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Abstract—The massive growth of Smart City and Internet of
Things applications enables safety and security. The data those
are produced from surveillance cameras in aerial devices such as
unmanned aerial networks (UAVs) are needed to be transferred
to ground stations for secure data analysis. When the scale of
network is relatively large compare to the wireless communi-
cation coverage of device, it is not always available to transmit
the data to the ground stations, thus distributed and autonomous
algorithms are essentially desired. Based on the needs, we propose
a novel algorithm that is for collecting surveillance data under the
consideration of mobility and flexibility of UAV networks. Due to
the battery limitation in UAVs, we selectively collect data from
the UAVs by setting rules under the consideration of distance and
similarity. As a sequence, the UAV devices have to compete for a
chance to get data processing. For this purpose, this paper designs
a Myerson auction-based deep learning algorithm to leverage
the UAV’s revenue compare to traditional second-price auction
while preserving truthfulness. Based on simulation results, we
verify that our proposed algorithm achieves desired performance
improvements.

I. INTRODUCTION

Urban areas composed with the high density of popula-
tion and traffic suffer from safety issues and transport effi-
ciency [1], [2]. As a prevention of threats, various sensing and
monitoring Internet of things (IoT) devices have been deployed
throughout the city-wide areas [3]. Thus, it is obvious that IoT
devices make the city smarter and secure. Closed circuit tele-
vision (CCTV) is one of the main supervision tools in smart
city surveillance applications and deployed in Point-of-Interest
(POI), that is, geometrically and socially important spots or
crime prone areas. Furthermore, the CCTV-recorded data is
real-time video streaming, thus the corresponding streaming
and scheduling technologies are also actively discussed [4]–
[9]. The real time monitoring video data from CCTV enable
facility infrastructure management, spatial information acqui-
sition, and adequate response to rising problems in smart city
applications.

Most of monitoring/sensing data are a time-sensitive dead-
line, and it is mostly valid for a specific period of time. In this
paper, we propose a strategic data collection from sparsely
located CCTV devices. We assume the situation when the
intelligent IoT CCTV cannot transmit or relay sensing data
to a base station via multi-hop relays. Instead, we consider
the case where we deploy unmanned aerial vehicles (UAVs)
to selectively collect data and planning the flying route [10],
[11]. UAV provides more extensive and diverse application
with its increase of utilization [12]–[14]. Due to the natural

trait of UAVs, the UAVs can swiftly move and optimize their
path in order to quickly complete their mission [15]. UAVs
can also collect raw data and deliver it to the target point
operating. Furthermore, the communication between a ground
device to a UAV in the air has an advantage in radio signal
degradation, unlike how the signals degrade quickly for the
wireless communication between two devices on the ground
due to various shadowing and scattering [16].

However, due to the battery limitations of UAVs, it is
occasionally unrealistic to collect all data in POIs. Instead,
we take an economic approach in order to selectively collect
data under the consideration of distance and data similarity.
In this paper, we design a novel algorithm that is for the
data collection with Myerson auction approach for distributed
and autonomous data collection using UAVs. Furthermore,
we utilizes deep learning-based framework for solving the
Myerson auction-based formulation for optimizing seller’s rev-
enue. There are several application researches to solve resource
allocation problems with the variant Myerson auctions [17]–
[19]. The contribution of this paper is two folds. First, we
collect the data from CCTV efficiently in terms of distance
and data redundancy. In addition, we maximize the seller’s
revenue with deep learning auction approach.

The rest of the paper is organized as follows. Sec. II and
Sec. III propose the system model and our auction model,
respectively. Sec. IV evaluates the performances and Sec. V
concludes the paper.

II. DATA COLLECTION SYSTEM MODEL

A. Overall Architecture

This section introduces the overall architecture of our data
collection scenario and auction process. The proposed system
consists of a UAV and sparsely located CCTV devices installed
in the POIs throughout the city as shown in Figure 1. Due to
the relatively long distance between the devices, sometimes it
is unrealistic for them to transmit or relay sensing data to a
base station. We assume that the UAV can only assigned to a
single device at a time. As a result, the devices compete for
the drone’s data processing ability to transmit their collected
data.

The UAV acts as a seller and the devices act as a buyer.
The devices in need strategically submit their bid based on
their valuation. Then the UAV collects all bids which are
in transform form. The drone with the highest allocation
probability becomes a winner and pays final the determined
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Fig. 1: Data collection scenario by UAV.

payment and is detailed in Sec. III. Through the sequence of
auctions, the trajectory of UAV is determined.

B. Private Valuation

Note that each device ui have their own private valuation vi
as equation 3. We assume that every bidder devices know the
last collected data and location of each drone. As the distance
between the device and the drone gets close, the device would
have a higher winning probability which means it is willing
to attend the auction.

