
Process Profiling Using Frequencies of System Calls

 Surekha Mariam Varghese, K.Poulose Jacob,
 surekha_laju@hotmail.com kpj@cusat.ac.in

 Dept of Computer Sc. and Engg, Dept of Computer Science,
 M.A. College of Engineering. Cochin University of Science and Technology,
 Kothamangalam, Kochi,
 India. India.

Abstract

In this paper we discuss our research in

developing general and systematic method for anomaly
detection. The key ideas are to represent normal
program behaviour using system call frequencies and
to incorporate probabilistic techniques for
classification to detect anomalies and intrusions.
Using experiments on the sendmail system call data,
we demonstrate that we can construct concise and
accurate classifiers to detect anomalies. We provide an
overview of the approach that we have implemented.

1. Introduction.

Over the past few years, the scope and importance

of security technologies has increased. But many of the
modern computer systems are crammed with high
security vulnerabilities. Most of the common
applications and operating systems are full of security
flaws on many levels. These vulnerabilities allow an
attacker to gain unauthorized privileges, gain
unauthorized access to protected data or interfere with
the work of others. Many attacks make use of
techniques based on buffer overflows and race
conditions.

Detection attempts to compromise the integrity,
confidentiality, or availability of computing and
communication networks is an extremely challenging
problem [1]. Intrusion detection and prevention
generally refers to a broad range of strategies for
defending against malicious attacks [2]. Intrusion
detection can be categorized into misuse detection and
anomaly detection.

Misuse detection techniques build signatures of all
known intrusions and use these signatures for detecting
attempts of intrusions. The main drawback of such
systems is that they cannot detect new intrusions
whose intrusion patterns are unknown. The need for
storing the intrusion signatures for each type of
intrusion and the requirement of instant updating of the

intrusion signatures impose severe performance
bottleneck on misuse detection techniques.

 Anomaly based techniques have been useful for
Intrusion Detection to detect intrusions without known
signatures. However, Anomaly detection techniques
suffer from higher false alarm rate compared to misuse
intrusion detection techniques. However, although
many Anomaly Detection techniques have been
proposed to date, no single Anomaly Detection
technique can effectively detect all types of intrusions
under various scenarios. Anomaly Detection
techniques also suffer from high false alarm rate that
makes it largely ineffective for Intrusion Detection.

In this paper, the concept of sequence sets is
introduced to address the problem. A process can be
profiled with frequencies of different system calls in
different sequence sets. The representation of a process
into different sequence sets and the corresponding
frequency distribution has significantly enhanced the
detection rate, and lowered the false alarms. To
evaluate the effectiveness of the concept, a simple
probabilistic model for anomaly detection is proposed.

2. Process Profiling.

Recently, there has been much research on

monitoring program behavior to detect intrusions
Program-based intrusion detection uses the philosophy
that normal program behavior can be characterized in
an unambiguous way.

Unlike the behavior of a human user or the behavior
of network traffic, the behavior of a program ultimately
stems from a series of machine instructions whose
meanings we know. The observed programs are
usually system programs, and their behavior should not
change without our knowledge. Thus, if intrusions can
be detected as deviations from normal program
behavior, such an intrusion detection technique would
be free from false alarms caused by changes in user
behavior patterns, and free as well from missed

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

intrusions caused by attackers that mimic benign users
[3].

 Intrusion detection in such systems is done by
comparing the profile of the input process behavior
against the normal profile and taking actions according
to some predetermined security policies. To profile
normal usage patterns, Anomaly detection systems
such as IDES[4] makes use of statistical measures on
system features like the CPU and I/O activities by a
particular user or program. Decision making System
features and inter-relationships among different events
and features vary highly in different computing
environments [5].

System call traces are a common type of audit data
collected for performing intrusion detection. A system
call trace is the ordered sequence of system calls that a
process performs during its execution. The trace for a
given process can be collected using system utilities
such as strace. System call traces are useful for
detecting a user to root exploit or attack. In this type of
exploit, a user exploits a bug in a privileged process
using a buffer overflow to create a root shell.
Typically, the system call trace for a process being
exploited is drastically different from the program
process under normal conditions. This is because the
buffer overflow and the execution of a root shell
typically call a very different set of system calls than
the normal execution of the program.

