
2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Manipulation of Neuronal Network Firing Patterns
using Temporal Deep Unfolding-based MPC

Jumpei Aizawa∗, Masaki Ogura∗, Masanori Shimono† and Naoki Wakamiya∗
∗ Osaka University, Japan

E-mail: {j-aizawa, m-ogura, wakamiya}@ist.osaka-u.ac.jp Tel: +81-06-6879-4358
† Kyoto University, Japan

E-mail: shimono.masanori.7w@kyoto-u.ac.jp Tel: +81-075-751-4173

Abstract—Because neuronal networks are intricate systems
composed of interconnected neurons, their control poses chal-
lenges owing to their nonlinearity and complexity. In this paper,
we propose a method to design control input to a neuronal
network to manipulate the firing patterns of modules within
the network. We propose a methodology for designing a control
input based on temporal deep unfolding-based model predictive
control (TDU-MPC), a control methodology based on the deep
unfolding technique actively investigated in the context of wireless
signal processing. During the method development, we address
the unique characteristics of neuron dynamics, such as zero
gradients in firing times, by approximating input currents using
a sigmoid function. The effectiveness of the proposed method
is confirmed via numerical simulations. In networks with 15
and 30 neurons, the control was achieved to switch the firing
frequencies of two modules without directly applying control
inputs. This study includes a tailored methodology for networked
neurons, the extension of TDU-MPC to nonlinear systems with
reset dynamics, and the achievement of desired firing patterns in
neuronal networks.

I. INTRODUCTION

The brain, a highly complex organ, consists of a vast
network of interconnected neurons. When an individual neuron
within the network generates an electrical impulse called
firing, neighboring neurons receive an electrical influx that
serves as a stimulus to trigger their firing. This phenomenon
propagates throughout the entire network and contributes to the
complex pattern of the firing dynamics in the brain. Hence, the
brain exhibits a wide range of electrically active patterns and
dynamic behaviors that account for its remarkable capabilities
and functions [1].

Studies focused on brain dynamics control [2] have the
potential to yield significant advancements in the enhance-
ment of human cognitive function and the performance of
brain–machine interfaces and artificial nerves. For example,
advancements in brain dynamics control are expected to pave
the way for the development of novel therapies for psychiatric
disorders [3]. In addition, a greater degree of seamless commu-
nication between the human brain and external devices can be
achieved by precisely controlling the firing patterns of neurons
to optimize the brain–machine interfaces [4]. The prospect of
using brain dynamics control to improve human welfare, both

This work was supported by JSPS KAKENHI Grant Numbers JP22H00514
and JP21H01352.

in terms of cognitive enhancements and psychiatric disorder
treatments, demonstrates the potential of such research [2].

Owing to the complex nature of a neuronal network,
controlling its firing pattern is challenging [5]. A neuron
is often modeled as a nonlinear dynamical system charac-
terized by abrupt jumps in membrane potential as neurons
are fired [6]. Such nonlinearity adds a layer of complexity
to the control problem [7]. In addition, a neuronal network
as a whole represents a large system consisting of several
interconnected neurons with complex interactions. Network
size further complicates control efforts by introducing a large
number of variables and inter-dependencies, which are to be
considered. Addressing these challenges requires developing
sophisticated control strategies capable of accommodating the
unique characteristics and complexities inherent to neuronal
network dynamics.

In this study, we aim to develop a methodology for de-
signing control input currents to effectively manipulate the
firing frequency of multiple modules within a network, even
when neurons not belonging to the modules are under con-
trol. Therefore, we employed temporal deep unfolding-based
model predictive control (TDU-MPC) introduced in [8] as a
control methodology. TDU-MPC offers solutions for tackling
optimization problems that arise during each step of MPC by
employing emerging technologies, such as deep unfolding [9]–
[13]. Deep unfolding involves the temporal unfolding of the
mathematical model of a control object by treating it as a feed-
forward network. Using backpropagation, the control inputs at
each instant of time step are acquired via learning, and the
iterative process is repeated for each step.

