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Abstract—This study investigates mask-based beamformers
(BFs), which estimate filters to extract target speech using
time-frequency masks. Although several BF methods have been
proposed, the following aspects are yet to be comprehensively
investigated. 1) Which BF can provide the best extraction
performance in terms of the closeness of the BF output to the
target speech? 2) Is the optimal mask for the best performance
common for all BFs? 3) Is the ideal ratio mask (IRM) identical
to the optimal mask? Accordingly, we investigate these issues
considering four mask-based BFs: the maximum signal-to-noise
ratio BF, two variants of this, and the multichannel Wiener filter
(MWF) BF. To obtain the optimal mask corresponding to the
peak performance for each BF, we employ an approach that
minimizes the mean square error between the BF output and
target speech for each utterance. Via the experiments with the
CHiME-3 dataset, we verify that the four BFs have the same peak
performance as the upper bound provided by the ideal MWF BF,
whereas the optimal mask depends on the adopted BF and differs
from the IRM. These observations differ from the conventional
idea that the optimal mask is common for all BFs and that peak
performance differs for each BF. Hence, this study contributes to
the design of mask-based BFs.

I. INTRODUCTION

Target speech extraction is effective in improving speech
intelligibility in telecommunication systems and the perfor-
mance of automatic speech recognition systems [1]. Therefore,
beamformers (BFs) are utilized to avoid nonlinear distortions
such as musical noises and spectral distortions [2], [3]. In the
last decade, combined frameworks comprising BFs and deep
neural networks (DNNs), referred to as mask-based BFs, have
been proposed [4]–[6]. In these frameworks, DNNs generate
one or two time-frequency (TF) masks corresponding to the
target, interferences, or both to inform the BF of the sound
to be enhanced or suppressed. Afterward, the BF estimates a
filter for extracting the target using masks. For filter estimation,
the following BF methods are adopted: 1) maximum signal-
to-noise ratio (max-SNR) or generalized eigenvalue (GEV)
BF [4], [5], [7], 2) minimum variance distortionless response
(MVDR) BF [5], [6], [8], and 3) multichannel Wiener filter
(MWF) BF [9]–[11].

Several mask types have been examined to achieve improved
extraction performance. Initially, ideal binary masks (IBMs)
were employed to train DNNs for mask generation [4], [5].

Subsequently, ideal ratio masks (IRMs) have been utilized [6],
[11], [12].

Overviewing these studies, we concluded that the following
aspects are yet to be comprehensively investigated:

1) Which BF can achieve the best performance if an optimal
mask is provided for each BF method?

2) Is an optimal mask common for all BF methods?
3) Are conventional ideal masks such as IRMs identical to

an optimal mask?
Regarding these aspects, several studies such as [5], [13], and
[14] considered that the mask optimal for the single-channel
TF masking [12], [15] should commonly be optimal for all BF
methods. However, this assumption was not verified in these
studies. Moreover, they compared multiple BF methods that
employed the same mask in terms of extraction performance.
However, these results do not answer the first aspect unless
the optimal mask is common.

The remainder of this paper is organized as follows. Sec-
tions II and III explain the related work and BF methods
presented in this study, respectively. Section IV examines the
method for obtaining the optimal mask for each BF method.
Section V verifies the aforementioned points experimentally
while Section VI discusses the experimental results. Finally,
Section VII concludes the study.

II. RELATED WORK

First, we overview the history of mask-based BFs. The max-
SNR, MVDR, and MWF BFs employ the statistics of the
target, interferences, or both. The statistics are called target
(or speech) and interference (or noise) covariance matrices.
Given that the accuracy of both statistics affects the extraction
performance, estimating them accurately is a fundamental issue
[16], [17]. In [4], [5], both statistics were computed using
two binary masks, each of which represents periods when
only the target or interferences are present, and the masks
were generated using a properly trained DNN. This idea was
first adopted for the max-SNR and MVDR BFs [4]–[6], then
applied to the MWF BF [18].

Second, we mention the studies that compare mask-based
BFs. At least three methods have been adopted as aforemen-
tioned, and several studies have compared two or three of them,
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as presented in Table I. However, the best-performing method
depends on experimental setups. Moreover, it is reported in
[18] that the difference between the max-SNR and MWF BFs
is marginal and the performance depends on the number of
microphones used.

Third, we mention the mask types considered to be optimal
for the mask-based BFs. Initially, the IBMs were considered
to be optimal [4], [5]; then, the IRMs were considered optimal
[6], [12], [20]–[22]. These ideas were based on the findings
in the single-channel TF masking [12], [15]. However, these
studies did not investigate whether these findings really apply
to the mask-based BFs or the optimal mask is common for
any BF method.