Because of these differences, we can detect when a
process is being exploited by examining the system
calls. Traditionally, these methods typically build
models over short contiguous subsequences of the
system call trace. There have been many different
methods proposed for building models over these short
contiguous subsequences.

Reference [6] describes a simple method to
determine the normal behavior for privileged processes
using local ordering of system calls. Normal sequences
are represented with the help of look ahead pairs in [6]
and contiguous sequences in [7]. [8] Presents a
statistical method for misuse detection by locating
sequences, which occur more frequently in intrusion
data as opposed to normal data. All these methods
predict the probability for a subsequence to belong to a
normal process or an exploit. In [4] an alternative
representation for system call traces using a bag of
system calls is introduced. In [3] and [9] a state based
approach is used.

3. Buffer Overflow Attacks.

The most commonly exploited vulnerability in

general-purpose operating systems is the buffer
overflow. It is encountered due to insufficient bounds

checking on arguments that are supplied by users and
occurs whenever a request for a buffer access crosses
the array / buffer boundary that was allocated for it.
For example, after it was first reported many years ago,
exploitable “buffer overflow” still exists in some recent
system software due to programming errors.

In an overflow attack, the objective of the attacker
is to corrupt the information in a carefully designed
manner. Commonly they make use of functions that
do not check the size of the arguments and pass very
large strings as arguments to these functions, which
either overwrites the function return address or places
an executable code in the stack.

 The correct method to prevent such attacks is to
provide range checking for arrays or buffers used.
Owing to the heavy overhead involved in, it is usually
not preferred. For languages like C, where the size of
arguments are unknown in most cases, range checking
is not a good option. The usual method is to go for
static code checking to determine risky functions and
to substitute them with safer functions.

 Our experiments verify whether buffer overflows
alter the execution sequence of a process and attempt
to detect anomalies caused by buffer overflows by
analyzing system call sequences.

4. Bayesian Networks.

Bayesian Belief Networks have attracted much

recent attention as a possible solution for the problems
of decision support under uncertainty. They are called
Bayesian networks because they make use of bayes
rule for probabilistic inference. [10].

The Bayesian network model can represent
dependencies among the different objects into its
structure. It is made up of a set of variables (nodes)
and a set of directed edges between variables. Each
node has a number of states and a conditional
probabilistic table that describes the probabilistic
distribution of the states for the corresponding variable
given the states of its parent nodes. Graphically a
Bayesian network can be described by a directed
acyclic graph [10, 11, 12]. A Bayesian network can
effectively represent the dependence between variables
and can give a concise specification of the joint
probability distribution.

5. Initial Experiments.

Initial experiments were conducted in Redhat Linux

on simple processes to verify whether buffer overflows
can be detected from system call traces. Buffer
overflows were created by passing very large strings
containing the intrusion code. System call traces were

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

collected using the command “strace”. A simple C
program which is vulnerable to buffer overflow, the
buffer overflow code passed to the buffer and the
corresponding shell code are given in Figure 1.

Figure 1 Buffer Overflow Demonstration

System call traces obtained during normal execution

and abnormal execution of the vulnerable program are
shown in figure 2. The portion of the system call trace
which is altered in the intrusion trace is shown in bold
face.

To conduct further experiments, as a commonly
used program that is vulnerable to common exploits
and buffer overflows, Sendmail daemon was used for
studying the normal behaviour and to detect anomalous
behaviour. The syslog intrusions [13] are simple
examples of buffer overflows in sendmail. Though
patches are currently available for the most of the
vulnerabilities, sendmail and the buffer overflow
attacks on sendmail are good cases for experimental
study. Sendmail daemon was examined for detection
of buffer overflow attacks.

Figure 2 Analysis of System Call Trace

In order to construct a good classifier, we need to

gather a sufficient amount of training data and identify
the set of meaningful features. Due to the
unavailability of enough varieties of intrusion trace
data, further experiments were conducted using data
sets available at University of New Mexico [14].

