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Abstract—The goal of speech enhancement (SE) is to eliminate
the background interference from the noisy speech signal. Gen-
erative models such as diffusion models (DM) have been applied
to the task of SE because of better generalization in unseen
noisy scenes. Technical routes for the DM-based SE methods can
be summarized into three types: task-adapted diffusion process
formulation, generator-plus-conditioner (GPC) structures and the
multi-stage frameworks. We focus on the first two approaches,
which are constructed under the GPC architecture and use the
task-adapted diffusion process to better deal with the real noise.
However, the performance of these SE models is limited by the
following issues: (a) Non-Gaussian noise estimation in the task-
adapted diffusion process. (b) Conditional domain bias caused
by the weak conditioner design in the GPC structure. (c) Large
amount of residual noise caused by unreasonable interpolation
operations during inference. To solve the above problems, we
propose a noise-aware diffusion-based SE model (NADiffuSE)
to boost the SE performance, where the noise representation
is extracted from the noisy speech signal and introduced as a
global conditional information for estimating the non-Gaussian
components. Furthermore, the anchor-based inference algorithm
is employed to achieve a compromise between the speech dis-
tortion and noise residual. In order to mitigate the performance
degradation caused by the conditional domain bias in the GPC
framework, we investigate three model variants, all of which can
be viewed as multi-stage SE based on the preprocessing networks
for Mel spectrograms. Experimental results show that NADif-
fuSE outperforms other DM-based SE models under the GPC
infrastructure. Audio samples are available at: https://square-of-
w.github.io/NADiffuSE-demo/.

I. INTRODUCTION

In the last decade, deep learning (DL) methods [1], [2] have
become the mainstream for speech enhancement (SE), which
can be divided into two categories: the discriminative and
generative ones [3]. The discriminative methods learn non-
linear mappings[4] or estimate time-frequency masks [5]–[7]
through annotated speech data pairs, but suffer from non-
linear artifacts and poor generalizations [8]. The generative
approaches [9]–[11] employ different infrastructures such as
Generative Adversarial Networks (GANs) [12], Variational
Autoencoders (VAEs) [13] and flow-based models [14] to learn
the distribution of clean speech signals, which can be more
robust to complex and varying noise scenarios [15].

Diffusion Denoising Probabilistic Models (DDPM) [16] is a
new kind of generative model inspired by the nonequilibrium
thermodynamics [17]. DDPM corrupts the data to the pre-
defined Gaussian distribution by gradually adding noise at
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(a) Task-adapted forward (b) Vanilla forward

diffusion direction: with time step index increasing from 1 to 50

Fig. 1. To demonstrate the effect of non-Gaussian noise in diffusion-based
SE, we visualize the vanilla and task-adapted diffusion process: we randomly
selected 2000 utterances, which are first converted into Mel spectrograms, then
cropped to 62 frames (same as the training settings), and finally visualized
in two dimensions using the t-SNE algorithm. We use different colors and
indexes to label the data at different time steps.

the forward process, and the random noise is progressively
denoised and finally restored to the original data at the reverse
stage. Many works [18]–[20] have employed the DDPM to
generate natural and high-quality human voice from the given
text or Mel spectrogram. Recently, DDPM-based SE methods
[21]–[29] have also been explored for the promising result in
speech generation.

Current diffusion-based SE models can be categorized into
three types. The first [21]–[23] is to change the mathematical
form of the diffusion process to adapt to the task of SE, in
which the mean of clean speech signals is gradually pulled
towards the noisy ones by interpolating the asymptotically
increasing noisy signal, so that the reverse stage is directly
the speech enhancement process. The second [23]–[26] is to
train a conditional network based on a well-trained pure speech
generation network (Generator-plus-Conditioner, GPC). Under
this setting, the enhanced speech signal is generated with the
acoustic feature produced by the conditioner, which can be
expressed as output = generator(conditioner(noisy input)).
The last is to develop a multi-stage SE where the diffusion
model aims to learn the fine-grained or residual speech signal
based on the coarsely enhanced one [27]–[29]. This study
focuses on the first two lines, and leverages a task-adapted
diffusion process under the GPC architecture to deal with the
real noise.