Although TDU-MPC has been recognized for its effec-
tiveness in the control of nonlinear dynamical systems [8],
the dynamic characteristics of neurons pose challenges. The
main challenge lies in the fact that once a neuron model is
discretized, the firing times of the neurons can have a zero
gradient with respect to the control, as has been observed by
our preliminary experiments. This property of the gradient
complicates the process of learning control inputs because
TDU-MPC relies on deep learning techniques. To overcome
such hurdles, we developed an approach to approximate the
input current of neighboring neurons by means of a sigmoid
function, which enabled us to avoid the aforementioned prob-
lem of zero gradient.

ar
X

iv
:2

30
9.

03
68

1v
1

 [
ee

ss
.S

Y
]

 7
 S

ep
 2

02
3

The contributions of this study are summarized as follows.
First, the paper proposes the methodology for designing con-
trol input to neuronal networks to achieve a desired firing
pattern of modules within the networks. Second, unlike other
methodologies primarily focused on single neurons [5], our
methodology is tailored to networks of neurons. Third, the ap-
plicability of TDU-MPC can be extended to include nonlinear
systems exhibiting reset dynamics.

This paper is organized as follows: Section II states the
problem studied in this paper, while Section III proposes a
method for solving the control problem. Section IV presents
the results of numerical simulations. Finally, the paper is
concluded in Section V.

II. PROBLEM STATEMENT

In this section, we formally state our problem of controlling
the neuronal dynamics. In Subsection II-A, we state our model
of neuronal networks. Subsequently, in Subsection II-B, we
state the control problem addressed in this paper.

A. Neuronal Network

In this subsection, we state the model of a neuronal network.
Let G = (V, E) denote the directed graph representing the
connectivity of the neuronal network. The node set V =
{1, . . . , N} represents the set of neurons, while the edge
set E represents the connectivity among the neurons. For each
i ∈ V , Ni denotes the set of in-neighbors of node i. Under
this notation, we assume that when a neuron in Vi fires, the
neuron i receives a current.

The type of firing neuron determines the effect on its
neighboring neurons. For this study, we assume, as is common
in the literature, that neurons are divided into two types of
neurons: excitatory neurons and inhibitory neurons. The set
of the former neurons is denoted by Vex, while the latter
is denoted by Vin. An excitatory neuron induces a positive
current Iex to its neighbors, while an inhibitory neuron induces
a negative current Iin.

We assume that each neuron i ∈ V follows the Izhikevich
model [6] described by the differential equation

v̇i(t) = 0.04v2i (t) + 5vi(t) + 140− ui(t) + Ii(t), (1)
u̇i(t) = a(bvi(t)− ui(t)) (2)

with the reset dynamics described by[
vi(t

+)
ui(t

+)

]
=

[
c

ui(t) + d

]
, if vi(t) ≥ 30. (3)

For this study, we assume that a neuron i fires at time t if
vi(t) ≥ 30. The real numbers a, b, c, and d in the dynamical
model are considered dimensionless parameters. By varying
the values of these dimensionless parameters, a rich variety
of neuronal behaviors, including regular spiking, bursting, and
fast spiking, can be achieved. Therefore, the Izhikevich model
is extensively used to study and replicate various types of
neuronal activity seen in different regions of the brain.

In the differential equations (1) and (2), the scalar vari-
able vi(t) represents the membrane potential of neuron i at

time t, while ui(t) represents the value of the membrane
recovery variable of neuron i at time t. Further, Ii(t) represents
the current input to neuron i and is assumed as

Ii(t) = Ii,control(t) + Ii,internal(t),

where Ii,control(t) is the control input signal that we need to
design, and Ii,internal(t) represents the inter-network current in-
duced by firing events of neurons. In this paper, for simplicity,
the inter-network current is supposed to be of the additive form
defined as

Ii,internal(t) =
∑
j∈Ni

Iij(t), (4)

where Iij(t) represents the current input from neuron j to
neuron i and is assumed to be of the form

Iij(t) =


Iex, if neuron j fired in [t− τ, t] and j ∈ Vex,

Iin, if neuron j fired in [t− τ, t] and j ∈ Vin,

0, otherwise,
(5)

where τ > 0 is a parameter.

