
CSP-Based Firewall Rule Set Diagnosis using Security Policies

S. Pozo, R. Ceballos, R. M. Gasca
Department of Computer Languages and Systems
ETS Ingeniería Informática, University of Seville
Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

{sergio,ceballos,gasca}@lsi.us.es
http://www..lsi.us.es/~quivir

Abstract

The most important part of a firewall configuration

process is the implementation of a security policy by a
security administrator. However, this security policy is
not designed by higher levels of the organisation, nor
is written anywhere, so it is very usual to make
mistakes in its implementation. To solve this problem
we propose to express this global access control policy
in some informal language that is translated to a
model specification in conjunction with the firewall
rule set. Then we construct a Constraint Satisfaction
Problem to detect and identify the possible
inconsistencies between the specified policy and the
firewall rule set.

Keywords: firewall, policy, constraint, csp,
consistency

1. Introduction

At present days, firewalls continue to be the first
line of defence of most (if not all) organizations that
are connected to the Internet. However, to be an
effective defence, a firewall must be configured
properly. Firewall rule sets usually are not commented
nor described anywhere: if there is no written security
policy stating what the firewall must do, the
implementation depends entirely on the interpretation
of the security policy by security administrators.

There are several reasons these tasks are difficult
and prone to errors. Firewall rule languages tend to be
very low level and difficult to write, and usually
require an in-depth knowledge of the specific firewall
system. Rule modification could be a daunting task,
because a modification of a rule in a firewall with
hundred of rules could derive side effects in its own
firewall, or at other firewalls linked with it. In addition,
most organisations don’t have a security policy for
their everyday aspects of security, even less a more

specific policy like an access control one for
implementation at their firewalls.

We firmly believe in the need of the use of a model
and formal methods to reason about firewall rule sets
in order to detect and identify faults. We also think that
the effectiveness of a firewall is dependent on
providing a written security policy (a specification of
what must be done) given by people at higher levels of
the organization than systems’ administrators.

In this paper we propose a first order logic model in
which to transform both a natural language
specification of an access control policy, and a firewall
rule set. We also propose a method (we have
implemented) based on Constraint Satisfaction
techniques to automatically detect and identify
inconsistencies between the rule set and the specified
policy (Fig. 1). The high level specification language
to specify the security policy is not an objective of this
work.

The rest of the paper is organized as follows. In
section two we comment the state of the art on the
related works and explain the main differences with
our approach. In section there is a very brief
introduction to constraint satisfaction problems.
Section four is the core of the paper, we explain or
model in an incremental way. In section five there is an
illustrative example. Finally, in section six we
conclude and give some thoughts about future works.

2. Related works

The closest works to ours come from the firewall
analysis field. In [4, 5], authors use graph algorithms to
represent firewall access control policies and reason
about packet trajectories. Authors of [6, 7] provide an
abstract language to represent policies, and provide a
mechanism to completely separate the security policy
from the network topology. There is also possible to
query this abstract representation (which is also based

on graph algorithms) about concrete paths, or even to
generate all possible queries and present them to the
user, which is responsible of deciding if the firewall
works as expected. Finally, the abstract representation
can be compiled to low level firewall rules. In [8]
authors use constraint logic programming to represent
policies transformed from low level firewall rules.
They are also able to reason about the policies, but
queries must be given by experts. In [9] authors
present a method based on graph algorithms to reason
about IDS configurations in combination with a
firewall configuration of the network.

The main difference of all of these works with ours
is that we provide a specified high level policy. This
policy is used as a goal to test if the firewall complies
with it. This approach is a recommendation suggested
in [4, 5], and a logical consequence of the works of [6,
7] which query all possible things about the firewall
and then present the results to the user; and of [8], in
which the user is responsible of querying the reasoning
engine. Another significant difference is that we
provide a very simple but strong logic model of
firewalls, and also a strong reasoning method based on
Constraint Satisfaction Problems. To the best of our
knowledge, this is the first approach to model a
firewall as a logic machine and transform this model
into a CSP.

3. Constraint satisfaction problems

Constraint Satisfaction Problems have been object
of research in Artificial Intelligence in the last few
decades [1]. A Constraint Satisfaction Problem (CSP)
is a framework for modelling and solving real-
problems as a set of constraints among variables
defining the state of the problem. A CSP is defined as

a set of variables { }1 2, ..., nX X X X= , each
associated with a discrete-valued domain

{ }1 2, ..., nD D D D= , and a set of constraints

{ }1 2, ... mC C C C= restricting the values that
variables can take simultaneously (reducing the
domain for each variable). Each constraint iC is a pair
(,)i iW R , where iR is a relation 1 ...i i ikR D D⊆ × ×

defined in a subset of variables iW X⊆ . A solution
to a CSP is an assignment of a value from its domain
to every variable, in such a way that all constraints are
satisfied simultaneously.

