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Abstract 

 
The most important part of a firewall configuration 

process is the implementation of a security policy by a 
security administrator. However, this security policy is 
not designed by higher levels of the organisation, nor 
is written anywhere, so it is very usual to make 
mistakes in its implementation. To solve this problem 
we propose to express this global access control policy 
in some informal language that is translated to a 
model specification in conjunction with the firewall 
rule set. Then we construct a Constraint Satisfaction 
Problem to detect and identify the possible 
inconsistencies between the specified policy and the 
firewall rule set. 

Keywords: firewall, policy, constraint, csp, 
consistency 
 
1. Introduction 
 

At present days, firewalls continue to be the first 
line of defence of most (if not all) organizations that 
are connected to the Internet. However, to be an 
effective defence, a firewall must be configured 
properly. Firewall rule sets usually are not commented 
nor described anywhere: if there is no written security 
policy stating what the firewall must do, the 
implementation depends entirely on the interpretation 
of the security policy by security administrators. 

There are several reasons these tasks are difficult 
and prone to errors. Firewall rule languages tend to be 
very low level and difficult to write, and usually 
require an in-depth knowledge of the specific firewall 
system. Rule modification could be a daunting task, 
because a modification of a rule in a firewall with 
hundred of rules could derive side effects in its own 
firewall, or at other firewalls linked with it. In addition, 
most organisations don’t have a security policy for 
their everyday aspects of security, even less a more 

specific policy like an access control one for 
implementation at their firewalls. 

We firmly believe in the need of the use of a model 
and formal methods to reason about firewall rule sets 
in order to detect and identify faults. We also think that 
the effectiveness of a firewall is dependent on 
providing a written security policy (a specification of 
what must be done) given by people at higher levels of 
the organization than systems’ administrators. 

In this paper we propose a first order logic model in 
which to transform both a natural language 
specification of an access control policy, and a firewall 
rule set. We also propose a method (we have 
implemented) based on Constraint Satisfaction 
techniques to automatically detect and identify 
inconsistencies between the rule set and the specified 
policy (Fig. 1). The high level specification language 
to specify the security policy is not an objective of this 
work. 

The rest of the paper is organized as follows. In 
section two we comment the state of the art on the 
related works and explain the main differences with 
our approach. In section there is a very brief 
introduction to constraint satisfaction problems. 
Section four is the core of the paper, we explain or 
model in an incremental way. In section five there is an 
illustrative example. Finally, in section six we 
conclude and give some thoughts about future works. 

 
2. Related works 
 

The closest works to ours come from the firewall 
analysis field. In [4, 5], authors use graph algorithms to 
represent firewall access control policies and reason 
about packet trajectories. Authors of [6, 7] provide an 
abstract language to represent policies, and provide a 
mechanism to completely separate the security policy 
from the network topology. There is also possible to 
query this abstract representation (which is also based 



on graph algorithms) about concrete paths, or even to 
generate all possible queries and present them to the 
user, which is responsible of deciding if the firewall 
works as expected. Finally, the abstract representation 
can be compiled to low level firewall rules. In [8] 
authors use constraint logic programming to represent 
policies transformed from low level firewall rules. 
They are also able to reason about the policies, but 
queries must be given by experts. In [9] authors 
present a method based on graph algorithms to reason 
about IDS configurations in combination with a 
firewall configuration of the network.  

The main difference of all of these works with ours 
is that we provide a specified high level policy. This 
policy is used as a goal to test if the firewall complies 
with it. This approach is a recommendation suggested 
in [4, 5], and a logical consequence of the works of [6, 
7] which query all possible things about the firewall 
and then present the results to the user; and of [8], in 
which the user is responsible of querying the reasoning 
engine. Another significant difference is that we 
provide a very simple but strong logic model of 
firewalls, and also a strong reasoning method based on 
Constraint Satisfaction Problems. To the best of our 
knowledge, this is the first approach to model a 
firewall as a logic machine and transform this model 
into a CSP. 

 
3. Constraint satisfaction problems 
 

Constraint Satisfaction Problems have been object 
of research in Artificial Intelligence in the last few 
decades [1]. A Constraint Satisfaction Problem (CSP) 
is a framework for modelling and solving real-
problems as a set of constraints among variables 
defining the state of the problem. A CSP is defined as 

a set of variables { }1 2, ..., nX X X X= , each 
associated with a discrete-valued domain 

{ }1 2, ..., nD D D D= , and a set of constraints 

{ }1 2, ... mC C C C=  restricting the values that 
variables can take simultaneously (reducing the 
domain for each variable). Each constraint iC  is a pair 
( , )i iW R , where iR  is a relation 1 ...i i ikR D D⊆ × ×  

defined in a subset of variables iW X⊆ . A solution 
to a CSP is an assignment of a value from its domain 
to every variable, in such a way that all constraints are 
satisfied simultaneously. 