B. Control Objective

For this study, we consider the selective and dynamic
enhancement problems caused by the firing activity of a spec-
ified module of neurons. Specifically, the network is assumed
to consist of three modules, with stronger within-module
connectivities than inter-module connectivities. Further, we
assume that the control current is applied only to the neurons
within a specific module. We consider a closed-loop control
of the neurons; therefore, we assume that we can use the
membrane potentials vi(t) for all i ∈ V to determine the input
current Ii,control(t) for i ∈ Vcontrol. Under this supposition, our
objective is to control the firing frequency of other modules.
Specifically, we aim to design the following firing pattern:
From the initial to a pre-specified time, a module V1 ⊂ V fires
frequently while another module V2 ⊂ V exhibits low firing
activities. Thereafter, the module V2 should fire frequently,
while module V1 fires less frequently.

Thus, the aforementioned control problem can be formally
stated as follows:

Problem 1. Assume that the set V of neurons is divided into
disjoint subsets Vcontrol, V1, and V2. Assume

Ii,control(t) = 0 for all i ∈ V1 ∪ V2.

Let Ts and Te be real numbers satisfying 0 < Ts < Te and
define intervals I1 and I2 by

I1 = [0, Ts], I2 = [Ts, Te].

For a subset W of V and a time interval I, define

fW,I =
∑
i∈W

(number of fires of neuron i on I).

Construct a feedback controller of the form

Ii,control(t) = Ki(v1(t), . . . , vN (t)) (6)

2

for all i ∈ Vcontrol such that the objective function

(fV1,I1 − fV2,I1) + (fV2,I2 − fV1,I2) (7)

is maximized.

Remark 1. In the practical implementation of the control
rules (6), real-time calculation of the control input Ii,control is
preferred. However, in this research, real-time capability is not
a requirement, and its realization is left for future investigation.
Similarly, the assumption of membrane potential observability,
though challenging in practice, aligns with existing practice in
the literature (see, e.g., [5]).

Because Problem 1 requires the control of a nonlinear reset
system [14], a standard and effective solution involves the use
of model predictive control (MPC) [15]. MPC is a type of feed-
back control method that aims to achieve optimal control by
predicting the behavior of a controlled object at a fixed interval
in the future from the current time. In MPC, the controlling
input at each instance is determined by solving an optimization
problem. The optimization problem consists of a mathematical
model of the control target, a cost function obtained from the
outputs in the prediction horizon, and constraints. Owing to
its effectiveness in optimizing control inputs, handling con-
straints, and dealing with nonlinear systems, MPC has various
applications, including process control, energy management,
and automotive systems. Among various approaches available
for performing MPC, we chose to use TDU-MPC [8] for
this study. TDU-MPC offers several advantages such as easy
implementation and the ability to find high-quality solutions.

III. PROPOSED METHOD

In this section, we propose a method to solve Problem 1
leveraging TDU-MPC. In Subsection III-A, we present an
overview of TDU-MPC, while Subsection III-B presents the
proposed methodology for solving Problem 1.

A. TDU-MPC

To understand TDU-MPC, we begin by reviewing deep un-
folding [9]–[13] that TDU-MPC is built upon. Deep unfolding
is a method for tuning the parameters of iterative algorithms
using techniques from deep learning. In deep unfolding, a
given iterative algorithm is first unfolded in the time direction
and considered a feed-forward network with the number of
layers equal to the number of iterations. Next, the parameters
of each step of the iterative algorithm are embedded as learn-
able parameters in the network and tuned via backpropagation
and stochastic gradient descent methods. Incremental learning,
a widely used technique, is adopted to avoid gradient loss that
can occur during parameter learning.

TDU-MPC has been proposed as a method to overcome the
disadvantages of existing methodologies for performing MPC.
In this subsection, we provide a brief overview of TDU-MPC,
considering a discrete-time dynamical system such as

Σ : x[k + 1] = f(x[k], u[k], w[k]), k = 0, 1, 2, . . .

where x, u, and w represent the state variable, control input,
and disturbance signal, respectively. In TDU-MPC, the system
is considered as an iterative algorithm, and the control input
is regarded as a learnable parameter.

