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Abstract—High Dynamic Range (HDR) content creation
has become an important topic for modern media and en-
tertainment sectors, gaming and Augmented/Virtual Reality
industries. Many methods have been proposed to recreate
the HDR counterparts of input Low Dynamic Range (LDR)
images/videos given a single exposure or multi-exposure LDRs.
The state-of-the-art methods focus primarily on the preser-
vation of the reconstruction’s structural similarity and the
pixel-wise accuracy. However, these conventional approaches
do not emphasize preserving the artistic intent of the images
in terms of human visual perception, which is an essential
element in media, entertainment and gaming. In this paper, we
attempt to study and ll this gap. We propose an architecture
called ArtHDR-Net based on a Convolutional Neural Network
that uses multi-exposed LDR features as input. Experimental
results show that ArtHDR-Net can achieve state-of-the-art
performance in terms of the HDR-VDP-2 score (i.e., mean
opinion score index) while reaching competitive performance
in terms of PSNR and SSIM.

I. INTRODUCTION

The High Dynamic Range (HDR) imaging is introduced

to handle the scenario where the visual content has a high

ratio between the brightest and the darkest pixels [1]. HDR

allows the inclusion of multiple dynamic exposures in a

single visual content. Hence, if an image is in HDR, it has

a wide gamut of brightness levels, i.e., there is a signicant

variation in light levels within a scene with high details.

In other words, the well-lid and dark regions in a scene are

captured with equal clarity using HDR technology. The main

goal of HDR imaging is to capture the real world lighting,

greater luminance distribution, brightness, detailed shadows,

and radiance in a manner which is as realistic as possible

and can mimic the Human Visual System and its level of

perception. HDR technology has many applications, e.g., in

the elds of media and entertainment [1], Augmented/Virtual

Reality (AR/VR) [2], [3], gaming and visualization [2], [4],

and computational photography [5]. With the increase in

HDR supported hardware devices such as HDR displays,

AR/VR sets, mobile screens, and cameras, researchers have

tried to nd ways and methods to successfully retrieve

the HDR counterparts from the conventional Low Dynamic

Range (LDR) content, known as inverse tone mapping.

HDR content can be created using special hardware (e.g.,

expensive cameras and visual sensors) and/or software (e.g.,

virtual environments and renderers). However, converting

the existing LDR content to HDR requires unique methods

and algorithms [6], [7] to expand the color gamut and

dynamic range, which is usually achieved through inverse

tone mapping and image enhancement. In this paper, we

attempt to take an LDR image as input and create an HDR

image with perceptually realistic and visually accurate infor-

mation in terms of the Human Visual System represented

by the HDR-VDP-2 scores (see section IV-B). This work

contrasts most state-of-the-art methods that attempt to solve

the problem of structural similarity of the generated HDR

with respect to the LDR input. The main contributions of

this work are threefold:

• We propose a CNN-based network (Section III) for

HDR image content creation drawing inspiration from

the method in [8]. We leverage the features from three

different exposure values (EV -2, 0, and +2) and create

a combined feature map for a better representation of

under/over-exposed areas in the LDRs.

• We perform a thorough experimental validation with

quantitative and qualitative comparisons (Sections IV

and V) to establish the efcacy of our contributions.

• We present a detailed ablation study (Section VI) on

the different losses used to train the network and the

skip connections of the CNN layers utilized for better

representation of the low-level features.

II. RELATED WORK

Researchers have employed various Machine Learning

(ML) and Deep Learning (DL) methods [7] for HDR content

creation. Below, we categorize the recent relevant literature

into two major buckets, i.e., image- and video-based. These

buckets can be further categorized based on single and

multiple exposure LDR inputs.

A. Image-based Methods

Khan et al. [8] proposed a feedback-based Convolutional

Neural Network (CNN) to create an HDR image from a

single exposure LDR input image. Their method uses a

dense feedback mechanism based on Recurrent Neural Net-

work (RNN) on top of a conventional CNN to obtain both

low-level and high-level features. This coarse-to-ne feature



Fig. 1: Output produced by our method ArtHDR-Net compared to one of the closest state-of-the-art [9] methods in terms of HDR-VDP-2 score [10], [11].
Our method reconstructs the HDR content with better naturalness in terms of color contrast and luminance levels.

representation in various iterations leads to HDR creation at

a higher quality. Phuoc-Hieu Le et al. [12] proposed a Neural

Network (NN) architecture to learn and generate multiple

exposures from a single image. The model can reconstruct

pixel radiance and details of hallucination in different ex-

posures by inverting the camera response. Yu-Lun Liu et

al. [9] proposed a CNN architecture that learns the reverse

process of camera pipeline, i.e., inverse tone mapping. The

method employs three CNNs to reverse the three basic steps

in camera pipeline, i.e., clipping of dynamic range, camera

response function (CRF) based non-linear mapping, and

quantization. Then the three sub-tasks are jointly ne-tuned

to reduce the accumulated errors. Yet another interesting

work [13] (although not in the DL domain) talks about

an inverse tone mapping operator, which can preserve the

artistic intent of the content creator in the generated HDR

images i.e., the images look more realistic perceptually.