III. FRAMEWORK OF MASK-BASED BFS

In this study, we define the best extraction performance
as the BF output closest to the target in the TF domain,
considering that a significant goal of BFs is to extract (or
estimate) the target. Moreover, similar to conventional TF
masks, we have the constraint that mask values are nonnegative
and real-valued.

Fig. 1 illustrates our idea. The vertical and horizontal axes
indicate the closeness of the BF output to the target and
the variation of the mask values, respectively. Although the
mask values vary multidimensionally, this figure conceptually
represents the variation as a single axis. In the mask-based BFs,
the extraction performance should depend on the variation and
exhibit the peak on a particular mask. We refer to this mask
as the optimal one. Considering that multiple BF methods
and mask types are employed, we can rephrase the questions
mentioned in Section I as follows:

Issue 1: Which BF method has the highest peak, or are all
peaks of the same height?

Issue 2: Is the optimal mask common for all BF methods,
or dependent on each one?

Issue 3: Can the mask considered to be ideal achieve peak
performance? More particularly, is the IRM optimal?

We assumed that the studies presented in Table I considered
these issues as in Fig. 2. This indicates that the mask mentioned
in each study is optimal for multiple BF methods such as BFs
1 and 2, whereas each BF method demonstrates a different
height of the peak. However, this idea is yet to be verified.

Considering that this study is the first to examine these
issues, we focus on the following methods for simplicity:

TABLE I
STUDIES COMPARING MULTIPLE BF METHODS. METHODS IN BOLD TYPE
REPRESENT THOSE THAT PERFORMED THE BEST IN EACH STUDY. IN [18],
THE PERFORMANCE DEPENDS ON THE NUMBER OF MICROPHONES. (SNR:
SIGNAL-TO-NOISE RATIO, PESQ: PERCEPTUAL EVALUATION OF SPEECH

QUALITY, WER: WORD ERROR RATE)

Metric Methods compared
Heymann+16 [5] SNR Max-SNR, MVDR
Boeddeker+18[13] SNR,PESQ Max-SNR, MVDR
Wang+18 [14] WER Max-SNR, MVDR, MWF
Heymann+18 [18] WER Max-SNR, MWF
Shimada+18 [19] WER MVDR, MWF
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Fig. 1. Conceptual plot of the relationship between the closeness of the BF
output to the target and mask values
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Fig. 2. Conventional ideas on the peak performance and optimal mask for
multiple BF methods

• Mask-based MWF BF, which employs a single mask
• Mask-based max-SNR BF, which utilizes two masks, and

its variants that employ a single mask
We do not include the MVDR BF in this study, given that
the method has another issue regarding the accuracy of the
estimation of the steering vector [23].

A. Signal models

In this study, all signals are in the TF domain. For simplicity,
the frequency index is omitted, whereas the frame index t is
adopted. Let x(t) = [x1(t), . . . , xN (t)]

T be an observation
vector obtained with N microphones. The observation x(t)
can be expressed as the following summation:

x(t) = s(t) + n(t), (1)

where s(t) = [s1(1), . . . , sN (t)]
T denotes the components

arriving from the target and n(t) = [n1(1), . . . , nN (t)]
T repre-

sents the residuals called interferences. Using the observation
x(t) and BF filter w, the BF output y(t) is expressed as

y(t) = wHx(t). (2)

We use the following three covariance matrices:

Φx =
〈
x(t)x(t)

H
〉
t
, (3)

Φ̂s =
〈
ms(t)x(t)x(t)

H
〉
t
, (4)

Φ̂n =
〈
mn(t)x(t)x(t)

H
〉
t
, (5)

where ms(t) and mn(t) denote TF masks for the target
and interferences, respectively, and ⟨·⟩t computes the average
over t. Each mask comprises nonnegative real values. We
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refer to these matrices as observation, target, and interference
covariance matrices, respectively. Unlike Φx, both Φ̂s and
Φ̂n are estimated matrices computed from the masks and
observations without using s(t) and n(t).