A CSP could have multiple solutions. It is possible 
to find (1) just one solution with no preference to 
which one of the total solution space, (2) all solutions, 
and (3) an optimal solution by means of an objective 
function defined in terms of one or more variables. 
There are many techniques to search and prune 
through all possible value assignments to variables. 

In many real-life applications, it is possible to be 
interested in a good solution, and not in whichever 
solution. The objective function usually is a function 
that tries to maximize (or minimize) the number of 
satisfied constraints. Such kinds of problems are 
referred as MaxCSP, or more generally, Constraint 
Satisfaction Optimization Problems (CSOP) [1]. 

 
4. System model 
 
4.1 Policy and Firewall Rule Set 
Transformation Rules 
 

A typical rule from a firewall has different fields 
that represent information relevant to the filtering 
and/or logging tasks. The fields needed to be modeled 
are: 
• Source and Destination. The Source IP field of the 

packet represents one possible IP of the network 
address space at which the source machine is 
connected to, but can also represent a subnet, or the 
entire zone. Destination IP field is analogous.  

 
 

Figure 1. High level view of the firewall diagnosis process 



• Service and Protocol. The protocol represents which 
of the many existent protocols (TCP, UDP, ICMP, 
etc.) the service uses. The service represents the 
destination port number at which the service is 
located. For simplicity, we will only use the port 
number. 

• Action. The action represents if the firewall leave 
the packet pass to its destination (allow) or not 
(deny). 
 
Note that the direction of the packet (that is, which 

interface does it come from and where does it go to) is 
implicit into the Source and Destination fields, thus it 
is not necessary to model the packet directions or 
interfaces. 

In our model it is also possible (and preferred) to 
use symbolic names instead of absolute numbers for all 
the fields, because it is very usual to use symbolic 
names instead of concrete network address: with 
independence of the low level network topology, the 
high level access control goals should be the same. The 
main benefit of this process is the separation of the real 
network topology from the policy and rule set models. 
A policy or rule in our model is therefore represented 
as a four field tuple (Fig. 2) 

 

 
 

Figure 2. Tuple representation 
 

We are going to use the same model for both the 
policy and firewall rules because they are equivalent 
(they express the same thing with the same information 
fields). 

As noted by the action field in the tuple, our model 
can express both allow and deny policies and rules. 
For the sake of simplicity, policies can be expressed 
only with allow action fields, so order is not important; 
but rule sets can be expressed with deny action fields, 
so order is important; also Internet must be expressed 
as an explicit zone. We assume that the last policy and 
the last rule are general deny all ones. 

 
4.1.1 Policy Transformation from Natural 
Language Specification. As we have noted before, the 
main contribution of this paper is the use of a high 
level policy to express the global access control 
requirements of the organisation. The firewall rule set 
must comply with this policy. To be able to reason 
about both the policy and the rule set, it is necessary to 
model them into tuples. The tuple model is the same 
for both the policy and rule set. 

The transformation of a natural language policy to a 
tuple of our model is very simple (Fig. 3). Note the use 
of symbolic names. 

 
4.1.2 Rule Transformation from Firewall Rule-

Set. The transformation from rules is even more direct, 
since the fields in them are the same of the tuples. For 
example, an IP Tables [2] rule can also be transformed 
to a tuple (Fig. 4). 

 

 
 

Figure 3. Tuple transformation from natural 
language specification 

 
Note that the transformation from a rule to a tuple is 

direct and can be automated parsing firewall rule 
fields. Note that, as we have indicated before, we are 
not taking into account the protocol (TCP in this 
example) for the sake of simplicity, but its 
incorporation into the model is direct. 

 

  
Figure 4. Tuple transformation from low level 

firewall rule 
4.2 Firewall Model 
 

Fortunately, a firewall is a very simple machine 
whose working internals are well known. Fig. 5 
represents a logic model for rule processing in a 
firewall. 
 

 
 

Figure 5. Firewall rule processing model 
 
 
This process should be repeated until there is a 

match between a rule and a packet. If there is no match 
with the specified rules, then the default action is 



executed (in our model the default action is always a 
deny all rule). 