However, there exists three problems in the existing works:
(1) Non-Gaussian Estimation. As shown in Fig. 1, incorpo-
rating the noisy signal into the forward process makes the data
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no longer satisfies the tight Gaussian distribution at each step,
which we attribute to the effect of background noise. Noise
interference varies in realistic scenarios, hence it is challenging
for SE models to understand the patterns of various noise and
to adaptively learn the ability of denoising in real situations
[30]–[33]. Moreover, the estimation target changes from the
added Gaussian noise to a combination of Gaussian noise
and non-Gaussian background noise, which makes training the
model harder [21]. (2) Conditional domain bias. In the GPC
framework, the generator and conditioner determine the upper
and lower bounds for the SE performance: If a conditioner
can ideally map the noisy features completely to the pure
ones, the best performance of SE is then obtained (upper
bound). Otherwise, if the conditioner does not work at all,
the worst performance is obtained (lower bound). Table I
records the SE performance bounds of [23]. We observe
that current conditioner is not sufficient to compensate for
the gap between lower and upper bounds. We define it as
conditional domain bias, which results from the change in the
dimension, type and purity of the acoustic features (usually
Mel spectrogram). (3) Under-explained interpolation. In the
original inference algorithm (cf. Line 11, Alg. 1), the linear
interpolation operation [21], [23], [26] is commonly used in the
last step with a certain percentage (r = 0.2), which serves as an
implicit post-processing method to supplement the lost speech
details. Although the interpolation does improve the objective
evaluation metrics (cf. Table III row 4 and 5), its validity
is limited due to the introduced large amount of additional
noise. We give a comparison between with and without the
interpolation in Fig. 4 as an example of evidence: the white
dashed box in (f) indicates the presence of the significant noise
components.

To address the above issues, our improvements are refined
into a noise-aware diffusion-based SE model (NADiffuSE).
The main contributions of this work are summarized as fol-
lows:

1. To more accurately estimate the non-Gaussian noise com-
ponent in the task-adapted diffusion process, we propose
to use noise encodings to guide the diffusion model for
adaptive noise reduction in real noisy situations.

2. To further reduce the conditional domain bias under the
GPC architecture, we design three network variants based
on the additional pre-processor network to improve the
quality of regenerated speech signals.

3. To reduce the additional noise introduced by the in-
terpolation operation, we construct a relatively accurate
data anchor point from noisy speech signals at specified
time steps, based on which we use iterative interpolation
operations to refine the speech details.

II. RELATED WORK

A. Diffusion Model

The diffusion model [16], [34], [35] contains a forward
and a backward process. In the mathematical form of DDPM
[16], each process is represented by a first-order Markov chain

TABLE I
EVALUATION RESULTS OF THE GPC STRUCTURE [26] ON NEW (A) AND

ORIGINAL (B) VOICEBANK-DEMAND; FOR WAVENET[36]-BASED
GENERATOR WE EVALUATED THE SE PERFORMANCE’S

UPPER (GENERATOR WITH CLEAN MEL SPECTROGRAMS) AND
LOWER (WITH NOISY MEL SPECTROGRAMS) BOUNDS. TASK-ADAPTED

DIFFUSION PROCESS [23] IS ADOPTED HERE.