Moreover, consider GEVmax(A,B) and GEVmin(A,B) to
be the eigenvectors corresponding to the maximum and mini-
mum eigenvalues in the following GEV problem, respectively:

Aw = λBw. (6)

B. Mask-based and ideal MWF BFs
The MWF BF is formulated as a problem of minimizing

the mean square error (MSE) between the BF output and the
corresponding reference p(t) [14]:

w = argmin
w

〈∣∣p(t)−wHx(t)
∣∣2〉

t
(7)

= Φ−1
x

〈
x(t)p(t)

〉
t
, (8)

where p(t) denotes the conjugate of p(t). The mask-based
MWF BF employs the masked observation as the reference,
and thus, corresponds to the case p(t) = ms(t)xk(t) as

wmwf = argmin
w

〈∣∣ms(t)xk(t)−wHx(t)
∣∣2〉

t
(9)

= Φ−1
x

〈
ms(t)x(t)xk(t)

〉
t
, (10)

where xk(t) denotes the observation obtained with the kth
microphone.

Another significant variant is the ideal MWF BF, which
provides the upper-bound extraction performance for all BFs
[24]. When s(t) in (1) is known, the upper-bound extraction
performance can be achieved using the MWF with p(t) =
sk(t). The corresponding filter is obtained as

wideal = argmin
w

〈∣∣sk(t)−wHx(t)
∣∣2〉

t
(11)

= Φ−1
x

〈
x(t)sk(t)

〉
t
. (12)

Note that the ideal MWF BF is not a particular case of
the mask-based one. This is because a mask value ms(t)
constrained to be real-valued and nonnegative cannot render (9)
equivalent to (11), whereas ms(t) that can take any complex
values can. Therefore, it is not evident whether the mask-based
MWF BF can achieve the same extraction performance as the
ideal alternative.

C. Max-SNR BF and its variants
The mask-based max-SNR BF is formulated as the follow-

ing maximization problem [4], [5]:

wsnr = argmax
w

wHΦ̂sw

wHΦ̂nw
(13)

= GEVmax

(
Φ̂s, Φ̂n

)
. (14)

Although this method originally utilizes two masks, we can
derive two different variants that adopt a single mask by
assuming the following relationship:

Φ̂s + Φ̂n = Φx. (15)

One variant utilizes a mask for the interferences [17], [25]:

wnor = argmin
w

wHΦ̂nw

wHΦxw
(16)

= GEVmin

(
Φ̂n,Φx

)
. (17)

We refer to this as the minimum noise-to-observation ratio
(min-NOR) BF. Similarly, we can derive the other, which
employs a mask for the target and is expressed as

wsor = argmax
w

wHΦ̂sw

wHΦxw
(18)

= GEVmax

(
Φ̂s,Φx

)
. (19)

We refer to this as the maximum signal-to-observation ratio
(max-SOR) BF.

Furthermore, even without assuming (15), the min-NOR and
max-SOR BFs can be equivalent to each other in terms of the
filter estimation if one mask is computed from the other using
(20).

ms(t) +mn(t) = α, (20)

where α is a nonnegative value, such that all the mask values
are nonnegative. For example, assigninig ms(t) = α−mn(t)
to (18) and (4) results in the problem represented by (16) if
mn(t) is nonnegative for all t.

For the max-SNR BF and its variants, the scales of the filter
and BF outputs are uncertain, unlike the MWF BF. Hence, a
post-process for determining the proper scales is required [16],
[17]. Considering that the formulation of these BFs differs
from that of the MWF BF, it is not evident whether these BFs
can achieve the same extraction performance as the ideal MWF
BF.

IV. OBTAINING THE OPTIMAL MASK

To explore the peak performance for each BF method, this
study employs a bottom-up approach that obtains the optimal
mask for each mixture of the target and interferences, instead
of a priori deciding whether a particular mask type is optimal.

Let M be a set of mask values adopted in a BF. This set
comprises ms(t), mn(t), or both for all t, depending on the
BF method employed. We can formulateM as the solution to
the problem of minimizing the following MSE:

M = argmin
M

〈
|sk(t)− y(t)|2

〉
t
, (21)

where sk(t) and y(t) denote the target included in the obser-
vation of the kth microphone and BF output, respectively. To
render the mask values nonnegative and to avoid both diverging
the mask values and converging them to zero, we impose the
following constraints on (21):

m(t) ≥ 0 for all t, (22)〈
m(t)2

〉
t

= 1, (23)

where m(t) denotes ms(t) or mn(t). In (21), y(t) is computed
as follows. First, the BF filter w(t) is computed depending on
the adopted BF method, then the y(t) is computed using (2).
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To determine the ideal scale of y(t) independent of the BF
method, we apply the following post-filtering process, referred
to as the ideal scaling:

γ =

〈
sk(t)y(t)

〉
t

⟨|y(t)|2⟩t
, (24)

y(t) ← γy(t). (25)

Owing to the ideal scaling, the constraint represented as (23)
does not affect the scale of y(t).