Devices are located in POI, while the location of the drone
varies. The distance di between the drone and the device can
be derived as

di =
√

(xu(t)− xi)2 + (yu(t)− yi)2, (1)

where xu(t) and yu(t) denote the location of UAV at time t,
and xi and ui denote the location of device i. In addition, if the
current bidder’s data is similar to the data collected from just
before round, it means the data may be redundant. The device
with high similarity, thy would be less active in the auction.
For all images in the pile, we one by one compare two m
× n sized images for similarity si, using mean squared error
(MSE) for all pixels. K = {1, 2, .., |K|} denotes the image
pile collected just before round, and I = {1, 2, .., |I|} denotes
the current device’s image pile, and the MSE (denoted as MSE
below) can be derived as follows,

si = MSE =
1

mn

m−1∑
i=0

n−1∑
i=0

[I(i, j)−K(i, j)]2. (2)

In general, when the distance di and data similarity si
are large, the buyer would be less incentive. Therefore, the
valuation vi can be expressed by

vi = si · di. (3)

III. ALGORITHM DESIGN CONCEPTS

Myerson presents provable analytical results for single item
auctions optimizing the auctioneer revenue in truthful settings
where each buyer has its own private valuation of the resource

Algorithm 1 Deep Learning-Based Auction Algorithm

Input: Candidate bid sets b = (b1, b2, ..., bN ).
Output: Allocation probability set gi = (g1, g2, ..., gN ),
payment set pi = (p1, p2, ..., pN ).
repeat

Compute φi(bi) = max∀k∈K min∀j∈J

(
wikjbi + βikj

)
;

Compute gi(b̄) = ekb̄i∑N+1
j=1 ekb̄j

;

Compute p0i (b̄) = ReLU(max∀j 6=i b̄j) ;
Compute φ−1i (y) = min∀k∈K max∀j∈J(wikj)

−1
(
y − βikj

)
;

Compute L(w, β) = −
∑N
i=1 g

(w,β)
i (vs)p

(w,β)
i (vs) ;

until The loss function L(w, β) converges to the minimum.

[20]. For a single-item auction with N bidders, Myerson’s
mechanism firstly introduces a function of bidder’s valuation
which is known as the virtual valuation [21] as in (3),

φi(vi) = vi −
1− Fi(vi)
fi(vi)

. (4)

Each bidder i has its own individual private valuation vi
which is drawn from the cumulative density function Fi(vi)
where the probability density function of vi is defined as
fi(vi). With the concept of virtual valuation, the winner and
the final payment are determined. The winner would be the
one with the highest virtual valuation. The final payment qi
can be calculated through the second-highest virtual valuation
of the user using (5). This means that a winning bidder pays
a price equal to the virtual valuation-inverse of the second-
highest virtual valuation,

qi = φ−1i (φj(vj)). (5)

We now show how the Myerson variant deep learning-
based auction maximizes the expected revenue of UAV while
guaranteeing truthfulness and revenue-optimal. Detailed neural
architectures for deep learning to solve our proposed auction-
based problems are organized in Algorithm 1. The monotonic
network takes the role of virtual valuation in Myerson auc-
tion [18]. The allocation network maps the UAV and the device
with the highest non-zero transform bid. The payment network
determines the final payment to the winner delivery UAV. The
neural architecture parameters wikj and βikj are trained with
the valuation profiles as the training set while minimizing the
loss function.

IV. PERFORMANCE EVALUATION

In this section, we have a deep learning-based optimal
auction (DLA) algorithm for data collection. In addition, the
proposed deep learning based optimal auction compared with
SPA as a baseline. We construct a neural network with PyTorch
library. To evaluate our system, we performe the deep learning
auction where the numbers of participating devices are five
with distribution of valuation fV (v) ∼ U [0.5, 1]. We set the
five groups and three linear functions for the neural network.



Fig. 2: Revenue gap from 300 experiment cases sorted in an
scending order.

Overall 500 iterations were done for every round. Fig. 2 shows
the 300 individual deep learning auction results. The revenue
gap between SPA and DLA is obtained for each iteration, and
we sort it in an ascending order. That is, the corresponding
graph shows the range of gaps that can occur over iterations.
Overall, with DLA, we can confirm the revenue is improved
compare to SPA.

V. CONCLUDING REMARKS

In this paper, we propose a distributed and autonomous
aerial data collection in smart city surveillance applications.
We collect the data from CCTV device selectively, under the
consideration of distance and data redundancy. With the deep-
learning auction, our scenario achieves the initial objective that
is the maximization of revenue of the seller UAV as well as
the preserving the truthful conditions in distributed resource
allocation. The evaluation results confirm that the auction-
based resource allocation formulation between the CCTV
devices and UAV gives distinct revenue benefits compared to
the traditional SPA.
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