A CSP could have multiple solutions. It is possible
to find (1) just one solution with no preference to
which one of the total solution space, (2) all solutions,
and (3) an optimal solution by means of an objective
function defined in terms of one or more variables.
There are many techniques to search and prune
through all possible value assignments to variables.

In many real-life applications, it is possible to be
interested in a good solution, and not in whichever
solution. The objective function usually is a function
that tries to maximize (or minimize) the number of
satisfied constraints. Such kinds of problems are
referred as MaxCSP, or more generally, Constraint
Satisfaction Optimization Problems (CSOP) [1].

4. System model

4.1 Policy and Firewall Rule Set
Transformation Rules

A typical rule from a firewall has different fields
that represent information relevant to the filtering
and/or logging tasks. The fields needed to be modeled
are:
• Source and Destination. The Source IP field of the

packet represents one possible IP of the network
address space at which the source machine is
connected to, but can also represent a subnet, or the
entire zone. Destination IP field is analogous.

Figure 1. High level view of the firewall diagnosis process

• Service and Protocol. The protocol represents which
of the many existent protocols (TCP, UDP, ICMP,
etc.) the service uses. The service represents the
destination port number at which the service is
located. For simplicity, we will only use the port
number.

• Action. The action represents if the firewall leave
the packet pass to its destination (allow) or not
(deny).

Note that the direction of the packet (that is, which

interface does it come from and where does it go to) is
implicit into the Source and Destination fields, thus it
is not necessary to model the packet directions or
interfaces.

In our model it is also possible (and preferred) to
use symbolic names instead of absolute numbers for all
the fields, because it is very usual to use symbolic
names instead of concrete network address: with
independence of the low level network topology, the
high level access control goals should be the same. The
main benefit of this process is the separation of the real
network topology from the policy and rule set models.
A policy or rule in our model is therefore represented
as a four field tuple (Fig. 2)

Figure 2. Tuple representation

We are going to use the same model for both the
policy and firewall rules because they are equivalent
(they express the same thing with the same information
fields).

As noted by the action field in the tuple, our model
can express both allow and deny policies and rules.
For the sake of simplicity, policies can be expressed
only with allow action fields, so order is not important;
but rule sets can be expressed with deny action fields,
so order is important; also Internet must be expressed
as an explicit zone. We assume that the last policy and
the last rule are general deny all ones.

4.1.1 Policy Transformation from Natural
Language Specification. As we have noted before, the
main contribution of this paper is the use of a high
level policy to express the global access control
requirements of the organisation. The firewall rule set
must comply with this policy. To be able to reason
about both the policy and the rule set, it is necessary to
model them into tuples. The tuple model is the same
for both the policy and rule set.

The transformation of a natural language policy to a
tuple of our model is very simple (Fig. 3). Note the use
of symbolic names.

4.1.2 Rule Transformation from Firewall Rule-

Set. The transformation from rules is even more direct,
since the fields in them are the same of the tuples. For
example, an IP Tables [2] rule can also be transformed
to a tuple (Fig. 4).

Figure 3. Tuple transformation from natural
language specification

Note that the transformation from a rule to a tuple is

direct and can be automated parsing firewall rule
fields. Note that, as we have indicated before, we are
not taking into account the protocol (TCP in this
example) for the sake of simplicity, but its
incorporation into the model is direct.

Figure 4. Tuple transformation from low level

firewall rule
4.2 Firewall Model

Fortunately, a firewall is a very simple machine
whose working internals are well known. Fig. 5
represents a logic model for rule processing in a
firewall.

Figure 5. Firewall rule processing model

This process should be repeated until there is a

match between a rule and a packet. If there is no match
with the specified rules, then the default action is

executed (in our model the default action is always a
deny all rule).

In our proposal, there is a high level policy
specifying the access control policy. For our purposes
it is necessary to model both the policy and the rules.

4.2.1 Logic model. As we are going to use a more
formal language in this subsection, it is also necessary
to give some definitions to model the tuples and the
complete policy and rule set.