BecauseM, w(t), and y(t) depend on each other,M cannot
be obtained explicitly. In contrast, we employ the iterative
algorithm based on gradient descent. Given that the mask
estimation process adopts no explicit association between the
masks and sources, the obtained masks such as ms(t) and
mn(t) do not necessarily correspond to the sources such as
the target and interferences.

Equations (21), (22), and (23) might seem to solve the same
problem as the ideal MWF BF, which is represented as (11),
based on the iterative algorithm and consequently achieve the
same extraction performance as the ideal MWF BF. However,
such a perspective is incorrect, as mentioned in Sections III-B
and III-C. Rather, the objective of this study is to examine to
what extent the output of the mask-based BF can approach
that of the ideal MWF BF if the mask best fits (21).

V. EXPERIMENTS

To clarify Issues 1–3 mentioned in Section III, we conducted
the following experiments:

1) Exploring the peak performance for each BF method
2) Verifying whether the optimal mask is common for all

the BF methods
3) Examining whether the IRM can achieve the peak per-

formance
The following subsections first mention the dataset and system
for these experiments, and then demonstrate the experimental
results in order.

A. Dataset and experimental system

We employed the CHiME-3 simulated test set [26], which
comprises both 330 utterances from four speakers and four
background (BG) noises. In this dataset, sound data were
recorded at 16 kHz with six microphones attached to a tablet
device. We generated the TF domain signals using the short-
time Fourier transform with window and shift lengths of 1024
and 256, respectively.

Fig. 3 illustrates the experimental system. The modules
labeled Absolute value, Normalization, and Ideal scaling cor-
respond to (22), (23), and (25), respectively. The observation
data were generated by mixing clean speech and BG noise.
To represent multiple scenarios in different SNRs, three mul-
tipliers such as 1, 2, and 4 were applied to the BG noise. We
refer to these values as BG multipliers. The BF output y(t)
was generated as explained in Section IV; one or two masks
were employed and the BF filter was estimated depending on
the BF method, such as (10), (14), (17), and (19). Given that

g

Filter estimation

Ideal scaling

Normalization
Back propagation
(500 iterations)BG 

multiplier
Absolute value

Target
(6ch clean speech)

One or two masks

BF output

6ch Observation

Interference
(6ch BG noise)

MSE

Fig. 3. Configuration of the system obtaining or employing the optimal
mask(s) for each utterance

microphone #5 is the closest to the speaker, we set k to 5
in (21) and (24). The backpropagation based on the gradient
descent algorithm was utilized only in the first experiment to
obtain the optimal mask for each utterance. The estimation of
the BF filter and output was implemented in PyTorch [27],
which supports the backpropagation of matrix operations in
the complex number domain.

Table II presents average SNR scores of the observation of
microphone #5 for each BG multiplier.

For the evaluation score, we adopted the source-to-distortion
ratio (SDR) [28], which is provided as a performance score in
this dataset, considering that this score basically represents the
closeness of the BF output to the target.

B. Experiment 1: Exploring the peak performance for each
BF method

First, to explore the peak performance of each BF method,
we obtained the optimal mask for each utterance, which is the
solution to (21) under the constraints represented as (22) and
(23), using the backpropagation of 500 iterations. Table III
presents SDR scores of the mask-based BFs, including those
of the ideal MWF BF using k = 5 in (12). All the mask-
based BFs practically demonstrated identical scores compa-
rable to the ideal MWF BF. These are remarkable results,
given that they were not theoretically evident, as mentioned
in Sections III-B and III-C.

C. Experiment 2: Verifying whether the optimal mask is com-
mon for all the BF methods

Furthermore, to verify whether the optimal mask is common
for all the BF methods, we applied the optimal mask obtained

TABLE II
SNR SCORES [dB] OF THE OBSERVATION OF MICROPHONE #5

BG multiplier
×1 ×2 ×4

7.540 1.536 -4.421
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in a BF method to another one. If the same score is achieved
after applying the mask, we can claim that the optimal mask
is the same between these two BF methods. Although 12
permutations are possible from four methods, we examined six
considered to be nontrivial. In the cases that ms(t) was applied
to a BF method using mn(t), and vice versa, we converted the
mask values using the following rules to satisfy (20):

ms(t) = max
t
{mn(t)} −mn(t), (26)

mn(t) = max
t
{ms(t)} −ms(t), (27)

where maxt {·} denotes the maximum value over t.
The obtained results are presented in Table IV. The first and

second rows indicate that the optimal masks obtained in the
max-SNR BF were applied to the max-SOR and min-NOR
BFs, respectively. These two rows present lower scores than
Experiment 1. This suggests that the optimal mask obtained in
the max-SNR BF is not necessarily optimal for the max-SOR
or min-NOR BFs.