Jinghui Li et al. [14] presented a novel multi-scale CNN

with an attention mechanism that tackles the problems of

color quantization and the loss of information in over/under-

exposed regions. The method re-scales channel-wise features

using a channel attention method adaptively. Another DL

based method [15] proposed a novel architecture that can

recover the saturated pixels of the LDR images with better

quality leading to visually and perceptually better HDR

images with well-preserved textures. The method employs

a feature masking mechanism that limits the contribution

of the features from the saturated regions of the images,

which in turn reduces the checkerboard and halo artifacts of

these regions. Gabriel Eilertsen et al. [16] proposed a CNN-

based method that overcomes the challenges of predicting

HDR pixels from complex LDR images with over/under

exposed areas. Another interesting work [17] considered the

low peak brightness issues and the missing of artistic intent

of the existing methods. It proposed a mid-level automatic

tone-mapping operator. Gaofeng Cau et al. [18] proposed a

spatial and channel dimensional decoupled kernel prediction

network that combines a simple module which produces

preliminary HDR results and an encoder/decoder module

to produce pixel-wise kernels. Finally, these two results are

convolved to produce high-quality HDR images. The authors

claim that the method can use the relevant information from

under- and over-exposed images while avoiding pixel-wise

degradation and information redundancy across channels. A

work by Hanbyol Jang et al. [19] porposed a novel method

of HDR generation from LDR based on histogram and color

difference between HDR-LDR (multi-exposure) pairs.

B. Video-based Methods

Chen et al. [1] proposed a new architecture for recon-

structing HDR videos from LDR counterparts based on a

divide-and-conquer policy. The nal framework has three

components: adaptive global color mapping, local enhance-

ment, and highlight generation. Yang et al. [20] proposed

an interesting framework which is capable of utilizing two

modalities of input, i.e., stacked events and the LDR frames

to create a learnt latent space. The method is guided by the

events to facilitate multi-modal learning for HDR creation.

The method decribed in [21] proposed a Generative Ad-

versarial Network (GAN) approach for reconstructing HDR

videos from multiple exposed LDR sequences. The method

starts with a denoising module to clean the LDR input and

uses optical ow to align the neighbouring multi-exposed

LDRs in the sequence.

C. Positioning Our Method

Almost all of the discussed state-of-the-art methods focus

on improving the overall structural quality of the generated

HDR images while preserving the original structure in the

LDR inputs. However, only a handful (i.e., less than ve)

of the works try to tackle the problem of generating HDR

images from the perspective of the Human Visual System

and creating perceptually pleasing image for the human

eye (see Figure 1). Most conventional methods also lack

discussion of the preservation of the artistic intent [13] of

the generated HDR content. In this work, we attempt to

address these limitations in the current literature along with

structural similarity preservation. We achieve better peak

brightness with a deep CNN-based learning model along

with a feedback block drawing inspiration from [8], [22] by

utilizing features extracted from a single LDR image.



Fig. 2: Illustration of the proposed ArtHDR-Net architecture.

III. PROPOSED METHOD

This section describes our proposed architecture for HDR

image creation using CNN and a feedback mechanism uti-

lizing coarse and ne features extracted from multi-exposed

versions of an input LDR image.

A. Architecture and Model

Our architecture, which we name ArtHDR-Net, comprises

four basic units: a) Transformation unit (TU), b) Feature unit

(FU), c) Feedback unit (FBU), and d) Reconstruction unit

(RU). Figure 2 shows the overall architecture of the method.

TU is responsible for taking an LDR image as input

and generating the over-exposed and under-exposed versions

(EV ±2). We use an off-the-shelf method [12] to accomplish

this task. Regardless of how the input image was captured,

we assume that it has a middle exposure value, EV 0.

The resulting multi-exposed LDRs (LDRI0 , LDRI+2
, and

LDRI
−2
) are used by FU.