In our proposal, there is a high level policy 
specifying the access control policy. For our purposes 
it is necessary to model both the policy and the rules. 

4.2.1 Logic model. As we are going to use a more 
formal language in this subsection, it is also necessary 
to give some definitions to model the tuples and the 
complete policy and rule set. 

The variables 0( )POL
i nSource i < ≤ , 

0( )FW
j mSource j < ≤  represent the source field of a 

tuple representing a policy and a tuple representing a 
firewall rule respectively. In a similar way, the 
variables 0( )POL

i nDestination i < ≤ , and 

0( )FW
j mDestination j < ≤  represent the destination 

field of a tuple representing a policy and a rule 
respectively. Variables 0( )POL

i nService i < ≤  and 

0( )FW
j mService j < ≤  represent the service field of a 

tuple representing a policy and a rule respectively. 
Finally variables 0( )POL

i nAction i < ≤ ,  and 

0( )FW
j mAction j < ≤  represent the action field of the 

tuple representing a policy and a rule respectively. 
A policy is a finite set of tuples of the 

form:

{ }
0( )

, , ,

POL
i n

POL POL POL POL

Tuple i

Source Destination Service Action
< ≤ =

represents the transformation into our model of a 
policy from its natural language representation. Policy 
tuples are indexed by the integer i, where n is the 
number of tuples. The size is always greater than zero 
because we have assumed the existence of a deny all 
policy as the last one. 

A firewall rule is a finite set of tuples: 

{ }
0( )

, , ,

FW
j m

FW FW FW FW

Tuple j

Source Destination Service Action
< ≤ =

Rule tuples are indexed by the integer j, where m is the 
number of tuples. The size is always greater than zero 
because we have assumed the existence of a deny all 
rule as the last one. 

0 ,0
ij

i n j mR < ≤ < ≤  is a logic variable that represents a 

match between a 0( )POL
i nTuple i < ≤  and a 

0( )FW
j mTuple j < ≤ : 

0 ,0 ( ) ( )

       ( ) ( )
        ( ) ( )

ij POL FW
i n j m

POL FW

POL FW

R Source i Source j

Destination i Destination j
Service i Service j

< ≤ < ≤ = = ∧

= ∧

=

  

( )jP T  is defined as a path variable that indicates 
the rules that have been processed, in a similar way we 
defined it in a previous work [3]. As order is important 
in tuples transformed from rule sets, it is needed to 
simulate that order in our model. For a fixed 

( )POLTuple i , P is defined take the values:, 
: 0 ( )   :

( )
j

j

j j k P T TRUE j k j m

P T FALSE

∀ < ≤ • = ∧ ∀ < ≤ ⇒

=
This predicate is also going to serve us to detect where 
the fault exactly is, as is going to be explained in the 
next definition. 

The predicate FWOK TRUE=  if  

{ }
:1 ,  :1

( ) ( )ij POL FW

i i n j j m

R Action i Action j

∀ ≤ ≤ ∃ ≤ ≤ •

∧ =
 

In any other case, FWOK FALSE= . If there is a 

fault, then the last predicate ( )kP T TRUE=  
identifies it. Take into account that the predicate P  is 
always for firewall tuples, since the policy is 
axiomatic. 

With all these definitions we have the logic model 
presented in Fig. 6. With this model we can express 
access control policies only if they involve information 
flows between different zones; this model cannot 
express requirements between information flows in the 
same zone, since no firewall can control that flow. On 
the other hand, the zones may represent various 
physical or logical networks that may have routers 
within them (with no filtering capabilities). These 
internal routers are of no interest for our model, since 
we are only interested in filtering devices. 

 
j j<m j+1 j m

ij
j j<m j+1 j<m 0 ,0

ij FW POL FW
0 ,0

FW POL FW
j j=m

1. P(T )   P(T )

2. P(T )   (P(T )  = R )  

   (R  OK = (Action (i)==Action (j)))

3. P(T )   OK = (Action (i)==Action (j))

i n j m

i n j m

≤

< ≤ < ≤

< ≤ < ≤

¬ ⇒ ¬

⇒ ¬ ∧

⇒

⇒

 
Figure 6. Logic model 



4.2.2 CSP model. The constraint representation of the 
previous model is quite direct, and requires no 
additional definitions (Fig. 7). We have based this 
constraint model in a previous work [3]. There are only 
two unbounded variables with boolean domain in the 

CSP: the variables 0( )j j mP T < ≤  and FWOK  that obey 
to definitions 8 and 9 respectively. There is a special 
constant representing that the value of the first path 
variable is always true. This is necessary because is the 
only way to start the reasoning process at (3). 