The third row indicates that the optimal mask ms(t) ob-
tained in the max-SOR BF was applied to the min-NOR BF
using (27), and the fourth row indicates that the mask mn(t)
obtained in the min-NOR BF was applied to the max-SOR BF
using (26). The two rows practically demonstrated the same
scores as the max-SOR and min-NOR BFs in Table III. This
suggests that the optimal mask can be converted between the
max-SOR and min-NOR BFs, despite the fact that the two
masks are not the same.

The fifth and sixth rows indicate that the optimal mask
ms(t) obtained in a method was applied to the other for
the max-SOR and MWF BFs. These two rows demonstrated
considerably lower scores than the results of the max-SOR and
MWF BFs in Table III. These results suggest that the optimal
mask is not common between these two BF methods.

TABLE III
PEAK PERFORMANCE FOR EACH METHOD AND SCENARIO IN SDR [dB]

COMPARED WITH THAT OF THE IDEAL MWF.

BF Mask(s) BG multiplier
Method used ×1 ×2 ×4

Max-SNR ms,mn 19.430 14.276 9.451
Max-SOR ms 19.426 14.276 9.451
Min-NOR mn 19.434 14.276 9.451

MWF ms 19.438 14.268 9.430
Ideal MWF 19.441 14.276 9.451

TABLE IV
EXTRACTION PERFORMANCE IN SDR [dB] AFTER APPLYING THE

OPTIMAL MASK TO ANOTHER BF METHOD

BF for mask Applied Mask BG multiplier
estimation to used ×1 ×2 ×4
Max-SNR Max-SOR ms 17.084 13.493 9.165

Min-NOR mn 18.399 14.032 9.381
Max-SOR Min-NOR ms & (27) 19.426 14.276 9.451
Min-NOR Max-SOR mn & (26) 19.434 14.274 9.451
Max-SOR MWF ms 15.465 10.259 5.337

MWF Max-SOR ms 14.230 12.092 8.458

D. Experiment 3: Examining whether the IRM can achieve the
peak performance

The third experiment is for examining if the IRM can
achieve the peak performance for each BF method. Consid-
ering that the term IRM was ambiguously employed in the
related studies [6], [12], [20]–[22], we define several masks
that utilize the ratios of the target and interferences based on
[12].

The IRMs for the target and interferences are defined as

ms(t) =

(
|sk(t)|2

|sk(t)|2 + |nk(t)|2

)β

, (28)

mn(t) =

(
|nk(t)|2

|sk(t)|2 + |nk(t)|2

)β

, (29)

where k = 5 and β = 1 or 0.5. As another type of ratio mask,
we employed the spectral magnitude masks (SMMs) defined
as

ms(t) =
|sk(t)|

|sk(t) + nk(t)|
, (30)

mn(t) =
|nk(t)|

|sk(t) + nk(t)|
. (31)

In the single-channel TF masking, these masks are ideal in
terms of the magnitudes of the target and interferences [12].

The obtained results are presented in Table V. In this table,
the combination of the max-SOR and IRM with β = 0.5
demonstrated the best score for all the scenarios. However,
these scores were lower than that in Experiment 1. The results
suggest that the IRM does not achieve the peak performance
for any BF method examined in this study; hence, it differs
from the optimal mask for each method.

In addition, Table V indicates that the max-SNR, max-SOR,
and min-NOR BFs present the same scores for the IRM with
β = 1. This is because this mask type evidently satisfies both
(15) and (20). Hence, these three BFs are equivalent in this
case, as mentioned in Section III-C.

TABLE V
EXTRACTION PERFORMANCE IN SDR [dB] WHEN THE IRM (β = 1, 0.5)

AND SMM WERE EMPLOYED FOR EACH BF METHOD.

