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Abstract—Synthetic Aperture Radar (SAR) imagery receives
great attention in recent years due to the development of radar
systems based on the use of active array antennas, with trans-
mit/receive modules at each antenna element, enabling ultra-high
resolution and uninterrupted surveillance over areas of interest.
However, severe image distortion is a critical problem, and this is
often a result of Radio Frequency Interference (RFI) and noise.
Issues that arise from distortion include missing detection and
inaccurate height maps.

Furthermore, SAR images are particularly relevant in com-
puter vision tasks such as classification and automatic target
recognition (ATR). For such applications, access to comprehen-
sive databases of SAR images as well as SAR images contam-
inated with RFI and noise is critical to enable the effective
training and optimisation of classification algorithms and to
provide a common baseline for benchmarking purposes. Given
these challenges, the purpose of this paper is to show that Neural
Style Transfer can be used to induce RFI and noise into SAR
images (creating valuable datasets) and we can further classify
the type of contamination using image classification techniques.
The experimental results have verified the efficiency of our
approach.

Index Terms—Synthetic Aperture Radar, Radio Frequency
Interference, Transfer Learning, Neural Style Transfer

I. INTRODUCTION

Synthetic Aperture Radar (SAR) has a very important role
in remote sensing and monitoring applications due to its’
capability of detecting, tracking, and imaging targets with high
accuracy at a long range. Therefore, it is widely used for
military and civilian purposes, such as wide-area surveillance,
air defence and weapon control, remote sensing of the envi-
ronment, and industrial automation.

A current disadvantage, in comparison to optical imagery,
is that synthetic aperture radar data is much less common
and more challenging to generate or access. As a result, the
amount of SAR imagery training data containing RFI and
noise available at the moment is limited, and gathering useful
datasets for research and learning purposes is a relevant topic
for different sectors such as industry or academia.

Neural style transfer has been mainly used in image styliza-
tion [1] and texture synthesis [2]. More recently, some work
has been done in creating synthetic micro-doppler data for

human activity recognition showing that neural style transfer
has the ability to extract environmental factors (such as noise)
more than any other synthetic dataset [3].

In this paper, we investigate the possibility of using neural
style transfer ( [4]) to extract SAR interference features and
generate very realistic synthetic data. This proposed method
adapted for our application extracts the effects directly from
any interference data and transfers the specific features to
the clean SAR data. This generates easily large quantities of
realistic RFI datasets with high quality. These datasets can be
used to augment measurement data in real-life scenarios.

Furthermore, we also propose to measure the classification
accuracy of existing pre-trained CNNs in the context of in-
terference classification using our dataset. Contrary to our ex-
pectations, even for visually-similar interference-contaminated
SAR images, the classification accuracy is very high. However,
we consider that when the data is more diverse, with more
images available, the accuracy levels might drop slightly.

II. STYLE TRANSFER AND INTERFERENCE
CLASSIFICATION

A. Transfer Learning for Image Classification

Transfer learning is a deep learning method. Its’ goal is
to improve learning and classification by using a pre-trained
Convolutional Neural Networks (CNNs), which has been used
initially for a different classification task and so pre-trained
with a different set of data. As presented in [5], transfer
learning can be roughly divided into the following categories:
transductive transfer learning, inductive transfer learning, and
unsupervised transfer learning.

In our approach of classifying different types of SAR
interference, we used deep networks previously trained with
a large source dataset of optical images, fine-tuned the values
of their internal parameters using a part of the available
experimental radar data (the so-called ’target dataset’), and
finally used the remaining radar data for validation.

We adopt inductive transfer learning in this paper. We
provide a clearly labeled dataset of SAR interference-
contaminated maps. As we will see in the results, the features



from the different CNNs proved to be very effective for this
application.

B. Neural Style Transfer for realistic synthetic database gen-
eration

Neural Style Transfer is a machine learning technique
widely used in image processing. The working process of this
technique defines 2 images: one style image and one content
image. The 2 images are blended together in such a manner
that the final output image looks like the content image but
with a style painted in it. Further work is being performed until
the output image takes the desired content statistics and the
desired style statistics of the original images. The neural style
transfer method used to create the dataset has been adapted
to our task from the technique presented in [4]. Normally this
technique takes 3 inputs: a style image, a content image and
an input image, but for the purpose of our application, we used
the same content and input image to obtain the desired output
RFI SAR contaminated image.

