
Process Profiling Using Frequencies of System Calls 
 
 

       Surekha Mariam Varghese,           K.Poulose Jacob, 
              surekha_laju@hotmail.com           kpj@cusat.ac.in 

                          Dept of Computer Sc. and Engg,   Dept of Computer Science, 
             M.A. College of Engineering.         Cochin University of Science and Technology, 
      Kothamangalam,            Kochi, 
  India.               India. 

 
Abstract 

 
In this paper we discuss our research in 

developing general and systematic method for anomaly 
detection. The key ideas are to represent normal 
program behaviour using system call frequencies and 
to incorporate probabilistic techniques for 
classification to detect anomalies and intrusions. 
Using experiments on the sendmail system call data, 
we demonstrate that we can construct concise and 
accurate classifiers to detect anomalies. We provide an 
overview of the approach that we have implemented.  

 
1. Introduction. 

 
Over the past few years, the scope and importance 

of security technologies has increased. But many of the 
modern computer systems are crammed with high 
security vulnerabilities. Most of the common 
applications and operating systems are full of security 
flaws on many levels. These vulnerabilities allow an 
attacker to gain unauthorized privileges, gain 
unauthorized access to protected data or interfere with 
the work of others. Many attacks make use of 
techniques based on buffer overflows and race 
conditions.  

Detection attempts to compromise the integrity, 
confidentiality, or availability of computing and 
communication networks is an extremely challenging 
problem [1]. Intrusion detection and prevention 
generally refers to a broad range of strategies for 
defending against malicious attacks [2]. Intrusion 
detection can be categorized into misuse detection and 
anomaly detection. 

Misuse detection techniques build signatures of all 
known intrusions and use these signatures for detecting 
attempts of intrusions. The main drawback of such 
systems is that they cannot detect new intrusions 
whose intrusion patterns are unknown.  The need for 
storing the intrusion signatures for each type of 
intrusion and the requirement of instant updating of the 

intrusion signatures impose severe performance 
bottleneck on misuse detection techniques. 

 Anomaly based techniques have been useful for 
Intrusion Detection to detect intrusions without known 
signatures. However, Anomaly detection techniques 
suffer from higher false alarm rate compared to misuse 
intrusion detection techniques. However, although 
many Anomaly Detection techniques have been 
proposed to date, no single Anomaly Detection 
technique can effectively detect all types of intrusions 
under various scenarios. Anomaly Detection 
techniques also suffer from high false alarm rate that 
makes it largely ineffective for Intrusion Detection. 

In this paper, the concept of sequence sets is 
introduced to address the problem. A process can be 
profiled with frequencies of different system calls in 
different sequence sets. The representation of a process 
into different sequence sets and the corresponding 
frequency distribution has significantly enhanced the 
detection rate, and lowered the false alarms. To 
evaluate the effectiveness of the concept, a simple 
probabilistic model for anomaly detection is proposed. 

 
2. Process Profiling. 

 
Recently, there has been much research on 

monitoring program behavior to detect intrusions 
Program-based intrusion detection uses the philosophy 
that normal program behavior can be characterized in 
an unambiguous way.  

Unlike the behavior of a human user or the behavior 
of network traffic, the behavior of a program ultimately 
stems from a series of machine instructions whose 
meanings we know. The observed programs are 
usually system programs, and their behavior should not 
change without our knowledge. Thus, if intrusions can 
be detected as deviations from normal program 
behavior, such an intrusion detection technique would 
be free from false alarms caused by changes in user 
behavior patterns, and free as well from missed 
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intrusions caused by attackers that mimic benign users 
[3]. 

 Intrusion detection in such systems is done by 
comparing the profile of the input process behavior 
against the normal profile and taking actions according 
to some predetermined security policies. To profile 
normal usage patterns, Anomaly detection systems 
such as IDES[4] makes use of statistical measures on 
system features like the CPU and I/O activities by a 
particular user or program. Decision making System 
features and inter-relationships among different events 
and features vary highly in different computing 
environments [5].  