The variables 0()POL
i nSource i < ≤ ,

0()FW
j mSource j < ≤ represent the source field of a

tuple representing a policy and a tuple representing a
firewall rule respectively. In a similar way, the
variables 0()POL

i nDestination i < ≤ , and

0()FW
j mDestination j < ≤ represent the destination

field of a tuple representing a policy and a rule
respectively. Variables 0()POL

i nService i < ≤ and

0()FW
j mService j < ≤ represent the service field of a

tuple representing a policy and a rule respectively.
Finally variables 0()POL

i nAction i < ≤ , and

0()FW
j mAction j < ≤ represent the action field of the

tuple representing a policy and a rule respectively.
A policy is a finite set of tuples of the

form:

{ }
0()

, , ,

POL
i n

POL POL POL POL

Tuple i

Source Destination Service Action
< ≤ =

represents the transformation into our model of a
policy from its natural language representation. Policy
tuples are indexed by the integer i, where n is the
number of tuples. The size is always greater than zero
because we have assumed the existence of a deny all
policy as the last one.

A firewall rule is a finite set of tuples:

{ }
0()

, , ,

FW
j m

FW FW FW FW

Tuple j

Source Destination Service Action
< ≤ =

Rule tuples are indexed by the integer j, where m is the
number of tuples. The size is always greater than zero
because we have assumed the existence of a deny all
rule as the last one.

0 ,0
ij

i n j mR < ≤ < ≤ is a logic variable that represents a

match between a 0()POL
i nTuple i < ≤ and a

0()FW
j mTuple j < ≤ :

0 ,0 () ()

 () ()
 () ()

ij POL FW
i n j m

POL FW

POL FW

R Source i Source j

Destination i Destination j
Service i Service j

< ≤ < ≤ = = ∧

= ∧

=

()jP T is defined as a path variable that indicates
the rules that have been processed, in a similar way we
defined it in a previous work [3]. As order is important
in tuples transformed from rule sets, it is needed to
simulate that order in our model. For a fixed

()POLTuple i , P is defined take the values:,
: 0 () :

()
j

j

j j k P T TRUE j k j m

P T FALSE

∀ < ≤ • = ∧ ∀ < ≤ ⇒

=
This predicate is also going to serve us to detect where
the fault exactly is, as is going to be explained in the
next definition.

The predicate FWOK TRUE= if

{ }
:1 , :1

() ()ij POL FW

i i n j j m

R Action i Action j

∀ ≤ ≤ ∃ ≤ ≤ •

∧ =

In any other case, FWOK FALSE= . If there is a

fault, then the last predicate ()kP T TRUE=
identifies it. Take into account that the predicate P is
always for firewall tuples, since the policy is
axiomatic.

With all these definitions we have the logic model
presented in Fig. 6. With this model we can express
access control policies only if they involve information
flows between different zones; this model cannot
express requirements between information flows in the
same zone, since no firewall can control that flow. On
the other hand, the zones may represent various
physical or logical networks that may have routers
within them (with no filtering capabilities). These
internal routers are of no interest for our model, since
we are only interested in filtering devices.

j j<m j+1 j m

ij
j j<m j+1 j<m 0 ,0

ij FW POL FW
0 ,0

FW POL FW
j j=m

1. P(T) P(T)

2. P(T) (P(T) = R)

 (R OK = (Action (i)==Action (j)))

3. P(T) OK = (Action (i)==Action (j))

i n j m

i n j m

≤

< ≤ < ≤

< ≤ < ≤

¬ ⇒ ¬

⇒ ¬ ∧

⇒

⇒

Figure 6. Logic model

4.2.2 CSP model. The constraint representation of the
previous model is quite direct, and requires no
additional definitions (Fig. 7). We have based this
constraint model in a previous work [3]. There are only
two unbounded variables with boolean domain in the

CSP: the variables 0()j j mP T < ≤ and FWOK that obey
to definitions 8 and 9 respectively. There is a special
constant representing that the value of the first path
variable is always true. This is necessary because is the
only way to start the reasoning process at (3).

Then there are four constraints.
• The constraint (1) represents the predicate

0 ,0
ij

i n j mR < ≤ < ≤ (definition 7), a match between

0()POL
i nTuple i < ≤ and 0()FW

j mTuple j < ≤ .

• The constraint (2) represents that

1

: 0 ()

() ()

FW
j m

j j

j j m Tuple j

P T P T
<

+

∃ < ≤ •

∧¬ ⇒ ¬

since if the firewall is stopped at

0()FW
j mTuple j < ≤ , then it must be stopped for all

following tuples. Note that once a path variable is
false (representing that the previous tuple has
matched), then all following ones must also be false.

• The constraints (3) and (4) are the same but (3) for a

tuple that is not last one and (4) for the last tuple (a
deny all rule always matches with everything).
These constraints represent that if there is no match
at 0()FW

j mTuple j < ≤ for a given

0()POL
i nTuple i < ≤ , then the match must checked

against the following tuple, with 1() 1jP T + = .