FU has three parallel branches for the three LDRs. Each

branch has 3×3 kernels in each of the three 2D convolutional

layers (conv), followed by rectied linear unit (ReLU)

activation function. The three layers (in each branch) help

extract three levels of features (i.e., low, mid, and high). We

denote the process in FU as funcFU and the output of FU

(feature information in each branch) as Fe such that:

Fe
−2 = funcFU (LDRI

−2
) (1)

Fe0 = funcFU (LDRI0) (2)

Fe+2 = funcFU (LDRI+2
). (3)

The nal feature map Feall is dened as follows:

Feall = Fe
−2 + Fe0 + Fe+2. (4)

Initially, FBU takes the Feall as input and subsequently

considers the output of FBU from the previous iteration

as shown in Figure 2. Similar to [23], [24], we adopt

the feedback mechanism with three dilated dense blocks

(having dilation rate of 3), which enhances the network’s

receptive eld without increasing the number of parameters

and computational time. This choice is made to utilize all the

hierarchical features of the input LDRs. FBU also contains

two 1 × 1 feature compression layers at the beginning and

the end of each of the three dilated blocks. Each of the

three dilated blocks contain four 3× 3 convolutional layers

with ReLU activation. This helps to reduce the number

of parameters of the network and enhances the learning

capability of the network. Finally, FBU starts with a 1 × 1
convolutional layer for compression and ends with a 3 × 3
convolutional layer for further processing. This supports

global and local feedback mechanisms in the entire FBU

as well as in the three dilated block levels. We denote the

process of FBU by funcFBU and its output by Fb such that

a hidden state dened as:

Fbt = funcFBU (Feall, F bt−1), (5)

where t represents the iteration in the FBU.

When t = 1 and Fb is nil, we initialize the hidden state

of the FBU with Feall only. Then we also consider the low-

level features, i.e., the coarser (low and mid level) features

from the rst and second convolutional layers of the middle

branch (see Figure 2) of FU which has LDRI0 . We do this to

guide the network with a set of two residual skip connections

for better HDR feature representations in RU. This also helps

in preserving the details and artistic intent of the generated

HDR image. We denote the nal output of the residual skip

connections along with the output of FBU at every iteration

by Frs. We represent this as follows:

Frst = Fe10 + Fe20 + Fbt, (6)

where Frst represents the nal feature map (at iteration t)

after the FBU operates on the feature output. Fe10 and Fe20
represent the low-level features from LDRI0 , which we get



as output from the rst and second convolutional layers of

FU (see Figure 2).

Next, RU reconstruct the HDR image, where it takes the

Frs as input in every iteration. RU is made of three 3× 3
2D convolutional layers with ReLU activation (following the

rst two layers) and a hyperbolic tangent activation function

(TanH) following the third layer (see Figure 2). We denote

the function of RU by funcRU and the output by HDRO.

HDRt
O = funcRU (Frst), (7)

where Frst represents the nal learned feature map at the

tth iteration and HDRt
O is the nal HDR image generated

at iteration t.

B. Loss Functions

In this work, we calculate the losses between the

tone-mapped versions of the generated HDR image

(HDRO(TM)) and ground truth (GT) HDR image

(HDRGT (TM)). This is done to avoid the high-intensity

values to dominate the loss function values. We use the

µ − law [25] to compress the HDRs. We employ two loss

functions, namely, L1 (Ll1) and perceptual (Lper) losses, to

supervise our model at every iteration t. The complete loss

function is dened as

Lfinal = λ1Ll1 + λ2Lper. (8)

The Ll1 loss is the Mean Absolute Error (MAE) calculated

between each pixel of HDRGT (TM) and HDRO(TM). The

Ll1 loss is dened as:

Ll1 =
1

n

n

t=1

||HDRt
O(TM) −HDRGT (TM)||. (9)

The Lper loss is the perceptual loss between HDRGT (TM)

and HDRO(TM) generated via the function funcper in-

spired by [26]. funcper is a VGG1 based loss which tries to

make the output closer to perceptual similarity. It is created

using the ReLU activation layers of the famous 19 layer

VGG network. The Lper loss is dened as:

Lper =
1

n

n

t=1

funcper(HDRt
O(TM), HDRGT (TM)).

(10)

We do not consider L2 loss because it is too sensitive

towards outliers. We use a combination of the Ll1 and

Lper loss because using only the L1 loss produces visually

degraded HDRs. λ1 and λ2 are set to 0.1 and 0.5 empirically.

IV. EXPERIMENTS

We trained and tested our model on Ubuntu 20.04.6 LTS

work station with Intel(R) Xeon(R) CPU E5-2687W v3 @

3.10GHz (20 CPU cores), 126 GB RAM (with 2 GB Swap

space) and 1.4 TB SSD for dataset storage. We used batch

1https://paperswithcode.com/method/vgg-loss

size of 10 and Adam optimizer [27] for training the model.

