direct mel prediction from lip features, we take
a two-staged approach. The first step extracts SSL repre-
sentations of lip sequences and maps them to correspond-
ing speech SSL representations using a sequence-to-sequence
(Seq2Seq) model. The key idea is to use speech embeddings
that disentangle the content from the speaker and ambient in-
formation. The second stage maps the content-rich speech em-
beddings to raw speech using a speaker-conditioned vocoder.
The proposed RobustL2S framework simplifies training and
brings robustness to variations in head-pose, ambient noise,
and time-varying speaker characteristics, leading to significant
gains in speech intelligibility. To validate the efficacy of our
approach, we perform comprehensive experiments on GRID
[9], TCD-TIMIT [10] and Lip2Wav [5] datasets. The quanti-
tative measures and MOS scores show that the synthesized
speech generated by our method accurately represents the
intended content and improves on the intelligibility/naturalness
compared to current state-of-the-art methods [11], [12] on all
three datasets.

More formally, our work makes the following contributions:
(1) We propose a novel modularized framework for Lip-to-
Speech synthesis exploiting self-supervised embeddings for
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both lip and speech sequences (2) A Seq2Seq network for
cross-modal knowledge transfer to map lip SSL representations
to speech SSL representations; and (3) Thorough experimental
results demonstrating that RobustL2S is capable of synthesiz-
ing high-quality speech, achieving state-of-the-art results in
objective and subjective evaluation without requiring additional
data augmentation [11].

II. RELATED WORK

A. Lip-to-Speech synthesis

1) Constrained Lip-to-Speech synthesis: Constrained lip-to-
speech synthesis tackles speech generation from videos with
limited vocabulary and minimal head movement [9], [10].
Ephrat et al.[13] introduced a CNN-based approach to predict
Linear Predictive Coding features from silent talking videos.
They later enhanced their model to a two-tower CNN-based
encoder-decoder architecture [14], encoding raw frames and
optical flows separately. [15] propose a combination of an
autoencoder for extracting bottleneck features from audio spec-
trograms and a lipreading network comprising CNN, LSTM,
and fully connected layers, for visual feature extraction. On
the other hand, [16] utilize a stochastic modeling approach
employing a variational autoencoder. Other methods [17]–[20]
employ GANs to synthesize speech from video frames. [21]
train an attention-based encoder-decoder model to reconstruct
speech from silent facial movement sequences without human
annotations. [22] performs multi-modal supervision, using text
and audio, to complement the insufficient word representations
to reconstruct speech with correct contents from the input
lip movements. [23] achieves zero-shot Lip-to-Speech synthe-
sis using variational autoencoder to disentangle speaker and
content information and a face identity encoder for unseen
speakers.

2) Unconstrained Lip-to-Speech synthesis: Unconstrained
lip-to-speech synthesis focuses on generating speech from real-
world videos of individuals talking. This approach considers
videos with an extensive vocabulary and significant head
movements. Seminal work by Prajwal et al. [5] introduced a
3D-convolution plus autoregressive Seq2Seq model, adapted
from Tacotron2 [24] for single speaker Lip-to-Speech syn-
thesis. Their model generates mel-spectrograms based on
the input video frames. In contrast, [25] employed a non-
autoregressive architecture to expedite the inference process.
It uses 3D-convolution blocks, a transformer condition mod-
ule, and a Glow decoder module [26] for refining the mel-
spectrograms. [27] expanded on [5] by training a transformer
model to learn a joint latent distribution for speech genera-
tion. The VV-Memory architecture [28] combines audio and
visual information using a key-value memory structure to en-
able video-to-speech reconstruction and speaker-independent
speech retrieval. A recent work by [11] proposed an end-to-
end non-autoregressive transformer for synthesizing speech
directly from unconstrained talking videos. Their approach
involves a visual encoder, an acoustic decoder, a linear layer,
and a GAN-based vocoder operating on Mel-spectrograms.

LipSound2 [21] investigates cross-modal self-supervised pre-
training of an encoder-decoder architecture with a location-
aware attention mechanism to map face image sequences
to mel-scale spectrograms. In contrast, our proposed Ro-
bustL2S differs by using content-rich SSL representations [29]
and learning target speech representations from lip sequences.