Also, if there is a match, then 1FWOK =
(representing a full match: including the action
field); 0FWOK = in other case.

Note that this constraint model only represents the

consistency checking between a given policy

0()POL
i nTuple i < ≤ and a firewall rule set. To be

complete, the explained process should be repeated for
all policies, but for the sake of simplicity we have left
this for the implementation.

The problem is solved in two phases. First, the
constraint solver checks if the complete firewall rule
set is consistent with each policy. This process
determines the faulty rules at the firewall (different
action fields), and also the policies that specify actions
that are not represented in the firewall rule set (rules
that must be written), as we have stated before.

{ }
{ }

0

0

0

0 ,0

Unbounded variables
() ,

Domains
() 0,1

0,1

Constants
() 1

Constraints

1. () () () () () ()
2. P

j
FW

j m

j j m

FW

ij POL FW POL FW POL FW
i n j m

P T OK

P T

OK

P T

R Source i Source j Destination i Destination j Service i Service j

< ≤

< ≤

< ≤ < ≤

∈

∈

=

= = ∧ = ∧ =

¬ j j<m j+1 j m

POL FW FW
0 ,0 0 ,0j j<m j+1 j m

0 ,0

(T) P(T)

3. P(T) (P(T) = R) (R (Action (i) == Action (j)) OK =1)

 (R (Action

ij ij
i n j m i n j m

ij
i n j m

≤

< ≤ < ≤ < ≤ < ≤≤

< ≤ < ≤

⇒ ¬

⇒ ¬ ∧ ⇒ ⇒ ∧

⇒ ¬ POL FW FW

POL FW FW
j j=m

POL FW FW

(i)==Action (j)) OK =0)

4. P(T) (Action (i)==Action (j)) OK =1)

 (Action (i)==Action (j)) OK =0)

⇒

⇒ ⇒ ∧

¬ ⇒

Figure 7. Constraint model

If the process returns that the problem is consistent,
then the reverse process must be also run to be
complete. This process identifies rules in the firewall
rule set that are not considered in the policy. As the
policy is axiomatic, then the faults are that actions that
are not considered in the policy.

5. Example

We are going to present an example to illustrate
how our model works. The complete process has been
implemented using a commercial constraint solver.
The example network (Fig. 8) consists of three zones
and several systems (take into account that our model
can express a firewall with an unlimited number of
interfaces):
• Internet. This zone represents all systems with pubic

IP addresses that are not in the other segments.
• DMZ. This zone contains the systems that can be

accessed from the Internet. This network has private
IP addresses.

• Administration. This zone contains systems from
employees that use information from sales, salaries,
etc.

• Sales. This zone contains systems from employees
that use information relevant to customers, prizes,
promotions, etc. This zone also contains a mass
storage system that must also be accessed from all
administration systems.

Figure 8. Network with a firewall with four

interfaces: Internet, DeMilitarized Zone, Sales
and Administration departments

An example security policy for this network, written in
natural language, is presented in Fig 9. This policy is
also decomposable on several smaller sentences, but it
is really not necessary to explicitly do it, since its
transformation to tuples is direct (Fig. 10).

1. Users on Internet can access the web server
2. Only the sales person of the month (this month is “S1”) of the sales

Department can access web pages on Internet. However all people
at sales department can receive and send eMail through Internet.

3. Users of the administration department can access web pages on
Internet, and also the storage server at the sales department.

4. No more accesses are permitted.

Figure 9. Natural language policy

The next phase is to take the firewall configuration

file and translate it to tuples. It is exactly the same
process done for the policy, but this time the firewall
configuration files can be parsed automatically. Recall
that in the firewall rule set there can be any number of
deny rules. Fig. 10 presents the modelled firewall rule
set.

POLICY

TuplePOL(1)={Internet, WebServer, http, allow}
TuplePOL(2)={S1, Internet, http, allow}
TuplePOL(3)={Sales, Internet, pop3, allow}
TuplePOL(4)={Sales, Internet, smtp, allow}
TuplePOL(5)={Administration, Internet, http, allow}
TuplePOL(6)={Administration, StorageServer, 789, allow}
TuplePOL(7)={any, any, *, deny}

RULE SET

TupleFW(1)={Internet, DataBase, *, deny} // Log rule
TupleFW(2)={Internet, WebServer, http, allow}
TupleFW(3)={S3, Internet, http, allow}
TupleFW(4)={Sales, Internet, pop3, allow}
TupleFW(5)={Sales, Internet, smtp, allow}
TupleFW(6)={Administration, Internet, http, deny}
TupleFW(7)={Administration, Internet, pop3, deny} // Log
TupleFW(8)={Administration, StorageServer, 789, allow}
TupleFW(9)={any, any, *, deny}