Then there are four constraints. 
• The constraint (1) represents the predicate 

0 ,0
ij

i n j mR < ≤ < ≤  (definition 7), a match between 

0( )POL
i nTuple i < ≤  and 0( )FW

j mTuple j < ≤ . 

• The constraint (2) represents that 

1

: 0 ( )

( ) ( )

FW
j m

j j

j j m Tuple j

P T P T
<

+

∃ < ≤ •

∧¬ ⇒ ¬
 

since if the firewall is stopped at 

0( )FW
j mTuple j < ≤ , then it must be stopped for all 

following tuples. Note that once a path variable is 
false (representing that the previous tuple has 
matched), then all following ones must also be false. 

• The constraints (3) and (4) are the same but (3) for a 

tuple that is not last one and (4) for the last tuple (a 
deny all rule always matches with everything). 
These constraints represent that if there is no match 
at 0( )FW

j mTuple j < ≤  for a given 

0( )POL
i nTuple i < ≤ , then the match must checked 

against the following tuple, with 1( ) 1jP T + = . 

Also, if there is a match, then 1FWOK =  
(representing a full match: including the action 
field); 0FWOK =  in other case. 

 
Note that this constraint model only represents the 

consistency checking between a given policy 

0( )POL
i nTuple i < ≤  and a firewall rule set. To be 

complete, the explained process should be repeated for 
all policies, but for the sake of simplicity we have left 
this for the implementation. 

The problem is solved in two phases. First, the 
constraint solver checks if the complete firewall rule 
set is consistent with each policy. This process 
determines the faulty rules at the firewall (different 
action fields), and also the policies that specify actions 
that are not represented in the firewall rule set (rules 
that must be written), as we have stated before. 

 

{ }
{ }

0

0

0

0 ,0

Unbounded variables
( ) ,  

Domains
( ) 0,1

0,1

Constants
( ) 1

Constraints

1. ( ) ( ) ( ) ( ) ( ) ( )
2. P

j
FW

j m

j j m

FW

ij POL FW POL FW POL FW
i n j m

P T OK

P T

OK

P T

R Source i Source j Destination i Destination j Service i Service j

< ≤

< ≤

< ≤ < ≤

∈

∈

=

= = ∧ = ∧ =

¬ j j<m j+1 j m

POL FW FW
0 ,0 0 ,0j j<m j+1 j m

0 ,0

(T )   P(T )

3. P(T )   (P(T )  = R )  (R  (Action (i) == Action (j))  OK =1)

                                                  (R  (Action

ij ij
i n j m i n j m

ij
i n j m

≤

< ≤ < ≤ < ≤ < ≤≤

< ≤ < ≤

⇒ ¬

⇒ ¬ ∧ ⇒ ⇒ ∧

⇒ ¬ POL FW FW

POL FW FW
j j=m

POL FW FW

(i)==Action (j))  OK =0)

4. P(T )   (Action (i)==Action (j))  OK =1) 

                        (Action (i)==Action (j))  OK =0)

⇒

⇒ ⇒ ∧

¬ ⇒

 

 
Figure 7. Constraint model 



If the process returns that the problem is consistent, 
then the reverse process must be also run to be 
complete. This process identifies rules in the firewall 
rule set that are not considered in the policy. As the 
policy is axiomatic, then the faults are that actions that 
are not considered in the policy. 

 
5. Example 

We are going to present an example to illustrate 
how our model works. The complete process has been 
implemented using a commercial constraint solver. 
The example network (Fig. 8) consists of three zones 
and several systems (take into account that our model 
can express a firewall with an unlimited number of 
interfaces): 
• Internet. This zone represents all systems with pubic 

IP addresses that are not in the other segments. 
• DMZ. This zone contains the systems that can be 

accessed from the Internet. This network has private 
IP addresses. 

• Administration. This zone contains systems from 
employees that use information from sales, salaries, 
etc. 

• Sales. This zone contains systems from employees 
that use information relevant to customers, prizes, 
promotions, etc. This zone also contains a mass 
storage system that must also be accessed from all 
administration systems. 

 

 
Figure 8. Network with a firewall with four 

interfaces: Internet, DeMilitarized Zone, Sales 
and Administration departments 

 

An example security policy for this network, written in 
natural language, is presented in Fig 9. This policy is 
also decomposable on several smaller sentences, but it 
is really not necessary to explicitly do it, since its 
transformation to tuples is direct (Fig. 10). 
 