System call traces are a common type of audit data 
collected for performing intrusion detection. A system 
call trace is the ordered sequence of system calls that a 
process performs during its execution. The trace for a 
given process can be collected using system utilities 
such as strace. System call traces are useful for 
detecting a user to root exploit or attack. In this type of 
exploit, a user exploits a bug in a privileged process 
using a buffer overflow to create a root shell. 
Typically, the system call trace for a process being 
exploited is drastically different from the program 
process under normal conditions. This is because the 
buffer overflow and the execution of a root shell 
typically call a very different set of system calls than 
the normal execution of the program. 

Because of these differences, we can detect when a 
process is being exploited by examining the system 
calls. Traditionally, these methods typically build 
models over short contiguous subsequences of the 
system call trace. There have been many different 
methods proposed for building models over these short 
contiguous subsequences.  

Reference [6] describes a simple method to 
determine the normal behavior for privileged processes 
using local ordering of system calls. Normal sequences 
are represented with the help of look ahead pairs in [6] 
and contiguous sequences in [7].   [8] Presents a 
statistical method for misuse detection by locating 
sequences, which occur more frequently in intrusion 
data as opposed to normal data. All these methods 
predict the probability for a subsequence to belong to a 
normal process or an exploit. In [4] an alternative 
representation for system call traces using a bag of 
system calls is introduced. In [3] and [9] a state based 
approach is used. 

 
3. Buffer Overflow Attacks. 

 
The most commonly exploited vulnerability in 

general-purpose operating systems is the buffer 
overflow.  It is encountered due to insufficient bounds 

checking on arguments that are supplied by users and 
occurs whenever a request for a buffer access crosses 
the array / buffer boundary that was allocated for it. 
For example, after it was first reported many years ago, 
exploitable “buffer overflow” still exists in some recent 
system software due to programming errors. 

In an overflow attack, the objective of the attacker 
is to corrupt the information in a carefully designed 
manner.  Commonly they make use of functions that 
do not check the size of the arguments and pass very 
large strings as arguments to these functions, which 
either overwrites the function return address or places 
an executable code in the stack.   

 The correct method to prevent such attacks is to 
provide range checking for arrays or buffers used.  
Owing to the heavy overhead involved in, it is usually 
not preferred. For languages like C, where the size of 
arguments are unknown in most cases, range checking 
is not a good option.  The usual method is to go for 
static code checking to determine risky functions and 
to substitute them with safer functions.  

 Our experiments verify whether buffer overflows 
alter the execution sequence of a process and attempt 
to detect anomalies caused by buffer overflows by 
analyzing system call sequences. 

 
4. Bayesian Networks. 

 
Bayesian Belief Networks have attracted much 

recent attention as a possible solution for the problems 
of decision support under uncertainty. They are called 
Bayesian networks because they make use of bayes 
rule for probabilistic inference. [10]. 

The Bayesian network model can represent 
dependencies among the different objects into its 
structure.  It is made up of a set of variables (nodes) 
and a set of directed edges between variables. Each 
node has a number of states and a conditional 
probabilistic table that describes the probabilistic 
distribution of the states for the corresponding variable 
given the states of its parent nodes. Graphically a 
Bayesian network can be described by a directed 
acyclic graph [10, 11, 12]. A Bayesian network can 
effectively represent the dependence between variables 
and can give a concise specification of the joint 
probability distribution.  

 
5. Initial Experiments. 

 
Initial experiments were conducted in Redhat Linux 

on simple processes to verify whether buffer overflows 
can be detected from system call traces. Buffer 
overflows were created by passing very large strings 
containing the intrusion code. System call traces were 
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collected using the command “strace”.  A simple C 
program which is vulnerable to buffer overflow, the 
buffer overflow code passed to the buffer and the 
corresponding shell code are given in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Buffer Overflow Demonstration 
 
System call traces obtained during normal execution 

and abnormal execution of the vulnerable program are 
shown in figure 2. The portion of the system call trace 
which is altered in the intrusion trace is shown in bold 
face. 