BF Type of Mask(s) BG multiplier
method ideal mask used ×1 ×2 ×4

IRM (β = 1) 18.642 13.889 9.226
Max-SNR IRM (β = 0.5) ms,mn 18.313 13.790 9.203

SMM 17.973 13.529 9.060
IRM (β = 1) 18.642 13.889 9.226

Max-SOR IRM (β = 0.5) ms 18.725 13.948 9.275
SMM 13.640 11.447 8.147
IRM (β = 1) 18.642 13.889 9.226

Min-NOR IRM (β = 0.5) mn 18.267 13.747 9.160
SMM 17.372 12.735 8.103
IRM (β = 1) 17.316 12.788 8.375

MWF IRM (β = 0.5) ms 16.228 11.799 7.477
SMM 17.109 12.316 7.734
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VI. DISCUSSION

In this section, we discuss the experimental results for each
issue mentioned in Section III.

A. Discussion on Issue 1

The results of Experiment 1 provide the answer to Issue
1. The peak performance of each BF method is practically
identical and comparable to the upper bound given by the ideal
MWF BF. These findings differ from the conventional idea pre-
sented in Fig. 2 and may deprive the meaning of the discussion
on the BF that can achieve the best extraction performance.
However, it is an open question whether these findings are
applicable to any BF method and dataset. Therefore, further
investigation is required.

B. Discussion on Issue 2

The results of Experiment 2 provide the answer to Issue 2.
Although the optimal mask is not common, it depends on the
BF method adopted. This finding differs from the conventional
concept presented in Fig. 2, similar to the discussion on Issue
1. However, we consider this to be natural because the optimal
mask is formulated as the solution to a different problem for
each BF method, as explained in Section IV.

In addition, Table IV indicates several remarkable points.
Although both the max-SOR and min-NOR BFs are derived
from the max-SNR BF, as mentioned in Section III-C, the top
two rows suggest that ms(t) and mn(t) are optimal for the
max-SNR BF, while not for the max-SOR or min-NOR BFs.
We consider that the reason for this is that the optimal masks
obtained in the max-SNR BF do not satisfy (15) or (20). Hence,
the max-SNR BF is not equivalent to the other two BFs in this
case. In contrast, the third and fourth rows in this table suggest
that the max-SOR and min-NOR BFs are equivalent if both
ms(t) and mn(t) satisfy (20). Moreover, the bottom two rows
exhibited lower scores than the other rows. Although ms(t)
has commonly been interpreted as the mask for the target, the
facts suggest that the optimal mask ms(t) for the max-SOR
BF differs significantly from that of the MWF BF and vice
versa.

From the discussion on Issues 1 and 2, we have obtained a
novel idea for the peak performance and optimal mask among
multiple BF methods, as illustrated in Fig. 4. This indicates
that the optimal mask depends on the BF method adopted,
while the peak performance is the same among multiple BF
methods and comparable to the upper bound achieved by the
ideal MWF.

C. Discussion on Issue 3

The results of Experiment 3 provide the answer to Issue 3.
Although these masks have been considered to be optimal for
any BF method, Table V suggests that the IRM and SMM do
not achieve the upper-bound performance and differ from the
optimal mask for any BF method. These findings can explain
why the studies presented in Table I mentioned a different
BF method as the best. Table V indicates that the BF method
that appears the best depends on the mask type employed. For
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Fig. 4. Obtained concept of the peak performance and optimal mask among
multiple BF methods

example, focusing on the IRM with β = 0.5 in this table,
we can determine that the max-SOR BF performs the best.
However, this result only suggests that this mask type is the
closest to the optimal mask for the max-SOR in this dataset.

Furthermore, the fact that the IRM is not optimal imposes
another issue on us. This is how the optimal mask is interpreted
and represented as a formula. However, this is also an open
question.

VII. CONCLUSIONS

In this study, we investigated mask-based BFs such as the
max-SNR, max-SOR, min-NOR, and MWF BFs. To explore
the peak performance for each BF method, we obtained the
optimal mask for each utterance by minimizing the MSE
between the BF output and target. We experimentally verified
that these four methods have the same peak performance as the
upper bound provided by the ideal MWF BF. Via additional
experiments that applied the optimal mask across BF methods,
we determined that the optimal mask differed for the BF
method used. However, the mask values can be converted
between the max-SOR and min-NOR BFs. These findings
differed from the conventional idea that the optimal mask
would be common and the peak performance would depend on
the BF method. We verified that the IRM did not achieve the
peak performance for these four BFs. Hence, this mask type
was not optimal. We expect that these findings will contribute
to the improvement of mask-based BFs.

Given that these findings are currently experimental, in
the future, we would attempt to establish their theoretical
background and investigate whether these apply to other BF
methods and datasets.

The experimental system has been shared in https://github.
com/hreshare/optimal beamformers/.
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