6. Experiments Using Sendmail

UNM data sets consist of system call traces for
many processes. Synthetic data for sendmail, used in
the experiments, were collected at UNM on SUN
SPARC stations running unpatched SUNOS 4.1.1 and
4.1.4. System calls generated by a process and its
children are stored in the same trace. Each trace is a
sequence of (process id, system call number). System
call numbers are stored in the order in which it is
executed. There is a mapping file that associates the
system call numbers to the corresponding system call
names. The set include normal traces and abnormal
traces. A normal trace consists of several invocations
of the sendmail program. The abnormal traces used are
from syslog-remote intrusion and syslog-local
intrusion.

Table 1. A short sequence from sendmail

normal dataset

The abnormal traces include local and remote

intrusions, each with variety commands executed
during the attack.

3750 5

3752 105

3752 104

3752 104

Normal ExecutionTrace

Execve, Uname, Brk, Old_mmap, Open,Open,
Fstat64,Old_mmap, Close, Open,Read, Fstat64
Old_mmap,Old_mmap, Old_mmap, Close,
Set_thread_area, Munmap,Mmap2, Read,
Fstat64, Mmap2,Write, Munmap, Exit_group

Intrusion Trace

Execve, Uname,Brk, Old_mmap, Open,Open,
Fstat64,Old_mmap, Close, Open,Read, Fstat64
Old_mmap,Old_mmap, Old_mmap, Close,
Set_thread_area, Munmap,Mmap2,Read,
Setreuid, Exit

Vulnerable C Program

int overflow(char *data)
{
char final[100];
strcpy(final, data);
return;
}
main ()
{
char initial[160];
gets(initial);
overflow(initial);
return;
}

Overflow Code
Jump shellcode
Setreuid(0,0)
Exit(0)

Shellcode Used

"\x31\xdb\x31\xc9\x31\xc0\xb0\x46\xcd\x80\x31\xdb\x31\
xc0\xb0
\x01\xcd\x80”

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

6.1 Data Preparation

System call trace for a particular process is

represented as a sequence. Each trace in the data set is
a collection of several sequences. Sequences are
separated and a frequency chart of system calls for
each sequence is prepared. Each sequence is
characterized by the start sequence. All sequences with
similar starting sequences are grouped into a sequence
set. It is assumed that the number of possible normal
sequence sets for a particular process is limited. As per
the UNM data sets, the number of possible sequence
sets for Sendmail is nine and the first seven system
calls in the sequence and the frequency of the first
system call is used to identify the sequence set to
which the particular sequence belongs. Table 2 shows a
fragment from frequency chart of sequence set1.

Table 2. A Fragment from the frequency chart

of sequence set1 with start sequence
4, 2, 66, 66, 4, 138, 66

Frequency Values System

Call
Number

PID
3772

PID
3805

PID
3827

PID
3783

PID
3794

1 1 1 1 1 1

2 26 26 26 33 59

3 8 8 8 15 41

4 29 29 29 29 29

5 98 98 98 98 98

6.2 Anomaly Status Determination

Frequency of individual system calls in the
execution trace of a process is used for determining the
anomaly status of the particular process. Frequency of
each system call in the input execution trace is
determined and matched with a normal profile. Details
of deviations in frequencies of the input execution
trace are fed to the Bayesian network. The Bayesian
model computes the anomaly score using system call
frequencies and prior probability distributions and if
the anomaly score is above threshold value, marks it as
an anomalous situation.

Anomaly status is determined with the help of a
Bayesian network. Frequency chart for the process
under consideration is prepared from the input
sequence and the corresponding sequence set is
determined. A Bayesian Network defines the
probability of anomaly for different combinations of
system call frequencies. The Bayesian network makes
use of a number of model parameters to detect

anomalous sequences. The model parameter values are
different for different sequence sets.

System call frequencies vary highly in different
sequences. Even with in the same sequence set, for
certain system calls this variation is unlimited. But for
certain system calls, with in the same sequence set, the
variation in the frequency is relatively less or limited
during normal executions. During a buffer overflow, it
is often necessary to insert new code resulting in
insertion, deletion or modification of the normal
system call sequence. As a consequence, frequency of
certain system calls in the sequence deviate from the
normal. In most cases, frequencies of system calls can
be used to detect anomalous sequence.

System calls are categorized into three groups

depending on their frequency variation in anomalous
situations. Each model is concerned about a particular
category of system calls.