(a) Evaluation results on new VoiceBank-Demand
Model Mode CSIG CBAK COVL PESQ

Unprocessed / 3.65 3.16 2.91 2.13
CDiffuSE / 3.83 3.13 3.19 2.55

DiffWave
Upper 4.41 3.57 3.84 3.26
Lower 3.45 2.68 2.78 2.16

DiffWave-Cls
Upper 4.65 3.67 4.05 3.44
Lower 3.55 2.73 2.86 2.20

DiffWave-Emb
Upper 4.34 3.54 3.79 3.22
Lower 3.59 2.78 2.89 2.22

(b) Evaluation results on original VoiceBank-Demand
Model Mode CSIG CBAK COVL PESQ

Unprocessed / 3.35 2.44 2.63 1.97
CDiffuSE / 3.66 2.83 3.03 2.44

DiffWave
Upper 4.34 3.53 3.79 3.21
Lower 3.40 2.55 2.71 2.08

DiffWave-Emb
Upper 4.36 3.42 3.78 3.19
Lower 3.41 2.47 2.74 2.15

with fixed time steps. In the forward process, a series of
corrupted data x1:T = x1, x2, ..., xT can be obtained from
the original clean data x0 through the transfer distribution

q(xt|x0) =
√
ātx0+

√
1− ātϵ, where āt =

T∏
i=1

ai, at = 1−βt,

ϵ ∼ N (0, I) and βt is a constant defined in advance. In
the reverse process, the original data x0 can be recovered
from the latent distribution xT by iteratively performing the
backward transfer step pθ(xt−1|xt) = µθ(xt) + β̃tI , where β̃t

is a constant and µθ(xt) =
1√
at
(xt − (βt/

√
1− āt)ϵθ(xt)).

B. Diffusion-based SE Methods

The current technical routes of diffusion-based SE mothods
can be divided into three categories: Task-adapted diffusion
formula, GPC structures and multi-stage frameworks.

Task-adapted diffusion formula [21]–[23] adapt the task
of SE by incorporating the noisy sigal y into the diffusion
process: the mean of xt is progressively pulled from the x0 to
y. The data degradation in [23] is formulated as Eq. 1, where
mt =

√
(1− ᾱt)/

√
ᾱt denotes the asymptotic coefficient and

δ̄t = 1− (1+m2
t )ᾱt is the variance for added Gaussian noise.

xt =
√
āt((1−mt)x0 +mt · y) +

√
δ̄tϵ (1)

While [21], [22] have the closed-form solution for the mean
value as µ(x0, y, t) = e−γtx0 + (1− e−γt)y.

GPC structures consist of a generator which can generate
the clean speech signal based on the clean conditions and a
conditioner, i.e. network designs or training methods. One kind
of conditioner [23], [26] works through two-stage training:
the first stage uses the 80-dim pure Mel spectrogram as a
condition (pre-training), and the second one adjusts the weights
using the 513-dim noisy amplitude spectrogram (fine-tuning).
The other [25] is replacing the submodule in the generator
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(a) Pre-training (left) and fine-tuning (right) of the proposed model, both of which are conditioned on Mel spectrograms and noise 
encodings. 
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Fig. 2. An overview of the proposed NADiffuSE: (a) pre-training (left) and fine-tuning (right), both of which are conditioned on Mel spectrograms and noise
encodings; (b) improved inference process where the iterative interpolation operates in the last t0 steps based on the anchor point; (c) latent embedding (left)
and category classifier (right) of noise encoding in proposed noise-aware training; (d) bi-conditional Residual blocks.

with a newly trained one to alter the degraded conditions to
match the original ones.

Multi-stage frameworks take full advantage of the nature
that the diffusion model is more suitable for detail refinement.
The coarsely enhanced result is obtained through a discrim-
inative model or also a diffusion-based mothod. And then
conditioned on the coarsely enhanced signal, the diffusion
model is used to generate the fine-grained enhanced signal
[28], [29] or the residual signal [27] against the clean one.

III. PROPOSED METHOD

We make improvements to address the above issues and
give an overview diagram in Fig. 2. The training process
in (a) follows the same two-stage paradigm as [23], where
both noise encodings and spectrograms are used as conditional
information. The inference process in (b) is iterative and
improved using noisy speech signals y in the last steps.

A. Noise encodings

We propose to additionally use noise coding as global con-
ditional information in an aim to mine the priori information
of the acoustic noise to guide the diffusion model for accurate
combine noise estimation. We explore two different types of
noise encodings as drawn in (c).