Specifically, we first make the feed-forward network with
T layers. Each layer is the state x at each instance of time
of unfolded T -step state transitions in the temporal direction.
Next, the control inputs at each instance can be learned using
deep learning techniques as in deep unfolding. The distur-
bances at each instance of time are used as data, and learning
is performed using the objective function of the optimization
problem in MPC as the cost function. Thereafter, the control
input minimizing the following objective function

T−1∑
ℓ=0

pℓ(x[k + ℓ], u[k + ℓ]) + pT (x[k + T])

is designed using the aforementioned scheme. In Fig. 1, we
illustrate a schematic picture illustrating TDU-MPC. For the
details of TDU-MPC, readers are referred to [8].

B. Discrete-time Model

As described in the previous subsection, TDU-MPC is a
methodology for controlling discrete-time dynamical systems,
while Problem 1 involves a continuous-time model. Therefore,
for applying TDU-MPC to Problem 1, the dynamics presented
as (1)–(3) and the objective function (7) must be appropriately
discretized.

Let ∆t > 0 denote the time step for discretization. For this
study, we discretized the differential equations (1) and (2) as

vi[k + 1] =


vi[k] + (0.04v2i [k] + 5vi[k]

+140− ui[k] + Ii[k])∆t, if vi[k] < 30,

vi[k]− (30− c), otherwise
(8)

and

ui[k + 1] =

{
ui[k] + (a(bvi[k]− ui[k]))∆t, if vi[k] < 30,

ui[k] + d, otherwise,
(9)

where the input current

Ii[k] = Ii,control[k] + Ii,internal[k]

consists of the control signal Ii,control[k] to be designed and
the input current Ii,internal[k] resulting from firing events at
neighbor neurons. As in the continuous-time case, we say that
a neuron i fires at time k if vi[k] ≥ 30.

Similar to (4), we assume the input current Ii,internal[k] of
the form

Ii,internal[k] =
∑
j∈Ni

Iij [k],

where Iij [k] represents the current input from neuron j to
neuron i and is given by

Iij [k] =

{
S(vj [k])Iex, if j ∈ Vex,

S(vj [k])Iin, otherwise
(10)

3

Learnable Parameters

Unfold to T layers

Mathematical model Cost function

 Learn parameters by using backpropagation

Noises

Calculate

Fig. 1: Schematic picture of temporal deep unfolding-based model predictive control (TDU-MPC)

in which the introduced coefficient S(vj [t]) serves the purpose
of introducing a soft-threshold and is defined as

S(vj [k]) =
1

1 + exp(−σ(vj [k]− 20))
. (11)

One of the main reasons for introducing the soft-threshold
mechanism is to ensure the differentiability of the objective
function. To effectively perform deep learning and deep un-
folding, the differentiability of the objective function is an
important requirement. Conversely, the differentiability of the
cost function with respect to the input current Ii,control to
be designed cannot be guaranteed without soft-thresholding.
Therefore, introducing the soft-thresholding mechanism is
necessary. In fact, we confirmed through our preliminary
experiments that for a system model with an inter-node input
current of the form (5), TDU-MPC often fails to yield an
effective control input signal.

C. Cost Function

For reasons similar to soft-thresholding in (10) and (11), the
cost function has to be differentiable with the control input to
be designed. Thus, to design a control input within the first
interval I1 in which firing must be promoted within the first
module, we adopt an cost function such that

l+T∑
k=l

(∑
i∈V1

(1− δi[k])(30− c− (vi[k + 1]− vi[k]))

+
∑
j∈V2

|vj [k + 1]− vj [k]|
)
,

(12)

where

δi[k] =

{
1, if neuron i fires at time k,
0, otherwise

is a binary variable encoding the firing event of neurons.
Minimization of the aforementioned cost function leads to a
smaller first term, which then makes the amount of change
in the membrane potential of the neurons in module V1

bigger, thereby stimulating neurons in the module V1 to fire.
Conversely, we introduce the second term in (12) to suppress
firing within the other module V2. For the aforementioned

reasons, the cost function after the switching time Ts is set
as

l+T∑
k=l

(∑
i∈V1

|vi[k + 1]− vi[k]|

+
∑
j∈V2

(1− δj [k])(30− c− (vj [k + 1]− vj [k]))

)
.