B. Self-supervised representation for Lip-to-Speech synthesis

Traditional works on Lip-to-Speech synthesis encode lip or
face sequences to hidden states, followed by a decoder to
generate Mel-spectrograms. An independently trained vocoder
transforms them into time-domain waves. However, these Mel
frames are highly correlated along both time and frequency
axes which may degrade the performance of entire Lip-to-
Speech synthesis [30]. Moreover, these Mel-spectrograms have
higher variance than that of quantized speech SSL representa-
tions increasing the complexity of training a Seq2Seq model.
Due to its recent emergence, the utilization of SSL represen-
tation in Lip-to-Speech synthesis remains limited.

In VCVTS [12], vector quantized contrastive predictive
coding (VQCPC) units are extracted from lip movements, and
a speaker encoder, pitch predictor, and decoder are used to
infer Mel frames. A separate voice conversion model and
vocoder are employed for speaker representation learning and
speech synthesis.

Revise [31] employs a combined audio-visual speech recog-
nition module (P-AVSR - initialized with AV-HuBERT - an
audio-visual SSL model) and a modified text-to-speech synthe-
sis module (P-TTS) for generalized speech enhancement tasks.
P-AVSR predicts discrete units derived from a self-supervised
speech model, and P-TTS converts these units into speech
using a modified HiFi-GAN[29] trained on the LJSpeech[32]
dataset. Our work closely relates with [31] utilizing SSL rep-
resentations for Lip-to-Speech synthesis. However, we utilize
disentangled AV-HuBERT and HuBERT [33] features and
a decoupled training procedure to train a Seq2Seq model.
Additionally, the existing works have not yet fully capitalized
on SSL representations for speaker-specific Lip-to-Speech gen-
eration, and our efforts aim to address this gap.

III. METHOD

A. Preliminaries

RobustL2S consists of three modules: an encoder that ex-
tracts lip and speech representation from their corresponding
sequences, a Seq2Seq model that maps lip representations to
speech representations, and a vocoder that synthesize speech
using the speech representations. We introduce four functions
as follows:

• fl : L
T×W×H 7→ Lssl, which maps the input lip sequence

to its corresponding SSL representation. Here, T repre-
sents the number of time-steps (frames), and H and W
correspond to the spatial dimensions of the frames.

• fs : X 7→ Sssl, which maps the ground-truth raw speech
to its corresponding SSL representation.

• fs2s : Lssl 7→ Sssl, which maps the lip representation to its
corresponding speech representation.
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• fvoc : Sssl 7→ X̂ , which maps the speech representation to
the synthesized speech X̂ .

B. Encoder

Although our framework is compatible with various off-the-
shelf SSL models, we specifically utilize AV-HuBERT [34]
for fl, our video encoder to extract lip representations. We
use HuBERT [33] for fs, to extract speech representation of
target speech signal. The HuBERT and AV-HuBERT models,
are trained using a masked-prediction loss to predict cluster
IDs, which are learned using k-means clustering. They are
initialized with MFCC features derived from acoustic frames,
and subsequently more complex features derived from an
audio or audio-visual encoder, depending on the specific model
being used. AV-HuBERT incorporates a modified ResNet [35],
[36] as its frontend, coupled with a transformer encoder. We
opted for AV-HuBERT instead of Visual-HuBERT for this task
because AV-HuBERT exhibits superior performance in the lip-
reading task, as demonstrated by [34]. This improvement is
observed when the target cluster IDs are derived from both
audio and visual modalities, as opposed to a single modality,
whether it be audio or visual. We also finetune the pretrained
AV-HuBERT using an attention-based Seq2Seq cross-entropy
loss as in [34].

C. Seq2Seq model

In recent years, Seq2Seq models have gained significant
attention in the field of cross-domain generation. The core
concept of our approach is to align representations from two
different domains - visual and audio, that share a common
generating process. By recovering correspondences between
these domains, we facilitate the transfer of knowledge from
one domain to the other.