1) Category classifier: We first use the categorical proper-
ties of the background noise, in which the noise type labels
are fed into the learnable embedding layer in the form of
one-hot vectors. In order to get the ground truth noise label
during training, we only consider a fixed number of closed
sets of noise scenes. At the inference stage, a noise classifier
is required to predict the noise type of the noisy speech
signal. The background noise is usually labeled using the the
keywords of the acoustic scene where the noise is collected,

like living room, street, bathroom and etc. The concept of noise
semantics is difficult to define and we propose to describe
the background noise with acoustic events. We observe a one-
to-many relationship between noise scenes and sound events,
for example, keyboard tapping, TV background and babble
noise may exist simultaneously in a living scene. Therefore,
we perform transfer learning based on a large-scale pre-
trained network structure [37] for the audio tagging task. We
load the pre-trained weights as initialization and add a linear
classification into the original structure. As described above,
we build a noise classifier whose input is the noisy speech
signal and output is a value belonging to a predefined set of
noisy scene labels {0, 1, ..., N − 1}, with N being the total
number of noise categories.

2) Latent embedding: In order to extend the noise encod-
ings to the open domain, we further explore to characterize the
noise properties in a latent embedding mechanism. We directly
use the output of the classifier’s (described above) last hidden
layer as a noise feature. The 2048-dimensional embedding is
extracted from the noisy speech signal and aligned with the
hidden dimension of the residual block through MLP structure.
It is worth noting that we still fine-tune the convolutional
feature extractor using the classification task in order to make
it more relevant to the background noise characterization.

B. Anchor-based inference algorithm

The ideal case of inference is that the reverse data distribu-
tion fits the forward one exactly. We use the same conditional
diffusion process as in Eq. 1, where the mean value is
determined partly by x0 and partly by y. Thus we can use
the noisy signal y (known during inference) to construct a
relatively accurate anchor point for the reverse process in Eq



Algorithm 1 Anchor-based Inference algorithm
1: Sample xT ∼ platent
2: for t = T − 1, T − 2, ..., 0 do
3: Compute µθ(xt+1, y) and δ̄t as in Eq. (3)
4: Sample xt = µθ(xt+1, y) + δ̄tI from pθ(xt|xt+1, y)
5: if select Improved Sampling and t < t0: then
6: Calculate the anchor point x∗

t using Eq. (2)
7: Do interpolation xt = rt · x∗

t + (1− rt) · xt

8: end if
9: end for

10: if select Original Sampling: then
11: x0 = r · x0 + (1− r) · y
12: end if
13: return x0

2, where ᾱt and δ̄t follow the previous definition.

x∗
t = mt

√
āty +

√
δ̄tϵ (2)

Anchors contain both useful clean speech details and degraded
background noise. We have described in Section I the pros
and cons of the current interpolation operation used in the
inference process. Rather than directly interpolating the result
using noisy speech at the final step, We use anchors for
the interpolation to decrease the extra noise. We use the
anchor-based interpolation repeatedly in and only in the last
few steps, because the data will be more sensitive to the
slight inaccuracies as inference finishes. Therefore, we have
used iterative interpolation operations to remove some of the
noise residules contained in the anchor points by stepwise
refinement. To further weaken the effect of noise, we linearly
anneal the interpolation coefficients at the rate of 1/t0 (other
annealing options are worth exploring). Our improved anchor-
based inference algorithm is given in Alg. 1: we follow Eq.
(3) at each step to sample xt−1 from the reverse probability
distribution, and in the last t0 steps perform an interpolation
with the anchor point. The mean is a linear combination of
xt, y and the estimated noise term ϵ, where cxt,cyt and cϵt are
constants and the detailed derivation follows [23].