To conduct further experiments, as a commonly 
used program that is vulnerable to common exploits 
and buffer overflows, Sendmail daemon was used for 
studying the normal behaviour and to detect anomalous 
behaviour. The syslog intrusions [13] are simple 
examples of buffer overflows in sendmail. Though 
patches are currently available for the most of the 
vulnerabilities, sendmail and the buffer overflow 
attacks on sendmail are good cases for experimental 
study.  Sendmail daemon was examined for detection 
of buffer overflow attacks. 

 
 

 
 

Figure 2 Analysis of System Call Trace  
                   
In order to construct a good classifier, we need to 

gather a sufficient amount of training data and identify 
the set of meaningful features. Due to the 
unavailability of enough varieties of intrusion trace 
data, further experiments were conducted using data 
sets available at University of New Mexico [14]. 

 
6. Experiments Using Sendmail 
 

UNM data sets consist of system call traces for 
many processes. Synthetic data for sendmail, used in 
the experiments, were collected at UNM on SUN 
SPARC stations running unpatched SUNOS 4.1.1 and 
4.1.4.  System calls generated by a process and its 
children are stored in the same trace. Each trace is a 
sequence of (process id, system call number). System 
call numbers are stored in the order in which it is 
executed. There is a mapping file that associates the 
system call numbers to the corresponding system call 
names. The set include normal traces and abnormal 
traces. A normal trace consists of several invocations 
of the sendmail program. The abnormal traces used are 
from syslog-remote intrusion and syslog-local 
intrusion. 

 
Table 1. A short sequence from sendmail 

normal dataset 

 
 
The abnormal traces include local and remote 

intrusions, each with variety commands executed 
during the attack.  

 

 
3750  5   

 
3752   105   

 
3752    104   

 
3752  104  

Normal ExecutionTrace 
 
Execve, Uname, Brk, Old_mmap, Open,Open, 
Fstat64,Old_mmap, Close, Open,Read, Fstat64 
Old_mmap,Old_mmap, Old_mmap, Close, 
Set_thread_area, Munmap,Mmap2, Read,  
Fstat64, Mmap2,Write, Munmap, Exit_group  
 
Intrusion Trace 

 
Execve, Uname,Brk, Old_mmap, Open,Open, 
Fstat64,Old_mmap, Close, Open,Read, Fstat64 
Old_mmap,Old_mmap, Old_mmap, Close, 
Set_thread_area, Munmap,Mmap2,Read,  
Setreuid, Exit      

Vulnerable C Program  
 
int overflow( char *data)  
{  
char final[100]; 
strcpy(final, data);  
return; 
} 
main ()  
{  
char initial[160]; 
gets(initial); 
overflow(initial); 
return; 
} 
 
Overflow Code 
Jump shellcode 
Setreuid(0,0) 
Exit(0) 
 
Shellcode  Used  
 
"\x31\xdb\x31\xc9\x31\xc0\xb0\x46\xcd\x80\x31\xdb\x31\
xc0\xb0 
\x01\xcd\x80” 
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6.1   Data Preparation 
 
System call trace for a particular process is 

represented as a sequence. Each trace in the data set is 
a collection of several sequences. Sequences are 
separated and a frequency chart of system calls for 
each sequence is prepared. Each sequence is 
characterized by the start sequence. All sequences with 
similar starting sequences are grouped into a sequence 
set. It is assumed that the number of possible normal 
sequence sets for a particular process is limited. As per 
the UNM data sets, the number of possible sequence 
sets for Sendmail is nine and the first seven system 
calls in the sequence and the frequency of the first 
system call is used to identify the sequence set to 
which the particular sequence belongs. Table 2 shows a 
fragment from frequency chart of sequence set1. 