Our Seq2Seq model, denoted as fs2s, adopts a non-
autoregressive-based encoder-decoder architecture to map lip
representations to their corresponding speech representations.
The encoder and decoder consist of feed-forward transformer
blocks with self-attention [37], along with 1-dimensional con-
volutions inspired by Fastspeech2 [38]. A transposed con-
volution layer is used at the encoder to match the rate of
video and audio representations. The encoder takes the lip
representation Lssl and encodes it into a sequence of fixed-
dimensional vectors. The decoder generates predictions for all
representations of Sssl simultaneously. We train three versions
of the Seq2Seq model:

• fs2s-units: This encoder-decoder architecture utilizes Cross-
Entropy (CE) loss to train the model on the decoded
speech units. The CE loss measures the difference be-
tween the decoded units and the ground-truth speech
HuBERT units. The input to the architecture consists
of cluster IDs from the video encoder, and the decoder
predicts the corresponding HuBERT cluster IDs for the
audio. The objective can be written as:

LCE = −
N∑
i=1

Sssl units i log(Ŝssl units i), (1)

where Sssl units are the ground-truth speech units, Ŝssl units
are the decoded speech units, and N are the number of
HuBERT units.

• fs2s-features: Here the model learns mapping from audio-
visual feature to corresponding speech feature vectors.
This model utilizes L1 loss, quantifying the difference
between the decoded features and ground-truth speech
features. The objective can be written as:

LL1 =
1

T

T∑
i=1

|Sssl features i − Ŝssl features i|, (2)

where Sssl features are the ground-truth speech features,
Ŝssl features are the decoded speech features, and T is the
time-steps.

• fs2s-features-ctc: This architecture follows the same structure
as fs2s-features, but also includes an additional fully con-
nected linear head to predict CTC tokens after the encoder
layer. For given input lip representation Lssl ∈ RTxD

of length T and dimension D, let Encssl be the output
of encoder. The goal is to minimize the negative log-
likelihood by using PCTC(Sssl|Encssl) to train the model
effectively using the CTC approach and is defined as:

LCTC := − logPCTC(Sssl|Encssl). (3)

By weighted summing the L1 and CTC loss functions,
the objective function can be formulated as:

LTot = αCTC ∗ LCTC + αL1 ∗ LL1, (4)

where αCTC ∈ R and αL1 ∈ R are the hyperparameter
that balances the influence between two loss.

D. Speech Vocoder

We use a modified version of HiFiGAN-v2 [39] to synthe-
size speech. It has a generator G and a discriminator D. G
runs Sssl through transposed convolutions for upsampling to
recover the original sampling rate followed by residual block
with dilations to increase the receptive field to synthesize the
signal, X̂ := G(Sssl).

The discriminator in our model has the task of distinguishing
the synthesized signal X̂ from the original signal X . It is
evaluated using two sets of discriminator networks. The multi-
period discriminators operate on equally spaced samples of
the signals, focusing on capturing temporal patterns and char-
acteristics. On the other hand, the multi-scale discriminators
analyze the input signal at different scales, enabling the model
to capture both fine-grained details and global structure. The
primary objective of the model is to minimize the discrepancy,
measured by D(X, X̂), between the original signal and the
synthesized signal. This optimization process applies to all
the parameters of the speech decoder, improving its overall
performance and fidelity.
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IV. EXPERIMENTS

A. Datasets

1) Lip2Wav: The Lip2Wav dataset [5] is a large, person-
specific, unconstrained dataset, commonly used for learning
Lip-to-Speech synthesis for individual speakers. It consists of
real-world lecture videos featuring 5 different speakers. Each
speaker has approximately 20 hours of video data, and the
vocabulary size exceeds 5000 words for each speaker. We
do experiments on all five speakers: Chess Analysis (chess),
Chemistry Lectures (chem), Hardware Security (hs), Deep
Learning (dl), and Ethical Hacking (eh).

2) GRID-4S: The GRID-4S is a subset of the GRID audio-
visual dataset [9] specifically designed for constrained Lip-to-
Speech synthesis. This subset includes two male speakers (s1,
s2) and two female speakers (s4, s29), which are frequently
used in the literature [5], [19]. The videos in the dataset were
captured in an artificial environment. The vocabulary used
in GRID-4S is limited to only 51 words. The sentences in
the dataset follow a restricted grammar, with each sentence
containing 6 to 10 words.

3) TCD-TIMIT-3S: The TCD-TIMIT-3S is a subset of the
TCD-TIMIT dataset, which comprises recordings of 62 speak-
ers captured under studio conditions. Among these speakers,
three are trained lip-speakers. The primary objective of se-
lecting this subset was to enable comparison with previous
studies [5], [19]. Our focus was solely on the audio-visual
data generated by these three lip-speakers. Each lip-speaker
delivers 375 distinct sentences that exhibit phonetic diversity.
Additionally, there are two sentences that are spoken by all
three lip-speakers.