1. Users on Internet can access the web server
2. Only the sales person of the month (this month is “S1”) of the sales

Department can access web pages on Internet. However all people
at sales department can  receive and send eMail through Internet.

3. Users of the administration department can access web pages on
Internet, and also the storage server at the sales department.

4. No more accesses are permitted.
 

 
Figure 9. Natural language policy 

 
The next phase is to take the firewall configuration 

file and translate it to tuples. It is exactly the same 
process done for the policy, but this time the firewall 
configuration files can be parsed automatically. Recall 
that in the firewall rule set there can be any number of 
deny rules. Fig. 10 presents the modelled firewall rule 
set. 

 

POLICY

TuplePOL(1)={Internet, WebServer, http, allow}
TuplePOL(2)={S1, Internet, http, allow}
TuplePOL(3)={Sales, Internet, pop3, allow}
TuplePOL(4)={Sales, Internet, smtp, allow}
TuplePOL(5)={Administration, Internet, http, allow}
TuplePOL(6)={Administration, StorageServer, 789, allow}
TuplePOL(7)={any, any, *, deny}

RULE SET

TupleFW(1)={Internet, DataBase, *, deny} // Log rule
TupleFW(2)={Internet, WebServer, http, allow}
TupleFW(3)={S3, Internet, http, allow}
TupleFW(4)={Sales, Internet, pop3, allow}
TupleFW(5)={Sales, Internet, smtp, allow}
TupleFW(6)={Administration, Internet, http, deny}
TupleFW(7)={Administration, Internet, pop3, deny} // Log
TupleFW(8)={Administration, StorageServer, 789, allow}
TupleFW(9)={any, any, *, deny}

  
 

Figure 10. Modeled policy and rule set 
 

5.1 Firewall diagnosis 
 

At the first phase the solver checks each policy 
against the complete firewall rule set (so the path 
variables are for the firewall tuples). There are two 
faults diagnosed. With (2)POLTuple  the process 

returns 0FWOK = . The last path variable set to true 



is 9( )P T , the path variable of the last tuple. This 
implies that there is no rule that complies with that 
policy, and needs to be written. With (5)POLTuple  

the process returns 0FWOK = . The last path variable 

set to true is 6( )P T . This implies that the rule 6 
matches against the tuple 5, but they have 
contradictory actions. Since the policy is axiomatic, 
then it can be argued that (6)FWTuple  is faulty (its 
action has to be changed). 

At the second phase, the solver checks each firewall 
rule against the complete policy. This time the path 
variables are for the policies. With (3)FWTuple  the 

process returns 0FWOK = . The last path variable set 

to true is 7( )P T , the path variable of the last tuple. 
This implies that there is not a policy that complies 
with that rule. Since the policy is axiomatic, then the 
fault is necessarily on the third rule of the firewall. So 

(3)FWTuple  is a faulty rule that expresses that the 
sales person with Internet access is not the employee of 
the month, but another sales person. 

 
6. Conclusions and future work 
 

This paper presents a CSP based approach to 
automatically diagnose firewall rule sets. One of the 
main contributions of this paper is the specification of 
a high level policy to diagnose the firewall conformity 
with a specified security policy. With this approach, it 
is not necessary to manually test rules, since the 
specification of which things the firewall must do, or 
its objectives, are represented in the policy. 

Another important contribution is the logic model 
we have used to model firewall functionality. Both 
models (policy and firewall rule set) are transformed 
into a Constraint Satisfaction Problem. Finally, 
consistency techniques are used to reason, detect and 
identify (diagnose) faults on firewall rule set. 

Our model is also capable of representing the policy 
and firewall rules independently from the network 
topology, because the model can use symbolic names 
to represent the source, destination and service fields 
of both policy and rules. 

The work presented in this paper can be extended 
and improved in several directions. First, a GUI can be 
constructed to facilitate the specification of the high 
level policy by users (and its automatic conversion to 
tuples), so users doesn’t need any more to express the 
policy in a written language. Second, performance 
analysis of the CSP engine with a complex firewall 

rule set should be done in order to optimize our 
process. At this time, we are trying to extend the model 
to represent a network with several inter-related 
firewalls, and also trying to eliminate the equals 
operator limitation. With this improved model, we 
expect to be able to diagnose inconsistencies in 
distributed firewalls more accurately. A performance 
analysis with real policies could also be very 
interesting and can provide us with very useful results 
to improve and optimize our model. 
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