Figure 10. Modeled policy and rule set

5.1 Firewall diagnosis

At the first phase the solver checks each policy
against the complete firewall rule set (so the path
variables are for the firewall tuples). There are two
faults diagnosed. With (2)POLTuple the process

returns 0FWOK = . The last path variable set to true

is 9()P T , the path variable of the last tuple. This
implies that there is no rule that complies with that
policy, and needs to be written. With (5)POLTuple

the process returns 0FWOK = . The last path variable

set to true is 6()P T . This implies that the rule 6
matches against the tuple 5, but they have
contradictory actions. Since the policy is axiomatic,
then it can be argued that (6)FWTuple is faulty (its
action has to be changed).

At the second phase, the solver checks each firewall
rule against the complete policy. This time the path
variables are for the policies. With (3)FWTuple the

process returns 0FWOK = . The last path variable set

to true is 7()P T , the path variable of the last tuple.
This implies that there is not a policy that complies
with that rule. Since the policy is axiomatic, then the
fault is necessarily on the third rule of the firewall. So

(3)FWTuple is a faulty rule that expresses that the
sales person with Internet access is not the employee of
the month, but another sales person.

6. Conclusions and future work

This paper presents a CSP based approach to
automatically diagnose firewall rule sets. One of the
main contributions of this paper is the specification of
a high level policy to diagnose the firewall conformity
with a specified security policy. With this approach, it
is not necessary to manually test rules, since the
specification of which things the firewall must do, or
its objectives, are represented in the policy.

Another important contribution is the logic model
we have used to model firewall functionality. Both
models (policy and firewall rule set) are transformed
into a Constraint Satisfaction Problem. Finally,
consistency techniques are used to reason, detect and
identify (diagnose) faults on firewall rule set.

Our model is also capable of representing the policy
and firewall rules independently from the network
topology, because the model can use symbolic names
to represent the source, destination and service fields
of both policy and rules.

The work presented in this paper can be extended
and improved in several directions. First, a GUI can be
constructed to facilitate the specification of the high
level policy by users (and its automatic conversion to
tuples), so users doesn’t need any more to express the
policy in a written language. Second, performance
analysis of the CSP engine with a complex firewall

rule set should be done in order to optimize our
process. At this time, we are trying to extend the model
to represent a network with several inter-related
firewalls, and also trying to eliminate the equals
operator limitation. With this improved model, we
expect to be able to diagnose inconsistencies in
distributed firewalls more accurately. A performance
analysis with real policies could also be very
interesting and can provide us with very useful results
to improve and optimize our model.

Acknowledgements

We would like to thank the anonymous reviewers
for their constructive comments on the early version of
this paper. This work has been funded by the Spanish
Ministerio de Ciencia y Tecnología under grant
DPI2006-15476-C02-01.

References

[1] K. Marriott, P. J. Stuckey. Programming with
Constraints: An Introduction, MIT Press, 1998.

[2] IPTables. Netfilter Project. http://www.netfilter.org/

[3] R. Ceballos, R.M. Gasca, C. del Valle, F. de la Rosa. “A
Constraint Programming Approach for Software Diagnosis”.
Proceedings of the Fifth International Symposium on
Automated and Analysis-Driven Debugging
(AADEBUG’03). Belgium, September 2003.

[4] J. Guttman. “Filtering Postures: Local Enforcement for
Global Policies”. Proceedings of IEEE Symposium on
Security and Privacy (SSP’97), May 1997.

[5] J. Guttman, A. Herzog. “Rigorous Automated Network
Security Management”. International Journal of Information
Security, Vol. 4, No. 1-2, Pages 29-48 Springer-Verlag 2005.

[6] Y. Bartal, A. Mayer, K. Nissim, A. Wool. “Firmato: A
Novel Firewall Management Toolkit”. ACM Transactions on
Computer Systems, Vol. 22, No. 4, Pages 381-420.
November 2004.

[7] A. Mayer, A. Wool, E. Ziskind. “Offline Firewall
Analysis”. International Journal of Information Security,
Vol. 5, No. 3, Pages 125-144. Springer-Verlag, 2005.

[8] P. Eronen, J. Zitting. “An Expert System for Analyzing
Firewall Rules”. Proceedings of Nordic Workshop on Secure
IT-Systems (NordSec’01), November 2001.

[9] T. E. Uribe, S. Cheung. “Automatic Analysis of Firewall
and Network Intrusion Detection System Configurations”.
Proceedings of ACM Workshop on Formal Methods in
Security Engineering (FMSE’04), Ocober 2004