IV. RESULTS AND DISCUSSIONS

In this section, we discuss the effectiveness of the proposed
approach via numerical simulations. We considered neuronal
networks consisting of “fast spiking” neurons described in [6].
Therefore, the model parameters in (8) and (9) were set to a =
0.1, b = 0.2, c = −65, and d = 2. Additionally, we set the
amount of current flux incoming from neighboring neurons as
Iex = 15mV and Iin = −3mV. For the neuronal network, we
assumed that 80% of the neurons were of the excitatory type,
while 20% were inhibitory neurons. Further, we assumed that
the network consisted of three different modules (or clusters)
such as V1, V2, and Vcontrol. As stated in Problem 1, we aimed
to design the control input into the neurons in Vcontrol to control
the firing patterns in modules V1 and V2.

The (hyper-)parameters of the proposed method were chosen
as follows. First, Adam was chosen as the optimizer, an
algorithm used for updating the control input, based on existing
literature [16]. Second, similar to [8], incremental learning
was adopted during the process of control input learning.
Third, for the Python implementation of TDU-MPC, we used
libraries such as PyTorch [17] and NumPy [18]. Last, the
time step for discretization was set to ∆t = 1ms, while the
prediction horizon within TDU-MPC was set as T = 10 step.
Furthermore, for the soft-thresholding function (11), we chose
parameter σ = 0.38.

As aforementioned, we first generated a network with
N = 15 neurons and performed a control experiment via
numerical simulations. To construct a network with mod-
ules, we used the stochastic block model [19] with Mod-
ules Vcontrol = {0, 1, 2, 3, 4}, V1 = {5, 6, 7, 8, 9}, and V2 =
{10, 11, 12, 13, 14}. Out of the 15 neurons, neurons 6, 9, and
13 were inhibitory, while the others were excitatory. The edge
probability within the module was set to 1/2, while the one
between modules was set to 1/8. Utilizing these parameters,

4

0

1

2

3

4

5

6
7

8

9

10

11

12

13
14

(a) Neuronal network V . Blue nodes:
Vcontrol, green nodes: V1, red nodes: V2.

0 10 20
t (ms)

50

0

50

100

150

I i (
m

V)

0
1
2
3
4

(b) Control inputs to neurons in Vcontrol

0 10 20
t (ms)

65

30

v i
 (m

V)

0
1
2
3
4

(c) Membrane potentials of neurons
in Vcontrol.

0 10 20
t (ms)

65

30

v i
 (m

V)
5
6
7
8
9

(d) Membrane potentials of neurons in V1

0 10 20
t (ms)

65

30

v i
 (m

V)

10
11
12
13
14

(e) Membrane potentials of neurons in V2

Fig. 2: Control of firing pattern in a network with N = 15 neurons

0

1
23

4
5

6 7 8

9
10

11
12

131415
16

17

18

19

2021

22
23

24
25

26

27

28
29

(a) Neuronal network V . Blue nodes:
Vcontrol, green nodes: V1, red nodes: V2.

0 10 20
t (ms)

100

50

0

50

100

150

200

I i (
m

V)

0
1
2
3
4
5
6
7
8
9

(b) Control inputs to neurons in Vcontrol

0 10 20
t (ms)

65

30

v i
 (m

V)

0
1
2
3
4
5
6
7
8
9

(c) Membrane potentials of neurons
in Vcontrol.

0 10 20
t (ms)

65

30

v i
 (m

V)

10
11
12
13
14
15
16
17
18
19

(d) Membrane potentials of neurons
in V1.

0 10 20
t (ms)

65

30

v i
 (m

V)

20
21
22
23
24
25
26
27
28
29

(e) Membrane potentials of neurons in V2.

Fig. 3: Control of firing pattern in a network with N = 30 neurons

5

TABLE I: Numbers of fires in each of the modules

(a) N = 15

Neuron No.
time (ms) 0 ≤ time < 10 10 ≤ time ≤ 20

5-9 8 4
10-14 2 16

(b) N = 30

Neuron No.
time (ms) 0 ≤ time < 10 10 ≤ time ≤ 20

10-19 12 2
20-29 6 23

we obtained the network shown in Fig. 2a. Within the resulting
network, although the number of connections between the
modules are fewer than the ones within the modules, the inter-
module connections are still bidirectional, which makes the
control problem nontrivial.