The model was trained for 150 epochs. The learning rate of

the training process was set to 2 × 10−4 at rst and later

adjusted to decay. We employed an iteration count of 4 for

the feedback operation in FBU.

A. Datasets

We used three datasets for training and testing. Specif-

ically, the City Scene dataset [5] (ICCV 2017) contains

about 20K HDR-LDR pairs and ground truth HDR images.

We also used the LDR-HDR pair dataset from [19] (IEEE

Access 2020) which contains images from 450 different

scenes captured using a Samsung NX3000 camera in three

exposure levels (EV -2, 0, +2). This dataset contains images

from indoor and outdoor environments as well as scenes con-

taining landscapes, objects, and buildings. It also contains

night scenes. Finally we used another dataset, HDR-Synth

and HDR-Real from [9] (CVPR 2020) which contains real

world LDR images and HDR counterparts (9785 in total) as

well as synthetic pairs (around 500). We resized the images

to 512×512 before feeding them into the model. We did an

80-20 split on the datasets for training and testing purposes.

B. Evaluation Metrics

We use three metrics to evaluate our method quantita-

tively. For evaluating on the basis of human level percep-

tion, we use the High Dynamic Range Visual Differences

Predictor (HDR-VDP-2 or Q-score) [10], [11]. For structural

similarity and accurate reconstruction evaluation, we use the

structural similarity index measure (SSIM) and peak signal-

to-noise ratio (PSNR). The HDR-VDP-2 score and SSIM are

calculated on the actual GT and generated HDRs whereas

the PSNR is calculated on the µ− law based tone-mapped

GT and generated HDRs.

V. RESULTS

A. Quantitative Evaluation

We evaluate our method ArtHDR-Net against three similar

methods [8] (GlobalSIP 2019), [9] (CVPR 2020), and [12]

(WACV 2023). We train and test the models on the datasets

described in Section IV-A. Table I summarizes the quan-

titative results in terms of PSNR, SSIM, and HDR-VDP-2

(higher is better). The results conrm that our method is

performing well compared to the considered state-of-the-art

methods. In the case of City Scene dataset [5], ArtHDR-

Net performs the best in terms of PSNR and HDR-VDP-

2 scores and second best in terms of SSIM metric. On

the other hand, [12] performs best in in terms of SSIM

and second best in terms of PSNR scores, but the second

best performer in terms of HDR-VDP-2 is [9]. For LDR-

HDR pair dataset [19], once again ArtHDR-Net is best in

terms of PSNR and HDR-VDP-2 scores. The method in [12]

achieves top performance in terms of SSIM metric. Finally

for the HDR-Synth and HDR-Real [9] dataset, ArtHDR-

Net comes out best in terms of SSIM and HDR-VDP-2



TABLE I: Quantitative comparison - PSNR, SSIM and HDR-VDP-2 attained by the proposed method and the state-of-the-art methods. The best results
are in bold, while the second best results are underlined.

Method
City Scene dataset [5] LDR-HDR pair dataset [19] HDR-Synth and HDR-Real [9]

PSNR ↑ SSIM ↑ HDR-VDP-2 ↑ PSNR ↑ SSIM ↑ HDR-VDP-2 ↑ PSNR ↑ SSIM ↑ HDR-VDP-2 ↑

Method in [8] (2019) 32.5 0.90 67 15.2 0.66 64.5 17.1 0.71 66.7
Method in [9] (2020) 33.4 0.91 68.2 27.5 0.77 65.1 26 0.85 68
Method in [12] (2023) 34 0.94 68 29 0.79 66 34 0.87 67.5
Ours (ArtHDR-Net) 35 0.93 69 30 0.78 66.5 33.4 0.88 68.3

Fig. 3: Qualitative evaluation - Output HDR content produced by our method ArtHDR-Net and other state-of-the-art methods for the three datasets. The
red arrows in our output highlight the naturalness in color and brightness, hence the artistic intent being preserved with respect to the input LDR image
and the GT HDR image.

metrics whereas the method in [12] is best in terms of

PSNR score. It is noteworthy that our method outperforms

all the considered state-of-the-art methods and on all of the

considered datasets in terms of HDR-VDP-2 score, which

suggests that our method capable of reconstructing HDRs

that capture the visual quality of real scenes and better

represent all luminance conditions [10], [11]. The methods

in [9], [12] are second best in this case. The structural

similarity with respect to the input LDRs is better preserved

by the method in [12].