B. Implementation details

1) Data preparation: For the GRID-4S and TCD-TIMIT-
3S datasets, we adhere to the convention of randomly selecting
90% data for training, 5% for validation, and 5% for testing,
as established in previous works [5], [11], [17], [40]. For
Lip2Wav, we adopt the official data split [5]. For consistency,
in line with previous works, we evaluated RobustL2S on
the Lip2Wav dataset using a speaker-dependent setting [5],
[14], [28]. This involved training the network separately with
individual speakers. However, for the GRID-4S and TCD-
TIMIT-3S datasets, we evaluated RobustL2S in a constrained
(seen) speaker setting [5], [17], [40]. In this case, we trained
a single speaker model for each dataset. The video sequences
are resampled to a frame rate of 25 frames per second (fps),
while the raw audio is sampled at 16kHz. We utilize the
SFD [41] face detector to detect 68 keypoints, allowing us
to crop a mouth-centered region-of-interest measuring 96×96
pixels. In order to solely assess the advantages of using SSL
representation in our proposed setup, we opt not to employ
any data augmentation techniques to enhance the quality of
synthesized speech. The Lip2Wav dataset does not provide
transcripts, so we rely on the Whisper small model [42]
to extract transcripts. These transcripts are then used for
finetuning the AV-HuBERT model.

2) SSL representation: We utilize the official fairseq repos-
itory implementation of the BASE models AV-HuBERT [34]
and HuBERT [33] for our experiments. We fine-tune the AV-
HuBERT pretrained model with an attention-based STS cross-
entropy loss for visual speech recognition [34]. To achieve this,
a transformer decoder is added to the pretrained model, which
autoregressively decodes the AV-HuBERT features to target
character probabilities. The fine-tuned AV-HuBERT model
extracts SSL representations for lip sequences, while HuBERT
is employed to extract representations from speech signals.
Both models provide 768-dimensional features. For fs2s-units
model, following the approach in [33], [34], the lip features
are clustered into 2000 AV-HuBERT units, while the speech
features are clustered into 100 HuBERT units, using k-means
clustering. For fs2s-features model, the output features from
HuBERT and AV-HuBERT models are used directly.

3) Seq2Seq model: Our model comprises a 6-layer trans-
former encoder and decoder with a hidden dimension of
512 and 2 attention heads. we set the batch size to 32 and
the maximum number of steps to 20, 000. We employ the
Adam optimizer with an initial learning rate of 4.4 x 10−2,
along with an annealing rate of 0.3 and annealing steps at
[3000, 4000, 5000]. The HuBERT model encodes speech into
features at a frame rate of 50Hz, while the SSL unit from
AV-HuBERT is encoded at 25Hz. To match these rates, we
incorporate a lightweight transposed convolution layer with a
kernel size of [4, 3] and a stride length of [2, 1]. We set αCTC
and αL1 mentioned in (4) to 0.001 and 1, respectively.

4) Speech Vocoder: We use the official implementation of
the adapted HiFiGAN-v21 to generate audio from speech SSL
representations. This model employs encoding of raw audio
into a sequence of discrete tokens from a set of 100 possible
HuBERT tokens, with a code hop size of 160 raw audio sam-
ples. We set the batch size to 16, the learning rate to 2x10−4,
the number of embeddings to 100, the embedding dimension
to 128, and the model input dimension to 256. Following the
approach in [43], F0 is not used as a feature in our training
process. The aforementioned vocoder configuration is effective
for speech units. However, for our investigated feature-based
models, fs2s-features and fs2s-features-ctc, we apply a pre-trained k-
means 2 clustering model for speech HuBERT units. During
the inference phase, the generated features undergo k-means
clustering to obtain discrete speech units, which are then

passed through the speech vocoder. We train the vocoders
for the three datasets separately. samples.

C. Evaluation metric
During our evaluation, we employ several metrics to assess

the quality of the synthesized speech. These include: Word
Error Rate (WER), Short-Time Objective Intelligibility (STOI)
[44] and Extended Short-Time Objective Intelligibility (ES-
TOI) [45]. Additionally, we conduct subjective evaluations us-
ing Mean Opinion Score (MOS), where human evaluators rate

1https://github.com/facebookresearch/speech-resynthesis
2https://github.com/facebookresearch/fairseq/tree/main/examples/

textless nlp/gslm/speech2unit
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TABLE I
PERFORMANCE COMPARISON: SEQ2SEQ MODEL VS. EVALUATED
VARIATIONS VS. NO SEQ2SEQ MODEL EMPLOYED ON CHEMISTRY

SPEAKER OF LIP2WAV DATASET.