µθ(xt+1, y) =cxtxt + xytyt + cϵtϵθ

δ̄t =δt−1 −
1−mt

1−mt−1

2

αt
δ2t−1

δt

(3)

C. Model variants in the conditioner design

In the section I we give a definition of the conditional
domain bias, a problem that exists under the generator-plus-
conditioner (GPC) structure. Following the similar conditioner
design in [23], we first consider using the 80-dimensional Mel
spectrogram as conditional information in both training stages
to reduce the difficulty of aligning the conditional domain
in the fine-tuning phase. Given that the current conditional
mapping layer contains only a simple up-sampling layer and a
shallow MLP structure, we are inspired by [38] to additionally
train a preprocessing network (preprocessor) for enhancing
the Mel spectrogram. Thus we can get the pre-enhanced Mel
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Fig. 3. Training (dashed line) and inference (solid line) pipelines of three
conditioners based on the preprocessor: (a) preprocessor used for enhancing
the noisy Mel spectrograms (known as coarse) (b) coarse-and-refine only
needs one training stage in which the generator is trained with clean Mel
spectrograms and inferenced with enhanced ones (c) coarse-and-finetune stills
goes through the second training stage where the generator is finetuned
with enhanced Mel spectrograms (d) coarse-and-scratch also needs only one
training stage where the generator uses enhanced Mel spectrograms in both
the training and inference phases.

spectrogram and name this process as coarse. Given the pre-
enhanced Mel spectrogram: on the one hand it can be directly
used as the initial result of the enhancement and then refined
using the generator (coarse-and-refine). On the other, compared
to the noisy speech signal’s Mel spectrogram, it is less difficult
to perform fine-tuning with the pre-enhanced one (coarse-and-
finetune). Last, the pre-enhanced Mel spectrogram is available
in both training and testing phases, which can be used to
directly train a generator from scratch, without further fine-
tuning. In conclusion, three feasible conditioner designs are
illustrated in Fig. 3 (b), (c) and (d).

1. Coarse-and-refine: The generator which is only trained
with clean Mel spectrograms can be directly used to gen-
erate the speech with the pre-enhanced Mel spectrograms.

2. Coarse-and-finetune: After training with clean Mel spec-
trograms, the generator is then fine-tuned with enhanced
Mel spectrograms instead of the noisy ones.

3. Coarse-and-scratch: The generator is trained from scratch
using the pre-enhanced Mel spectrograms.

All three network variants use the pre-enhanced Mel spectro-
gram as a condition for inference, and Gaussian-like speech
signal sampled from latent distribution N(xT ;

√
ᾱT y, δT I) as

signal input. The above proposed conditioner mechanism is
applicable for all SE models under the GPC structure.

IV. EXPERIMENT

A. Experimental Setup

1) Dataset: We evaluated above all methods on the original
and newly simulated VoiceBank-DEMAND [39] dataset. The
new one follows the same setting which consists of 30 speakers
from the VoiceBank [40] corpus and was mixed with 12



TABLE II
COMPARATIVE RESULTS OF THE PROPOSED NADIFFUSE ON AUXIALIARY INFORMATION. ALL RESULTS ADOPTED THE ORIGINAL INTERPOLATION

OPERATION WHERE 20% NOISY SIGNAL IS ADDED AT THE END OF THE REVERSE PROCESS. SIGN * MEANS REPRODUCED RESULTS.

Row-Id Method Auxiliary Metrics
Spectrogram Noise encoding CSIG CBAK COVL PESQ

0 Unprocessed 3.65 3.16 2.91 2.13
1 DiffuSE* 80-dim Mel+513-dim Spec 3.80 3.10 3.15 2.52
2 CDiffuSE* 80-dim Mel+513-dim Spec 3.83 3.13 3.19 2.55
3 no-condition 2.87 2.61 2.36 1.88
4 mel-conditioned 80-dim Mel+80-dim Mel 3.86 3.13 3.22 2.58
5 noise-class category classifier 3.52 2.86 2.85 2.20
6 NADiffuSE 80-dim Mel+80-dim Mel hard classifier 3.91 3.15 3.26 2.63

noise types* from the DEMAND [41] database. It was then
divided into a training, validation and test set with 26, 2
and 2 speakers, containing 10792, 770 and 824 synthesized
utterances, respectively. The signal-to-Noise (SNR) range of
the training and validation set is {0, 5, 10, 15}, and the test set
is {2.5, 7.5, 12.5, 17.5}. All of the utterances were resampled
to 16KHz sampling rates. We use PESQ, CSIG, CBAK and
COVL as evaluation metrics for enhanced speech, with higher
scores indicating better performance.