For initializing the membrane potentials vi and membrane
recovery variables ui, we first set the potentials to c and
the recovery variables to 0. Thereafter, a random current was
applied to all neurons for 10ms. After initialization, we per-
formed neuronal network control using the method described
in Section III. The switching and simulation times were set
to Ts = 10ms and Te = 20ms, respectively. Our objective
was to design control inputs I0,control, . . . , I4,control such that
the firing pattern of V1 was more active than that of V2 in
the time interval I1 = [0ms, 10ms], and that of V2 was more
active than V1 in the time interval I2 = [10ms, 20ms].

The results of the control experiment are presented in Fig. 2.
In Fig. 2b, the control input signals to neurons in Vcontrol
obtained from our method have been illustrated. From the
membrane potentials of neurons in V1 and V2 shown in
Figs. 2d and 2e, respectively, we confirmed that module V1

fired frequently from the initial time to t = 10ms as com-
pared with V2. Additionally, module V2 fired frequently from
t = 10ms to t = 20ms when compared with V1, as desired.
We observed that the average computation time for a control
input for the duration of 1ms was 106 s. Thus, improvements
to the current implementation for a shorter computational time
are of practical importance.

Further, the simulation results with N = 30 neurons were
observed. The modules were set as Vcontrol = {0, 1, 2, . . . , 9},
V1 = {10, 11, 12, . . . , 19}, and V2 = {20, 21, 22, . . . , 29}.
Out of the 30 neurons, neurons 3, 4, 6, 20, 26, and 27
were inhibitory, while the others were excitatory. The edge
probability within the network was set to 1/2, while the one
between modules was set to 1/25. With these parameters, we
constructed a neuronal network with 30 neurons, as shown in
Fig. 3a. Similar to our numerical experiment for the network
with N = 15 nodes, we designed the control input Ii,control
(i ∈ Vcontrol) for the new network. The obtained time series
of the control input has been shown in Fig. 3b. Further, the
membrane potentials of V1 and V2 under the control input are
shown in Figs. 3e and 3e, respectively. Modules V1 and V2

were confirmed to fire in the desired manner, and the average
computational time for one step of the control input was 353 s.

The results presented in Table I provide a summary of our
numerical experiment for the two networks. Within the table,
the number of fires in each of the modules for time intervals I1
and I2. The number of fires within the targeted module (the

one required to be more active than the other) was confirmed to
be no less than double the number of the one within the other
module, thereby illustrating the effectiveness of the proposed
method.

In both simulation results, initial time interval I1 corre-
sponds to the period where module V1 should display higher
firing activity. During this interval, the applied control input
primarily activated the excitatory neurons in Vcontrol having
edges outgoing to V1. For instance, when considering N = 15
as an example, we can observe from Fig. 2b that neurons 0
and 3 were predominantly stimulated at the beginning of
the time interval. As the switching time Ts approaches, the
control input gradually diminished, effectively preventing fir-
ing within V1 in the subsequent time interval I2 when V2

was expected to exhibit high firing activity. Similarly, in the
second time interval I2, we observed a comparable pattern
to the aforementioned case. The excitatory neurons in Vcontrol
having edges outgoing to V2 were primarily stimulated. For
instance, considering the case of N = 15 again, neurons 1
and 4 demonstrated increased activation during this time
interval. These observed stimulation patterns align well with
our intuitive understanding and expectations.

V. CONCLUSIONS

This study addressed the challenges associated with neu-
ronal network control. We proposed a novel method for
designing control inputs to manipulate the firing patterns of
modules within a network. Based on TDU-MPC, our approach
exploits deep unfolding techniques commonly used in wireless
signal processing. The effectiveness of our proposed method
was demonstrated via extensive numerical simulations.

Future research directions include evaluating the effective-
ness of the proposed method via numerical experiments on
other networks consisting of neurons other than the fast-
spiking type. Additionally, robustness evaluation of the pro-
posed method with respect to the modeling errors of the
neurons can be of practical relevance, as the current research
is conducted on the assumption that the dynamics of neurons
are available and, therefore, errors in the model are assumed
to be not significant. Another important research direction is
the investigation of a method to design control inputs without
the need to observe all membrane potentials.