6.3 Model Parameters

 Underlying model parameters, their detection

mechanisms and significance are described in the
following section.

Matching Profile
 System calls that has limited or no variation with in

the same sequence set are considered in the matching
profile model. This model approximates and profiles
the distribution of frequencies of system calls during
normal executions. The goal of this model is to
approximate the distribution of the frequencies of
system calls of each sequence set and detect instances
that significantly deviate from the observed normal
behaviour.

For each sequence set there is a normal profile. The
profile stores the minimum for normal and maximum
possible deviation for each system call frequency
component, for the particular sequence set. Each input
sequence is matched with corresponding normal
profile. If the frequency components of the input
sequence match with the normal profile, with
permissible variations, it is treated as a normal
sequence by the matching profile model.

 Frequency Pattern
Frequencies of certain system calls and

subsequences will vary highly even with in the same
sequence set. This variation can be considered as
normal if this variation is relative to the frequencies of
similar system calls. Variation in the frequency of
system call Read with system call number 2 in the
sequence set1 as shown in table 2 can be considered as
example for this case. A Fragment from the frequency

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

chart of sequence set4, with identifying sequence “105,
104, 104, 106, 105, 108, 112, 1” is listed to
demonstrate the variation in frequencies.

Table 3. A Fragment from the frequency chart

of sequence set4

System
Call
Number

1492

1575

1408

1423

2 32 32 12 14
3 15 15 10 11
19 4835 4835 190 670
50 16 16 17 17
78 4814 4814 168 648
104 16052 16052 564 2164
105 9637 9637 344 1304
106 8027 8027 283 1083
108 1610 1610 61 221
112 4830 4830 187 667
128 8 8 10 10

The frequency distribution model captures the

concept of a ‘normal’ system call frequency for such
system calls by looking at the relative ranking of the
frequency component. It is based on the observation
that repeating subsequences will increase the frequency
of every system call in the subsequence. The analysis
is based only on the relative order of the frequency
values and does not rely on the value of the individual
system calls. Table 4 lists the ranking of the system
call frequencies, as used by the frequency pattern
model, corresponding to the processes listed in table 3.

Irregularity count /Presence of system calls
Many of the system calls will not appear in the

execution sequence of a particular process and will
have zero frequency value. This model takes care of
system calls absent in all the normal sequences
encountered during training phase. The model
examines the input sequence for presence of
anomalous system calls and outputs an abnormal value
if found.

Once the parameters are correctly identified
probability tables can be constructed for predicting the
anomaly score. The anomaly score is a value that
specifies the extent of the deviation of the received
request from the expected profile. It is a compound
value that is obtained from the joint probability table.
The anomaly score for each request can be in a range

from 0.00 to 1.00, where 0.00 represents a completely
secure state and 1.00 a sure anomalous state.

Table 4. A Fragment from the frequency

pattern chart showing the ranks of system call
frequencies of sequence set4

System
Call
Number

1492

1575

1408

1423

2 8 8 9 9
3 10 10 10 10
19 4 4 4 4
50 9 9 8 8
78 6 6 6 6
104 1 1 1 1
105 2 2 2 2
106 3 3 3 3
108 7 7 7 7
112 5 5 5 5
128 11 11 10 10

6.4 Training

Training involves determination of the sequence

sets, system calls used by each of the models, the
structure and probabilities associated with each of the
nodes in the Bayesian Model. The success of anomaly
detection depends on the determination of the correct
sequence sets and actual probabilities associated with
each of the nodes in the Bayesian Network.

System calls used by each of the models and the
sequence sets involved are determined by analyzing the
variations in system call frequencies and by matching
against the identifying sequence.

The Bayesian Network uses a separate node for
each model parameter in each sequence set. The joint
probability table associated with a node involving
variables X1 to Xk is estimated from the training data
as follows

N
kk IXI == −−−−−

===
,,11X

kk ,11

N
)I X---I P(X

 where NX1= I1 ,--- Xk =Ik is the number of

observations in which X1 --. Xk are in states I1 …. Ik.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

7. Performance Evaluation

A concept prototype was developed and
implemented to detect buffer overflows. Sequences
were identified with their process-ids. Only normal
sequences were used for training. Samples were
selected using random() function from the list of
normal sequences. The prototype was tested using
random samples from the list of normal and abnormal
sequences. Performance was measured by varying
training percentage. For testing, a total of 10,00,000
random data sequences in 10,000 runs were
considered in each training category. It was clear from
the experiments that frequencies of system calls are
good discriminators to detect abnormal behaviour due
to buffer overflows. Figure 3 shows the effect of
training ratio on false positives and Figure 4 shows the
effect of training ratio on accuracy and of true
positives.