 
Table 2. A Fragment from the frequency chart 

of sequence set1 with start sequence 
4, 2, 66, 66, 4, 138, 66 

 
Frequency Values System 

Call 
Number 

PID 
3772 

PID 
3805 

PID 
3827 

PID  
3783 

PID 
3794 

1 1 1 1 1 1 

2 26 26 26 33 59 

3 8 8 8 15 41 

4 29 29 29 29 29 

5 98 98 98 98 98 

 
 

6.2 Anomaly Status Determination 
 

Frequency of individual system calls in the 
execution trace of a process is used for determining the 
anomaly status of the particular process. Frequency of 
each system call in the input execution trace is 
determined and matched with a normal profile. Details 
of deviations in frequencies of the input execution 
trace are fed to the Bayesian network. The Bayesian 
model computes the anomaly score using system call 
frequencies and prior probability distributions and if 
the anomaly score is above threshold value, marks it as 
an anomalous situation. 

Anomaly status is determined with the help of a 
Bayesian network. Frequency chart for the process 
under consideration is prepared from the input 
sequence and the corresponding sequence set is 
determined. A Bayesian Network defines the 
probability of anomaly for different combinations of 
system call frequencies. The Bayesian network makes 
use of a number of model parameters to detect 

anomalous sequences. The model parameter values are 
different for different sequence sets.   

System call frequencies vary highly in different 
sequences. Even with in the same sequence set, for 
certain system calls this variation is unlimited. But for 
certain system calls, with in the same sequence set, the 
variation in the frequency is relatively less or limited 
during normal executions. During a buffer overflow, it 
is often necessary to insert new code resulting in 
insertion, deletion or modification of the normal 
system call sequence. As a consequence, frequency of 
certain system calls in the sequence deviate from the 
normal. In most cases, frequencies of system calls can 
be used to detect anomalous sequence.  

 
System calls are categorized into three groups 

depending on their frequency variation in anomalous 
situations. Each model is concerned about a particular 
category of system calls. 

 
6.3 Model Parameters 

 
 Underlying model parameters, their detection 

mechanisms and significance are described in the 
following section. 

 
Matching Profile 
 System calls that has limited or no variation with in 

the same sequence set are considered in the matching 
profile model. This model approximates and profiles 
the distribution of frequencies of system calls during 
normal executions. The goal of this model is to 
approximate the distribution of the frequencies of 
system calls of each sequence set and detect instances 
that significantly deviate from the observed normal 
behaviour. 

For each sequence set there is a normal profile. The 
profile stores the minimum for normal and maximum 
possible deviation for each system call frequency 
component, for the particular sequence set. Each input 
sequence is matched with corresponding normal 
profile. If the frequency components of the input 
sequence match with the normal profile, with 
permissible variations, it is treated as a normal 
sequence by the matching profile model. 

 
 Frequency Pattern 
Frequencies of certain system calls and 

subsequences will vary highly even with in the same 
sequence set. This variation can be considered as 
normal if this variation is relative to the frequencies of 
similar system calls. Variation in the frequency of 
system call Read with system call number 2 in the 
sequence set1 as shown in table 2 can be considered as 
example for this case. A Fragment from the frequency 
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chart of sequence set4, with identifying sequence “105, 
104, 104, 106, 105, 108, 112, 1” is listed to 
demonstrate the variation in frequencies. 

 
Table 3. A Fragment from the frequency chart 

of sequence set4 
 
 
System 
Call 
Number 

 
1492 

 
1575 

 
1408 

 
1423

2 32 32 12 14 
3 15 15 10 11 
19 4835 4835 190 670 
50 16 16 17 17 
78 4814 4814 168 648 
104 16052 16052 564 2164
105 9637 9637 344 1304
106 8027 8027 283 1083
108 1610 1610 61 221 
112 4830 4830 187 667 
128 8 8 10 10 

 
 
The frequency distribution model captures the 

concept of a ‘normal’ system call frequency for such 
system calls by looking at the relative ranking of the 
frequency component. It is based on the observation 
that repeating subsequences will increase the frequency 
of every system call in the subsequence. The analysis 
is based only on the relative order of the frequency 
values and does not rely on the value of the individual 
system calls. Table 4 lists the ranking of the system 
call frequencies, as used by the frequency pattern 
model, corresponding to the processes listed in table 3. 