Baseline (Ours) STOI ↑ ESTOI ↑
fl(pre-trained) + fvoc 0.447 0.22
fl(finetuned) + fvoc 0.50 0.27
fl(finetuned) + fs2s-units + fvoc 0.18 0.013
fl(finetuned) + fs2s-features + fvoc 0.583 0.397
fl(finetuned) + fs2s-features-ctc + fvoc 0.557 0.368

the quality, intelligibility and naturalness of the synthesized
speech based on their subjective perception.

V. RESULTS

A. Need for Seq2Seq model

We tested our hypothesis of using a Seq2Seq model on
the Lip2Wav dataset, specifically for a chemistry speaker and
report our findings in Table I. Fine-tuning the AV-HuBERT
model using transcripts consistently improved objective met-
rics by approximately 0.05 units on both the metrics compared
to the pretrained version. Deploying the Seq2Seq model on
the finetuned AV-HuBERT features (fl(finetuned) + fs2s-features
+ fvoc) resulted in an increase of approximately 0.08 and 0.12
units in STOI and ESTOI metrics, respectively, compared to
not using the Seq2Seq model (fl(finetuned) + fvoc). These
results highlight the effectiveness of our Seq2Seq approach
using SSL representations for Lip-to-Speech synthesis. The
significant performance gap (approximately 0.39 units on both
metrics) between the Seq2Seq model using SSL features and
the model using SSL units on both evaluated metrics approxi-
mates the amount of information lost in speech reconstruction
when audio-visual sequences are represented as SSL units
instead of SSL features. From now on, we will refer to
fl(finetuned) + fs2s-features + fvoc as RobustL2S. The inclusion
of CTC loss in our fl(finetuned) + fs2s-features-ctc model resulted
in a statistically insignificant decrease of approximately 0.02
units in STOI compared to the model without CTC loss,
fl(finetuned) + fs2s-features. The decrease may be due to the lack
of ground-truth transcripts in the Lip2Wav dataset. However,
when evaluating our model using CTC loss on datasets (GRID-
4S and TCD-TIMIT-3S) with ground-truth transcripts, we
observed a slight increase of 0.02 units. Nevertheless, our
focus is on working with datasets in the wild that generally
lack ground-truth transcripts, so we proceed with experiments
excluding the CTC loss.

B. RobustL2S in Constrained settings

Table II and III summarizes the performance of our Ro-
bustL2S in the context of Lip-to-Speech synthesis using con-
strained datasets: GRID-4S and TCD-TIMIT-3S. We compare
our results with existing Lip-to-Speech synthesis works, in-
cluding state-of-the-art approaches. We report the mean test
scores on all four speakers of the GRID-4S dataset and all
three speakers of the TCD-TIMIT-3S dataset, as documented in
previous works. Remarkably, our RobustL2S approach demon-
strates significant improvements in terms of STOI and WER

TABLE II
PERFORMANCE COMPARISON IN CONSTRAINED-SPEAKER SETTING ON

GRID-4S DATASET

Method STOI ↑ ESTOI ↑ WER ↓
Vid2speech [13] 0.491 0.335 44.92 %
Lip2AudSpec [15] 0.513 0.352 32.51 %
1D GAN-based [17] 0.564 0.361 26.64 %
Vocoder-based [40] 0.648 0.455 23.33 %
Ephrat et al. [14] 0.659 0.376 27.83 %
Lip2Wav [5] 0.731 0.535 14.08 %
VAE-based [16] 0.724 0.540 -
VCA-GAN [19] 0.724 0.609 12.25 %
kim et al. [28], [46] 0.738 0.579 -
RobustL2S 0.754 0.571 11.21 %

TABLE III
PERFORMANCE COMPARISON IN CONSTRAINED-SPEAKER SETTING ON

TCD-TIMIT-3S DATASET

Method STOI ↑ ESTOI ↑ WER ↓
Vid2speech [13] 0.451 0.298 75.52 %
Lip2AudSpec [15] 0.450 0.316 61.86 %
1D GAN-based [17] 0.511 0.321 49.13 %
Ephrat et al. [14] 0.487 0.310 53.52 %
Lip2Wav [5] 0.558 0.365 31.26 %
VCA-GAN [19] 0.584 0.401 -
RobustL2S 0.596 0.452 29.03 %

metrics when compared to other approaches. This improve-
ment is particularly noticeable on the TCD-TIMIT-3S dataset,
which contains a larger number of novel words that were
unseen during training. This observation highlights the ability
of our RobustL2S to accurately pronounce new words and
effectively capture semantic information from lip movements,
resulting in the generation of more intelligible speech.