2) Model infrastructure: Our proposed model follows the
generator-plus-conditioner architecture mentioned in the pre-
vious section. The generator is constructed based on DiffWave
[18], which is a diffusion model based vocoder and has been
extended to the task of SE by [23], [25], [26]. The network
in above works constructs from WaveNet [36] which has 30
layers of residual blocks with dilated convolution (conv) and
gated activation. As shown in Fig. 2 (d), each residual block
has two 1x1 conv layers for Mel spectrograms and noise
encodings.

3) Training settings: All of experiments are based on the
same training configurations as CDiffuSE-base [23] in which
50-step linear noise scheduler βt ∈ [1× 10−4, 0.035] is used.
The learning rate is 2×10−4 and the batch size is 16 for both
training stages. The dimension for the Mel spectrogram is 80,
which is transformed by STFT with the window size of 1024
and the shift of 256. We uniformly train 100w iterations in
the first training stage and 30w in the second stage. The full
sampling scheme is used in the reverse process.

B. Evaluation results for noise encodings

To resolve the non-Gaussian estimation problem proposed
in the Section I, two types of noise encodings, namely category
classifier (Cls) and latent embedding (Emb) were explored in
Table I. Among them, the latent embedding form cannot obtain
good performance gain in upper bound probably because it
contains too much redundant information about audio events
in the background noise that does not need to be considered.
Therefore, our following proposed model uses the noise rep-
resentation in the form of one hot vectors by default. In order
to get the ground-truth background noise labels, we conducted
experiments on the new simulated dataset. The ablation studies
are done to validate the effectiveness of noise encodings. From

*TCAR, PSTATION, DLIVING, TBUS, TMETRO, OMEETING, SP-
SQUARE, STRAFFIC, PRESTO, OOFFICE, PCAFETER, NFIELD.

Table II we can observe: (1) Under the GPC archietecture, mel-
spectrogram works as an important condition to improve the
metric scores of restored speech signals when compared with
row 3 and 4; (2) Metrics in row 5 increase a little compared
to row 3, showing that the noise embeddings can improve the
enhancement performance to some extent, but slightly lacks
in speech detail fidelity; (3) The best performance is obtained
when two conditions are both used as NADiffuSE (row 6) reach
the highest scores among all combination of auxiliary infor-
mation. It can be explained that the noise embedding provides
the priori information about noise patterns, and thus viewed
as an implicit multi-branch switch that guides the model for
adaptive noise reduction. We also visualized the effects in
in Fig. 4: when inference only with Mel spectrograms, more
details in the input noisy speech signal are reserved, but also
including residual background noise components according to
the dashed box in (c); when only using noise encodings, the
noise is removed more completely, owing to the explicit use
of noise characteristics, but some speech details are lost as
shown by the solid ellipse in (d). Another point of interest
is that the difference between Table II row 2 and 4 is only
in the spectral information used in the second training phase.
The results show that row 4 can achieve comparable (or even
a little better) results than row 2, which validates our view
that there is no need to change the type and dimensionality of
spectrograms before and after the two training phases, and lays
the foundation for our proposal of a preprocessing network for
the Mel spectrogram later on.