The system was able to detect all abnormal
sequences with a threshold value of 0.25, keeping the
number of false positives small. The false positives are
caused by system call sequences which significantly
deviate from all examples encountered during the
training phase. This is due to the huge disparity
between the numbers of normal sequences belonging to
different sequence sets of the dataset used for
evaluation. If this disparity can be removed by
selecting all the different varieties of data sequences
for training, the number of false positives will be zero.

Figure 3 Performance Evaluation 1

The approach can be extended to other processes

and for different types of intrusions.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1
TRAINING RATIO

PE
R

FO
R

M
AN

C
E

R
AT

IO

 ACCURACY

TRUE
POSSITIVES

Figure 4 Performance Evaluation2

8. Conclusion

It is a race between intrusion techniques and

detection techniques. As more efficient detection
techniques are discovered, more complicated intrusion
techniques also will evolve. The approach aims at
building process profiles with system call frequencies
and to detect anomalies by measuring deviations from
the process profile. The use of Bayesian network,
incorporating different complex possibilities, improves
detection and reduces false alarms. The accuracy of the
detection models depends on sufficient training data
and the right feature set. Preliminary experiments of
using the approach on sendmail data provided at the
UNM site showed promising results.

9.Acknowledgments

We are very grateful to Anil Somayaji and
Stephanie Forrest, for helping us with the necessary
intrusion data and providing the details of their
experiments at University of New Mexico.

10.References

[1] D.E. Denning, An intrusion-detection model, IEEE
Transactions on software Engineering, Vol:13, No:2,pp. 222-
232,1987.
[2]. H. S. Javitz and A. Valdes. The SRI IDES Statistical
Anomaly Detector. In Proceedings of the IEEE Symposium
on Security and Privacy, May 1991.
[3] C. C. Michael And Anup Ghosh, Simple, State-Based
Approaches to Program-Based Anomaly Detection, ACM
Transactions on Information and System Security, Vol. 5,
No. 3, August 2002.
[4] Dae-Ki Kang, Doug Fuller, Vasant Honavar, Learning
Classifiers for Misuse and Anomaly Detection Using a Bag

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

of System Calls Representation, In the Proceedings of the
2005 IEEE Workshop on Information Assurance and
Security,United States Military Academy, West Point, NY,,pp
118-125
http://www.cs.iastate.edu/~honavar/Papers/isi05.pdf
[5].W. Lee, S. Stolfo, and K. Mok. Mining in a Data-flow
Environment: Experience in Network Intrusion Detection. In
Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD
’99), San Diego, CA, August 1999.
[6] S. Forrest. A Sense of Self for UNIX Processes. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 120–128, Oakland, CA, May 1996.
 [7]. S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6:151–180, 1998.
[8] P. Helman and J. Bhangoo. A statistically based system
for prioritizing information exploration under uncertainty.
IEEE Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, 27(4):449–466, July 1997.
[9] Sekar, R., Bendre, M., Dhurjati, D., And Bollineni, P, A
Fast Automaton-Based Method For Detecting Anomalous
Program Beha
viors. In Proceedings Of The 2000 IEEE Symposium On
SecurityAnd Privacy. IEEE Computer Society, Los Alamitos,
Calif., 144–155.
[10]. Finn V.Jensen, An Introduction to Bayesian Networks,
Springer, 1996.
[11]. J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1997.
[12] Probabilistic networks-with-undirected.pdf
 [13] CERT Syslog vulnerability-a workaround for
sendmail,http://www.cert.org/advisories/CA-
95.13.syslog.vul.html,October 19,1995.
 [14] Computer Immune Systems - Data Sets and Software
http://www.cs.unm.edu/~immsec/systemcalls.htm

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