 
Irregularity count /Presence of system calls 
Many of the system calls will not appear in the 

execution sequence of a particular process and will 
have zero frequency value. This model takes care of 
system calls absent in all the normal sequences 
encountered during training phase. The model 
examines the input sequence for presence of 
anomalous system calls and outputs an abnormal value 
if found. 

Once the parameters are correctly identified 
probability tables can be constructed for predicting the 
anomaly score. The anomaly score is a value that 
specifies the extent of the deviation of the received 
request from the expected profile. It is a compound 
value that is obtained from the joint probability table. 
The anomaly score for each request can be in a range 

from 0.00 to 1.00, where 0.00 represents a completely 
secure state and 1.00 a sure anomalous state.  

 
Table 4. A Fragment from the frequency 

pattern chart showing the ranks of system call 
frequencies of sequence set4 

 
 

System 
Call 
Number  

 
1492 

 
1575 

 
1408 

 
1423 

2 8 8 9 9 
3 10 10 10 10 
19 4 4 4 4 
50 9 9 8 8 
78 6 6 6 6 
104 1 1 1 1 
105 2 2 2 2 
106 3 3 3 3 
108 7 7 7 7 
112 5 5 5 5 
128 11 11 10 10 
 

 
 
6.4 Training  

 
Training involves determination of the sequence 

sets, system calls used by each of the models, the 
structure and probabilities associated with each of the 
nodes in the Bayesian Model. The success of anomaly 
detection depends on the determination of the correct 
sequence sets and actual probabilities associated with 
each of the nodes in the Bayesian Network. 

System calls used by each of the models and the 
sequence sets involved are determined by analyzing the 
variations in system call frequencies and by matching 
against the identifying sequence.  

The Bayesian Network uses a separate node for 
each model parameter in each sequence set. The joint 
probability table associated with a node involving 
variables X1 to Xk is estimated from the training data 
as follows 

 

N
kk IXI == −−−−−

===
,,11X

kk ,11

N
)I X---I  P(X     

 
 where NX1= I1 ,--- Xk =Ik is the number of 

observations in which X1 --. Xk   are in states I1 ….  Ik. 
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7. Performance Evaluation 
 

A concept prototype was developed and 
implemented to detect buffer overflows. Sequences 
were identified with their process-ids. Only normal 
sequences were used for training. Samples were 
selected using random() function from the list of 
normal sequences. The prototype was tested using 
random samples from the list of normal and abnormal 
sequences. Performance was measured by varying 
training percentage. For testing, a total of 10,00,000 
random data sequences in  10,000 runs were 
considered in each training category. It was clear from 
the experiments that frequencies of system calls are 
good discriminators to detect abnormal behaviour due 
to buffer overflows. Figure 3 shows the effect of 
training ratio on false positives and Figure 4 shows the 
effect of training ratio on accuracy and of true 
positives. 

The system was able to detect all abnormal 
sequences with a threshold value of 0.25, keeping the 
number of false positives small. The false positives are 
caused by system call sequences which significantly 
deviate from all examples encountered during the 
training phase. This is due to the huge disparity 
between the numbers of normal sequences belonging to 
different sequence sets of the dataset used for 
evaluation. If this disparity can be removed by 
selecting all the different varieties of data sequences 
for training, the number of false positives will be zero.  

 
   

 
 
Figure 3     Performance Evaluation 1 
 
The approach can be extended to other processes 

and for different types of intrusions.  
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Figure 4     Performance Evaluation2 
 

8. Conclusion 
 
It is a race between intrusion techniques and 

detection techniques. As more efficient detection 
techniques are discovered, more complicated intrusion 
techniques also will evolve.  The approach aims at 
building process profiles with system call frequencies 
and to detect anomalies by measuring deviations from 
the process profile.  The use of Bayesian network, 
incorporating different complex possibilities, improves 
detection and reduces false alarms. The accuracy of the 
detection models depends on sufficient training data 
and the right feature set. Preliminary experiments of 
using the approach on sendmail data provided at the 
UNM site  showed promising results. 
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