C. Evaluation results for the improved inference

To evaluate the anchor-based inference algorithm, we first
analyze the original interpolation operation in the inference
algorithm and further investigate different parameter settings
for the improved inference algorithm. We can first summarize
from Table III that without any interpolation operation, the per-
formance will significantly degrade because there is a big gap
between NADiffuSE- and NADiffuSE. As we have analyzed
in Section III-B, we only use iterative interpolation operations
in a limited number of time steps because of the increasing
sensitivity to extra noise during the inference. In Fig. 5, we
give an example of visualization on the inference process
where the last five steps play an important role in restoring
the speech signal. Therefore, we empirically choose t = 5
first and explore the effect of different interpolation coefficients
on the final performance in the row 8, and we can find that



(a) Clean

(b) Noisy

(c) Only Mel spectrogram

(d) Only noise encoding (f)  NADiffuSE (with interpolation)

(e)  NADiffuSE (no interpolation)

Fig. 4. Mel spectrograms of (a) clean speech, (b) noisy speech, (c) enhanced
speech only using the mel-spectrogram as condition, (d) enhanced speech
only using noise encodings, (e) NADiffuSE’s enhanced speech without the
interpolation and (f) NADiffuSE’s enhanced speech with the interpolation.
The dashed box indicates noise residuals and the solid ellipse indicates speech
distortion.

TABLE III
COMPARATIVE RESULTS OF THE THE ANCHOR-BASED INFERENCE

ALGORITHM. FOR THE SAMPLING OPTION, ”t = 0” WITH ”r = 0.2”
MEANS THE ORIGINAL INTERPOLATION DURING INFERENCE (DENOTED BY

”-”). SIGN ”+” MEANS OUR IMPROVED INFERENCE ALGORITHM. ALL
BASELINE ARE REPRODUCED ON THE NEW DATASET.

Row-Id Method Sampling Metrics
Ratio (r) Step (t) CSIG CBAK COVL PESQ

0 Unprocessed 3.65 3.16 2.91 2.13
1 SEGAN 3.71 3.12 3.04 2.35
2 SGMSE+ 4.18 3.47 3.58 3.24
3 DiffuSE r=0.2 t=0 3.80 3.10 3.15 2.52
4 CDiffuSE r=0.2 t=0 3.83 3.13 3.19 2.55
5 CDiffuSE- 3.80 3.13 3.16 2.52
6 NADiffuSE r=0.2 t=0 3.91 3.15 3.26 2.63
7 NADiffuSE- 3.84 3.09 3.18 2.55

8 NADiffuSE+
r=0.2

t=5
3.92 3.15 3.25 2.62

r=0.5 3.81 3.11 3.09 2.37
r=0.8 3.77 3.15 2.92 2.15

9 NADiffuSE+ r=0.1 t=5 3.94 3.18 3.31 2.69

10 NADiffuSE+ r=0.1
t=50 3.88 3.12 3.25 2.63
t=10 3.89 3.13 3.26 2.64
t=2 3.91 3.16 3.27 2.64

the smaller the coefficient is, the higher the performance gain
can be obtained. Specially, we degrade the coefficients linearly
on average with the time step, e.g. for t = 5, r = 0.1, we
would apply coefficients of [0.1, 0.08, 0.06, 0.04, 0.02] for the
last five steps respectively. After we experimentally selected
r = 0.1, we did a validation test in row 10 and the results
showed that the final performance indeed decreases as the
time step t increases. Ovarally, we have some conclusions: (1)
Our proposed inference algorithm is more effective than the
original one. (2) r = 0.1, t = 5 is the best parameter setting.

D. Evaluation results for the proposed model and its variants

1) Overal model: Through the previous experiments, our
proposed model is identified as a time-domain diffusion model
that uses Mel specrograms and the category classifier form of
noise encodings as conditional information in both training
stages. For inference, we need to train a noise classifier (detail
in Section III-A1) to get the estimated noise type from the
given noisy speech signal. The experimental results in Table IV
show that the convergence of the noisy classifier on our newly
simulated dataset is not difficult and there is no significant
difference in the final SE performance between the two trained
classifiers with 92% and 96% accuracy (row 1 v.s. 2). This

TABLE IV
EVALUATION RESULTS OF NADIFFUSE+ AND ITS VARIANTS. FOR THE

NEEDED NOISE LABELS, WE NEED AN ACCURATE NOISE CLASSIFIER. WE
DENOTE THE GROUND-TRUTH NOISE LABEL AS GT. MODELS WITH THE

92% AND 96% ACCURACY CLASSIFIER ARE ABBREVIATED AS
92%-NADIFFUSE+ AND 96%-NADIFFUSE+.