REFERENCES

[1] R.M. Hutchison, T. Womelsdorf, E.A. Allen, P.A. Bandettini, V.D. Cal-
houn, M. Corbetta, S.D. Penna, et.al, “Dynamic functional connectivity:
promise, issues, and interpretations”, Neuroimage, vol. 80, pp. 360–378,
2013.

6

[2] E. Tang and D.S. Bassett, “Colloquium: Control of dynamics in brain
networks”, Reviews of Modern Physics, vol. 90, 2018.

[3] D.J. Lee, C.S. Lozano, R.F. Dallapiazza and A.M. Lozano, “Current and
future directions of deep brain stimulation for neurological and psychiatric
disorders: JNSPG 75th Anniversary Invited Review Article”, Journal of
Neurosurgery, vol. 131, pp. 333–342, 2019.

[4] J.D. Wander and R.P.N. Rao, “Brain–computer interfaces: a powerful tool
for scientific inquiry”, Current Opinion in Neurobiology, vol. 25, pp. 70–
75, 2014.

[5] A. Iolov, S. Ditlevsen and A. Longtin, “Stochastic optimal control of
single neuron spike trains,” Journal of Neuronal Engineering, vol. 11,
2014.

[6] E.M. Izhikevich, “Simple model of spiking neurons” IEEE Transactions
on Neuronal Networks, vol. 14, pp. 1569–1572, 2003.

[7] A.E. Motter, “Networkcontrology”, Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 25, 2015.

[8] M. Kishida and M. Ogura, “Temporal deep unfolding for constrained non-
linear stochastic optimal controls,” IET Control Theory & Applications,
vol. 16, pp. 139–150, 2022.

[9] J.R. Hershey, J.L. Roux, and F. Weninger, “Deep unfolding: Model-based
inspiration of novel deep architectures,” arXiv:1409.2574, 2014.

[10] D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for sparse signal
recovery,” IEEE Transactions on Signal Processing, vol. 67, pp. 3113–
3125, 2019.

[11] V. Monga, Y. Li and Y.C. Eldar, “Algorithm unrolling: Interpretable

efficient deep learning for signal and image processing,” IEEE Signal
Processing Magazine, vol. 38, pp. 18–44, 2021.

[12] A. Jagannath, J. Jagannath and T. Melodia, “Redefining wireless com-
munication for 6G: Signal processing meets deep learning with deep
unfolding,” IEEE Transactions on Artificial Intelligence, vol. 2, pp. 528–
536, 2021.

[13] M. Ogura, K. Kobayashi, and K. Sugimoto, “Static output feedback
synthesis of time-delay linear systems via deep unfolding,” In 17th IFAC
Workshop on Time Delay Systems, pp. 214–215, 2022.

[14] J. Carrasco, A. Baños and A van der Schaft, “A passivity-based approach
to reset control systems stability”, Systems & Control Letters, vol. 59,
pp. 18–24, 2010.

[15] C.E. Garcia, D.M. Prett and M. Morari, “Model predictive control:
Theory and practice—A survey”, Automatica, vol. 25, pp. 335–348, 1989.

[16] K. Bae, H. Ryu, and H. Shin, “Does adam optimizer keep close to the
optimal point?” arXiv preprint arXiv:1911.00289, 2019.

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury et al., “Pytorch:
An imperative style, high-performance deep learning library” Advances
in Neuronal Information Processing Systems, vol. 32, 2019.

[18] S. Van Der Walt, S.C. Colbert and G. Varoquaux, “The NumPy array:
a structure for efficient numerical computation” Computing in Science &
Engineering, vol. 13, pp. 22–30, 2011.

[19] C. Lee and D.J. Wilkinson, “A review of stochastic block models and
extensions for graph clustering”, Applied Network Science, vol. 4, pp. 1–
50, 2019.

7

http://arxiv.org/abs/1911.00289

	Introduction
	Problem Statement
	Neuronal Network
	Control Objective

	Proposed Method
	TDU-MPC
	Discrete-time Model
	Cost Function

	Results and Discussions
	Conclusions
	References