TABLE IV
PERFORMANCE COMPARISON IN SPEAKER-DEPENDENT SETTING ON

LIP2WAV DATASET

Speaker Method STOI ↑ ESTOI ↑

Chemistry
Lectures
(chem)

Ephrat et al. [5] 0.165 0.087
GAN-based [47] 0.192 0.132
Lip2Wav [5] 0.416 0.284
Hong et al. [28] 0.566 0.429
RobustL2S 0.583 0.397

Chess
Analysis
(chess)

Ephrat et al. [5] 0.184 0.098
GAN-based [47] 0.195 0.104
Lip2Wav [5] 0.418 0.290
Hong et al. [28] 0.506 0.334
RobustL2S 0.517 0.340

Deep
Learning

(dl)

Ephrat et al. [5] 0.112 0.043
GAN-based [47] 0.144 0.070
Lip2Wav [5] 0.282 0.183
Hong et al. [28] 0.576 0.402
RobustL2S 0.627 0.419

Hardware
Security

(hs)

Ephrat et al. [5] 0.192 0.064
GAN-based [47] 0.251 0.110
Lip2Wav [5] 0.446 0.311
Hong et al. [28] 0.504 0.337
RobustL2S 0.511 0.337

Ethical
Hacking

(eh)

Ephrat et al. [5] 0.143 0.064
GAN-based [47] 0.171 0.089
Lip2Wav [5] 0.369 0.220
Hong et al. [28] 0.463 0.304
RobustL2S 0.493 0.277
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C. RobustL2S in Unconstrained settings

Table IV provides a synopsis of RobustL2S’s performance
on the Lip2Wav dataset. This dataset includes a significant
amount of silences between words, and RobustL2S shows a
notable improvement across all metrics. Despite Lip2Wav’s
data asynchrony issues, which may affect the quality of the
generated speech, RobustL2S demonstrates substantial per-
formance gains in objective metrics, highlighting its overall
superiority in producing intelligible speech. However, it is
worth noting that RobustL2S performs similarly or slightly
worse than [28] on the hs and eh ESTOI metric. This could
potentially be attributed to the poor resolution (480p and 360p)
of the original videos, making it challenging to accurately
recognize lip regions.

D. Subjective evaluation

Fig. 2 and Fig. 3 shows the MOS scores on intelligibility
(MOS(I)), quality (MOS(Q)), and naturalness (MOS(N)) of
synthesized speech from evaluated methods on Grid-4S and
Lip2Wav datasets. We requested ten English proficient subjects
to score five randomly selected samples from different methods
on the Lip2Wav and GRID-4S datasets. It can be observed
that our model outperforms the evaluated methods, exhibiting
higher Mean Opinion Score (MOS) values. This demonstrates

that the proposed approach inherits the advantages of disentan-
gled SSL features and the mapping of lip sequences to content-
specific information. As a result, our model not only inherently
improves the intelligibility aspect of synthesized speech but
also generates speech that is highly natural and of high quality.

VI. CONCLUSIONS

We propose a novel framework for Lip-to-Speech system,
called RobustL2S , which accurately synthesizes spoken con-
tent from silent videos. This is accomplished by utilizing
a non-autoregressive based sequence-to-sequence model to
establish an inter-modality mapping, allowing us to learn a
suitable decoding space from the lips’ self-supervised (SSL)
representations. We further demonstrate the effectiveness of
mapping SSL features rather than SSL units for synthesizing
intelligible speech. Both quantitative and qualitative results
showcase state-of-the-art performance in constrained settings
(such as GRID and TCD-TIMIT) and unconstrained settings
(like Lip2Wav). In our future work, we aim to introduce
emotive effects in the synthesized speech, considering that
HuBERT embeddings are known to lack prosody informa-
tion. Additionally, we plan to explore diffusion-based speech
vocoders and their application in a multi-lingual setup. We
commit to open-source our implementation on acceptance.
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