B. Qualitative Comparison

Figure 3 depicts the qualitative comparison of our method

with the considered conventional methods on the three

datasets. The red arrows introduced to the images generated

by our method show some sample regions which display

naturalness in color and better luminance in comparison to

the other methods. The methods in [8], [12] completely fail

in this respect while the method in [9] gives similar results

to our method, but it is more prone towards dark images.

Hence, our method better represents the artistic intent of the

images. Similarly, we also evaluate our method on arbitrary

images retrieved from the Internet (see Figure 4). In the rst

row (under-exposed), we see that our method retains good

color contrast and luminance compared to the other methods

(yellow arrows). The methods in [8], [9] seem closer to

ours but still lack in terms of luminance in some regions.

In the second row (over-exposed), most methods [8], [12]

fail to capture the details and artistic intent of the blue sky

where the banding problem is also apparent. In contrast,

whereas our method gives more natural and realistic output

(red arrows). Although the method in [9] is able to give

details of the blue sky to some extent, it still lacks in terms of

luminance and color naturalness. The displayed GT as well

as the generated HDRs from the various methods (including

ours) have been tone-mapped using the algorithm in [28].



Fig. 4: Qualitative comparison. Comparison of our method with the considered state-of-the-art methods with respect to the input LDR and GT HDR (for
images not in the mentioned datasets in section IV-A).

TABLE II: Loss contribution - The PSNR, SSIM, and HDR-VDP-2
achieved by using the different loss combinations. The best result is in
bold, while the second best is underlined.

Loss PSNR↑ SSIM↑ HDR-VDP-2 ↑

Ll1 36 0.931 63.5
Lper 35.4 0.928 66.3
Ll1 + Lper 36.5 0.942 67.1

VI. ABLATION ANALYSIS

We experiment with the components and settings of our

model to present the contributions made by of each of them

in the achieved output. We create a subset of 5000 arbi-

trary images (collected from the three datasets described in

Section IV-A) to perform the ablation experiments. Table II

shows how each of the losses (see Section III-B) contributes

to the nal accuracy and quality of the HDR images re-

constructed using our model. We see that Ll1 contributes

more towards better PSNR and SSIM values, whereas Lper

have more impact towards the HDR-VDP-2 (Q-score). This

suggests that the accuracy of the image reconstruction is

mostly inuenced by Ll1, whereas the perceptual quality is

maintained by Lper. Finally, the combination of both losses

leads to the best scores for all three metrics. Here, we also

weight the losses with λ1 and λ2 (see Section III-B). Table

III illustrates the contribution of each of the skip connections

we use in our CNN architecture (see Figure 2). We observe

that if we consider the skip connection Fe10 only, the PSNR

reaches better scores, whereas if we consider only Fe20,

SSIM and Q-score are better. However, if we consider both

together, we get the best results for all three metrics. This

implies that more low-level features improve the PSNR,

while mid-level features boost up the SSIM as well as Q-

score.

VII. CONCLUSIONS

In this paper, we attempt to improve the state-of-the-art

HDR image generator with respect to the artistic quality

TABLE III: Skip connections contribution - The PSNR, SSIM, and HDR-
VDP-2 achieved by using different combinations of features selected using
skip connections to guide the network during the nal stage in RU (see
Figure 2). The best result is in bold, while the second best is underlined.

Fe
1

0
Fe

2

0
PSNR↑ SSIM↑ HDR-VDP-2 ↑

✗ ✗ 35.1 0.930 63.1
✗ ✓ 35.7 0.938 64.2
✓ ✗ 35.8 0.934 64
✓ ✓ 36.5 0.942 67.1

of the generated HDRs from input LDRs. The quantitative

results show the dominance of our method in terms of

the HDR-VDP-2 which signies that our method produces

output that is visually more pleasing and appears more real-

istic than the other considered state-of-the-art methods. The

qualitative results also support this argument. In addition, the

PSNR and SSIM attained by our method are also comparable

to the other state-of-the-art methods.

As future work, we intend to study the impact of multiple

EV images (e.g., EV ±1,±2,±3 and ±4) on the feature map

as well as the behaviour of the model on different EV inputs

of the same image. Currently, we do not consider images

with foreground motion or dynamic scenes [29]. We aim to

upscale our method to videos [1], [20], [21] and dynamic

scenes in the future [30]–[32]. Future work will also include

the introduction of multiple tasks, such as denoising [33],

deblurring, super-resolution [22], [26], and demosaicing into

our framework. Finally, we plan to experiment with different

loss functions and metrics [14], [15], [34], which will be

more efcient in supervising the network in terms of visual

quality and preservation of artistic intent.
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