This technique is based on a feature space originally de-
signed to capture texture information [6]. Being placed at the
top of the filter responses of neural networks, it uses these
responses over the spatial extent of the feature maps, and the
final product is a stationary, multi-scale representation of the
input image, which captures its texture information but not the
global arrangement. [4]

III. METHODOLOGY

A. Neural Transfer Learning Overview

Figure: 1 outlines the process of creating the SAR data
set using the Neural Style Transfer method. The same overall
process has been used for both the X-Band ICEYE SAR data
and for the L-Band DLR SAR data

Fig. 1. Neural Style Transfer Process Diagram

Our original data is an SAR map of Range vs Azimuth.
Because of the limited amount of data that this project had
available, in order to produce more data, a code to automati-
cally crop smaller maps out of a large map has been developed
in order to save a good amount of images that could be used
to create RFI data. This dataset of cropped SAR image will
represent the Clean SAR Data in the Fig: 1.

The Interference data has been composed of 4 pure interfer-
ence images taken from various research papers. The different
types of interference used are: Narrow-Band Interference
(NBI) [7], Chirp Modulated Wide-Band Interfernce (CMWBI)

[7], Sinusoidal Modulated Wide-Band Interfernce (SMWBI)
[7] and Time-Varying Wide-Band Interfernce (TVWBI) [8].
The ability of the Neural Style Transfer to use images from
papers and create interference images provides the flexibility
to be generate any kind of RFI SAR data using any type of
interference and SAR data. This is particularly relevant when
the amount of SAR RFI training data is limited, which is often
the case.

After having both the style image (Interference Data) and
the content image (Clean SAR Data), they must be resized
to match the same size and small enough to be fed into the
CNN. For our application, both the style image and the content
image have been resized to 120x120 pixels

After defining the Content Loss function (which measures
the dissimilarity between the content image and the output
image) and the Style Loss function (which measures the
dissimilarity between the style image and the output image)
we will import the 19-layer VGG network, which has 16
convolutional and 5 pooling layers. (The reason for choosing
this particular CNN is because it proved to have very good
results in [4], and after some work on our application, it proved
to display the desired output). Furthermore, we will normalize
our images with mean=[0.485, 0.456, 0.406] and std=[0.229,
0.224, 0.225] before feeding them into the CNN, where std
stands for standard deviation. The reason for this normalisation
is that this is the kind of image VGG-19 has been previously
trained with.

The final dataset of SAR RFI images has:
• 121 NBI L-band SAR images and 121 NBI X-band SAR

images
• 121 SMWBI L-band SAR images and 121 SMWBI X-

band SAR images
• 121 CMWBI L-band SAR images and 121 CMWBI X-

band SAR images
• 121 TVWBI L-band SAR images and 121 TVWBI X-

band SAR images
A good visualisation of the content image + style image and
the resulting image can be seen in Figure: 2. The type of
interference that was added is Time-Varying Radio Frequency
Interference, and the original RFI image is from [8]. The out-
put image looks very similar to real-life interference scenarios
and can be used as a part of a dataset for different classification
purposes.

Fig. 2. Neural Style Transfer Process Example on DLR data

Figure: 3 provides a better visualisation to distinguish
between the different types of RFI added. The first one is



the CMWBI RFI, the second one is the NBI RFI which has
a lower intensity, the third is the SMWBI RFI which has
some similarities with the CMWBI due to the nature of the
interference and the last one is the TVWBI RFI which is a
more complex case.

Fig. 3. RFI Types generated on the DLR F-SAR radar: 1. CMWBI 2. NBI
3. SMWBI and 4. TVWBI

B. Transfer Learning Overview

Several deep convolutional neural network architectures
are used to classify SAR maps contaminated with RFI. The
networks are all pre-trained with a large number of optical
images and then fine-tuned using the training radar data.
Although radar images are different from conventional optical
images, this transfer learning approach enables to leverage of
the very large training set of optical images (e.g. ImageNet
[9]), as opposed to the amount of available experimental radar
data which is inherently limited. The approach followed in this
work included the following stages:

• We first process the data created using the Neural Style
Transfer learning.

• The data is then augmented to avoid overfitting in the
CNN, by randomly flipping the training images along
the vertical axis and randomly translating them up to 30
pixels as well as scaling them up to 10% horizontally and
vertically

• The images are fed into the CNNs for feature extrac-
tion. The trained CNNs are AlexNet [10], VGG16 [11],
GoogLeNet [12] and ResNet50 [13]. All of these net-
works are pre-trained on the ImageNet dataset [9], which
enabled the rapid progression of image classification pro-
cessing and is particularly useful in this radar application.

• Lastly, the scores obtained from the CNNs are fed into a
Softmax classifier which gives us the results available in
Section: IV and Table: III, the classification accuracy is
validated using a testing dataset.