Row-Id Method CSIG CBAK COVL PESQ
0 gt-NADiffuSE+ 3.95 3.22 3.31 2.69
1 92%-NADiffuSE+ 3.94 3.18 3.29 2.66
2 96%-NADiffuSE+ 3.94 3.18 3.31 2.69
3 Coarse-and-refine 4.06 3.22 3.44 2.84
4 Coarse-and-finetune 3.93 3.20 3.24 2.54
5 Coarse-and-scratch 3.98 3.19 3.35 2.74

step=30step=45 step=15

step=4step=3step=2step=1Enhanced(step=0)

..

Noisy

. ... ...

Fig. 5. Visualization of the iterative reverse stage. The spectrograms of
specific time steps are given, showing the importance of the last five steps for
speech restoration.

can be interpreted as redundancy in the current category
labeling of background noise, which inspires us to explore
more fine-grained noise encoding. Our proposed NADiffuSE
and NADiffuSE+ both perform better than DiffuSE [26] and
CDiffuSE [23]. But this way of diffusion-based SE models
still lag behind spectral domain methods such as [22], which
uses the stochastic differential equation to formulate the dif-
fusion process. Furthermore, we also conduct out-of-domain
experiments to validate NADiffuSE’s generalization ability for
unseen noise scenes compared with baselines. We simulated
the new dataset using VoiceBank [40] and Noisex-92 with
the same setting in Section IV-A1. Results in Table V show
that our method achieves better scores than other time-domain
models under the GPC structure.

2) Variants: We compare the performance of the three
network variants described in the previous paper and all our
inferences are based on the improved algorithm with the best
parameter setting, r = 0.1, t = 5. All variants are based on
96%-NADiffuSE+. As shown in Table IV, the coarse-and-
refine approach achieves the best performance. The coarse-
and-scratch can get a small performance gain with only one
training stage required. The coarse-and-finetune performs com-
parably to the originally proposed model, with no significant
performance gains, which may further need a well-selected
pre-trainig checkpoint and fine-tuning strategy. We can gain
insight from row 3 that multi-stage iterative speech enhance-
ment can help recover speech details better, and generative
diffusion models have great potential for detail refinement in
data reconstruction. All above network variants essentially rely
on the training of respective sub-modules, so the quality of
the pre-enhanced spectrogram feature would limit the final SE
performance.



TABLE V
RESULTS OF UNSEEN NOISE SCENES FROM THE SIMULATED DATASET

WITH VOICEBANK AND NOISEX-92.

Method CSIG CBAK COVL PESQ
Unprocessed 2.84 2.75 2.21 1.59

DiffuSE 2.92 2.69 2.40 1.89
CDiffuSE 2.97 2.72 2.42 1.91

NADiffuSE+ 3.04 2.73 2.46 1.92

V. CONCLUSIONS

We summarize and analyze the current diffusion-based
speech enhancement methods, where in the setting of
generator-plus-conditional architecture (GPC), we propose a
noise-aware diffusion-based SE model (NADiffuSE), which
conducts denoising under the global guidance of noise en-
codings to help the non-Gaussian noise estimation. To reduce
the additional noise introduced by the original interpolation
operation, we propose the anchor-based inference algorithm to
to complement speech details and reduce the residual noise.
Plus, we investigate three variants of NADiffuSE which use
the preprocessing network to enhance the Mel spectrogram in
advance, to further bridge the gap in the performance bounds.
Through experiments, we have shown that our model performs
better than other diffusion-based SE models under the GPC
structure.
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