C. AlexNet

AlexNet [10] was the first CNN that was trained on the
dataset. The process of this CNN works the following way:

the images are modified to the size of 227x227 RGB, and the
images are fed to the neural network which is composed of 8
layers, 3 of which are fully connected layers and 5 are con-
volutional (each being followed by Relu functions). There are
also present Max Pooling layers. The deeper the convolutional
layers, the more advanced will be the features that AlexNet
will use for the classification. To avoid overfitting, there are
also present two 50% Drop Out layers. Lastly, the raw scores
obtained are fed into a 1000-way Softmax classifier, which
uses the cross-entropy loss function.

D. VGG16

VGG-16 is a very well-known CNN developed at the Visual
Geometry Group (VGG) [11]. The required images for VGG-
16 are 224x224 RGB format, and the network consists of
a total of 41 layers. The number of convolutional layers is
16. All the convolutional layers are again followed by Relu
functions, and some are followed by Max Pooling layers (2x2).
To avoid the overfitting problem, at the end there are two 50%
Drop Out layers. Lastly, the raw scores are again fed into a
Softmax classifier, which gives us the percent of accuracy.

E. ResNet-50
ResNet-50 is a down-scaled version of the network VGG16

which utilises the same block structure. [13] It also requires
224x224 RGB format images, just like VGG16, but the
advantage of using ResNet50 is that it allows an increased
classification of data with very similar features, which is the
case for radar images. This is due to the fact that, while in
VGG subsequent blocks learn the features from the images
anew, from the output of the preceding block, in ResNet50
those subsequent blocks only learn the residual of the output
from the previous block.

It has overall 177 layers of which 50 are convolutional.
Many convolutional layers are followed by Relu functions and
Batch Normalization layers. There are also Max Pooling layers
(3x3). The final 2 layers include an Average Pooling layer as
well as 1000-way Softmax classifier.

F. GoogleNet
Since this CNN was designed considering mainly the com-

puting resources for embedded systems, it makes it the perfect
pre-trained network considering future mobile applications for
RFI classification. [12] The required images for GoogLeNet
are 256x256 RGB format. What makes this CNN powerful
is the fact that it uses inception modules in 22 layers while
requesting a good computing budget. These inception modules
can enable the extraction of more features from the radar
maps, increasing the accuracy, without making the network
vulnerable to overfitting issues. There are 7 inception modules,
each consisting of 3 convolutional layers, and a Max pooling
Layer. It has overall 144 layers, of which 22 are convolutional.

IV. DATA AND RESULTS

A. ICEYE data

The ICEYE’s satellites’ orbit height at the equator is 570
km, the inclination is 97.69 degrees and the number of orbits



per day is 15. The SAR module used for recording the data is
ICEYE-X2, an X-band Radar. The relevant parameters of this
module are presented in Table I. [14]

TABLE I
ICEYE SATELLITE RADAR PARAMETERS. [14]

Feature ICEYE Satellite
Center Frequency[GHz] 9.6
Imaging and Polarization X-band SAR, VV polarization
Resolution (m) 1x1 / 3x3 / 20x20
Dynamic Range 16 bit
Imaging Mode Stripmap, Spotlight
Communications (downlink) X-band radio, 100+ Mbits/sChirp BW
Chirp Bandwidth Up to 300 MHz
Georeferencing Under 10 m (both azimuth and range)

The SAR ICEYE satellite has good radiometric accuracy,
smaller than 1 dB for Stripmap data. The orbit accuracy
levels are around 500 meters precision for image planning, and
emergency services and around 3 meters for standard delivery
along with the product. [14]

B. DLR data

Another dataset used as a part of this paper comes from
an L-band radar developed by DLR Microwaves and Radar
Institute in Germany. The L-band radar used on this project
comes from the F-SAR. It is designed to cover an off-nadir
angle range of 25 to 55 degrees at altitudes of up to 6000m
above sea level, which is the maximum operating altitude
with the DO228. The relevant parameters of this module are
presented in Table II. [15]

TABLE II
DLR RADAR PARAMETERS. [15]

Feature DLR Plane
Center Frequency[GHz] 1.325
Bandwidth [MHz] 150
Range resolution[m] 1.5
Azimuth resolution [m] 0.4
Range covered[km] 12.5 (at max. bandwidth)
Sampling 8 Bit real
Data rate 247 MByte/s (max. per rec channel)

C. Classification Results

Multiple CNNs were trained on the L-band dataset using
80% of the data for training and 20% data selected randomly
for validation. The learning rate was set to 3e-4. The compar-
ison was made between the 4 types of generated RFI Data:
NBI, CMWBI, SMWBI as well as TVWBI. Table III contains
the accuracy results, as well as other parameters for each CNN
trained on the DLR F-SAR radar, generated data. The total
number of samples used for this classification is 484.

In Figure: 4 we have a plot of validation accuracy of
GoogLeNet. The blue solid line represents the training accu-
racy graph, while the black dotted line represents the validation
graph. In Figure: 5 we have a plot of the loss graph of
GoogLeNet. The orange solid line represents the training loss
graph, while the black dotted line represents the validation loss

TABLE III
CNNS RESULTS AND PERFORMANCE METRICS

CNN Acc. Param( Mil) Size
AlexNet 100% 61.0 227 MB
GoogLeNet 100% 7.0 27 MB
ResNet-50 100% 25.6 96 MB
VGG-16 100% 138 515 MB

graph. The number of iterations per epoch is 38 (the same
number as it is for the other CNNs as well). The number
of epochs used is 6, making it a total of 228 iterations. By
looking at the loss graph it can be noticed that the validation
loss decreases gradually with each iteration and the accuracy
improves. It is also very important to notice that the validation
accuracy and the training accuracy are very close to each other,
successfully avoiding the overfitting problem.

Fig. 4. Validation accuracy of GoogLeNet

Fig. 5. Loss graph of GoogLeNet

Comparing the hyperparameters as well as the size of
each CNN, it can be seen that GoogLeNet has the smallest
number of parameters, 7.0 million, and a size of 27 MB
making it easier to implement in constrained computational
environments for future applications of SAR classification. In
future applications, the generated RFI SAR data can be added
to real-life data to create powerful datasets for classification
applications as well as automatic target recognition.

To provide another interesting example, Figure: 6 shows
the accuracy graph of the AlexNet CNN trained on NBI
vs CMWBI vs SMWBI with a total of 363 samples. The
classification accuracy this time is 98.61%, which is still very
high. It is important to highlight that, for the classification,
the data that creates false positives or false negatives are the
CMWBI vs SMWBI due to their similar nature. However, the
amount of false positives and false negatives are relatively low
and can be ignored.

The same CNNs have also been trained on the X-band
dataset using 80% of the data for training and 20% data



Fig. 6. Accuracy graph of AlexNet

selected randomly for validation. The learning rate was once
again set to 3e-4. The comparison was made between the
4 types of generated RFI Data: NBI, CMWBI, SMWBI as
well as TVWBI added to the X-band data this time. The
accuracy results of each CNN trained on the ICEYE SAR
radar generated data are the following: AlexNet (100%),
GoogLeNet (100%), VGG-16 (100%), ResNet-50 (100%). The
total number of samples used for this classification is 484.

In this section we proposed using pre-trained CNN archi-
tectures such as AlexNet [10], VGG16 [11], GoogLeNet [12]
and ResNet [13] on the application of SAR RFI classification
using a dataset created using Neural Style Transfer. This is
an example of transfer learning from the source domain of
optical images to the target domain of radar SAR images,
which can be treated as 2D matrices of pixels values. The
results showed very high classification accuracy. Of course,
by adding more real life-examples of RFI into the data, the
classification algorithms may require further optimisation.

Furthermore, this comparison provides useful insights on
how RFI could be classified using state-of-the-art pre-trained
CNNs. The results show that CNNs such as GoogleNet
[12], which are designed considering the limited computing
resources, still maintain very high accuracy. This can provide
possibilities for high-accuracy, relatively low memory, classi-
fiers which can be implemented for choosing the right RFI
filtering method in real-life scenarios.

V. CONCLUSION

This work explores the possibility of using the style transfer
method to synthesize realistic RFI contaminated SAR images
which can be used for different computer vision tasks such
as classification and automatic target recognition (ATR). The
resulted synthetic RFI SAR images demonstrate that Neural
Style Transfer has the ability to extract well RFI from images
and induce it into measurement data. We further apply image
classification techniques to demonstrate that pre-trained CNN
architectures can be used to efficiently classify different types
of interference presented in SAR images. The experimental
results on the two generated datasets (based on DLR and
ICEYE databases) have shown that our approach can achieve
high image classification accuracy.

For future work, the authors may consider generating more
such data and sharing the dataset as a benchmark for research
purposes as well as possibly assessing the performance of

CNNs trained only with measurement RFI samples versus
CNNs trained with a combination of measurement RFI sam-
ples and Neural Style Transfer generated samples. Since the
classification performance might differ in such experiments,
the CNNs’ comparison would become more meaningful.
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