A Modular Architecture for Secure and Reliable
Distributed Communication

C. M. Jayalath, R.U. Fernando

Abstract—Over the past decade various efforts were taken to
provide mechanisms to do secure and reliable message exchanges
in distributed systems. With the advance of the Internet and
concept of SOA much focus and effort were given to realizing this
based on Web services. Our goal was to come up with a solution
which implements these features in a usable and a modular
manner. The implementation was done on top of the Apache
Axis2 platform and the result was a framework which facilitate
fully secure and reliable Web service message exchange.

Index Terms—Rampart, SOA, Sandesha2, Web Services

L.INTRODUCTION

eliability and Security are two of the most important
Raspects for any distributed communication mechanism.
With security the expectation is to address several aspects
including secret communication, digital signing and avoiding
intentional message repeats from a possible attacker. With
reliability the idea is to make the communication guaranteed.
Most of the modern communication applications need one or
both of these aspects. Because of this many of the standards
that appeared in the field of communication were incorporated
with ways to address these two issues or they were later
extended to address those.

The field of Web Services was no different. Initial web service
specs SOAP, WSDL and UDDI simply addressed the basic
needs of the technology namely mechanisms for describing
message protocol, service description and service discovery.
But later when the standards came into practice it was
understood that this would not be enough. This caused the
beginning of a full stack of WS-* specifications. One very
important part of this stack was to provide means for the above
two aspects, security and reliability.

A.Previous Work

There have been quite a number of efforts from various
vendors and institutions to develop security and reliability for
distributed systems. Some of these have been proprietary
solutions. Some were open Some of the
implementations came from academia.

source.

C.M. Jayalath is with Web services project of the Apache Software
Foundation. (e-mail:chamikara@apache.org)

R.U. Fernando is with the Web services project of the Apache Software
Foundation (e-mail:ruchithf @apache.org)

Microsoft WCF (Windows Communication foundation)[1] is
one of the leading efforts being taken to provide a solution in
this space. With WCF Microsoft tries to build a unified
distributed communication platform totally based on the Web
service stack. Because of being based on Web services they
will easily be able to communicate with other distributed
technologies unlike their previous attempts like COM+ or .Net
remoting. WCF implements popular Web service
specifications for doing secure reliable message exchanges.

Sun Microsystems is trying a different path with their J2EE
family of specifications. They introduced several specifications
to address various aspects of the Web service arena including
JAX-WS (for web service communication), JAXB (for XML
data binding). JAXP (for XML processing) and SAAJ (for
attachments). Many J2EE implementations have implemented
these specifications.

Some of these implementations are trying to provide means to
do secure, reliable communication by implementing popular
Web service specifications such as WS-ReliableMessaging and
WS-Security.

There has been several efforts from the academia as well. One
family of solutions [2] from the Cornell University, Computer
Science department is to provide means to do reliable
communication in time critical environments. Another effort
[3] from Indiana University, Computer Science department is
on building a broker based platform to provide ways to do
distributed communication with secure and reliable aspects.
More details on these solutions will be given later.

B.Our approach

The approach that was analyzed and implemented by us was
based Apache Axis2 the latest and the most promising Web
service stack from Apache software foundation. Apache Axis2
has an architecture that reflects the changes that happened in
the Web service arena in the past few years. It also gives
features to easily embed implementations of newly introduced
specifications into the framework. Extensions which
introduces this kind of new functionalities into Axis2 are
called modules.

Two solutions were developed by us based on Axis2. First one
was for providing security needs. This consisted of two Axis2

modules named Rampart and Rahas. Rampart provides basic
security needs such as signing and encryption and also
provided means to utilize WS-SecureConversation. Rahas was
a implementation of WS-Trust. Mode details on these
specifications will be given later.

Another solution named Sandesha2 was aiming at providing
the reliability need for Axis2. This achieved acknowledgment
based reliability by implementing the WS-ReliableMessaging
specification. Sandesha2 also gives an in-order exactly-once
delivery assurance and support for persistent storage based
reliability giving a much higher value in real business
scenarios.

The design and implementation of the systems were done after
the careful consideration of several features that could give a
much higher value to the end user.

1)Pluggability:
It is very important that the framework provides flexibility in
its implementation to the users. The flexibility was achieved by
decoupling as much as possible. Using the module approach in
Apache Axis2 independent modules were provided that catered
for the security aspects and reliable messaging aspects. These
two can independently act on messages and when both are
available in the system they will be able to perform secure-
reliable messaging.

2)Versioning:
Interoperability being the most important goal of Web services
and functionality extension specifications it is very important
that the developed framework supports the latest released
specifications and that it is capable of extending itself to
support inevitable changes in the revised specifications. In
implementing these quality of service specifications Apache
Axis2's ability to support versioned modules is very important.

3)Configuration:

Deploying a secure reliable messaging with a customer
security requirements can be a nuisance when it comes to
configurations. Therefore the proposed framework uses
standard domain specific policies for both security and reliable
messaging. Compared to having a custom configuration
language where it expects the users to understand security and
reliability requirements and come up with appropriate
configurations, this is far more practical and convenient to
users.

C.Summary of the paper

This paper will cover the basic design approach and
implementation approach that were taken by us when building
a security and reliability layers for Apache Axis2. It will start
by giving a general introduction to Web services. Then it will
move to the more interesting part on the design and

implementation of our system. The latter parts will introduce
the results that were obtained by analyzing several other
similar implementations and comparing them with our
solution.

II.BACKGROUND

A.Introduction to web services and ws-*

Web services is a XML based inter application communication
mechanism. The definition for the Web Services given by
W3C WS Architecture working group is given below.

[Definition: A Web service is a software system identified by a
URI, whose public interfaces and bindings are defined and
described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the
Web service in a manner prescribed by its definition, using
XML based messages conveyed by Internet protocols.][4]

Even though this definition gives a very abstract view,
practically Web Services are based on three basic
specifications namely SOAP, WSDL and UDDI [4]. All three
of these specifications have been well established and finalized
versions have been released under W3C.

SOAP is a extensible XML based messaging protocol which
defines the wire format of a message interaction between a
client and a Web Service. Extensibility of SOAP paves the way
for easy adoption of other protocols into the stack.

WSDL is the primary and most widely used description
language for Web Services. This defines a XML based
language to define various aspects of the services including
service operations, formats of the input and output message
into these operations, way the service binds into various
protocols and the actual endpoints of these bindings.

UDDI is the widely adopted protocol for discovering the Web
Services. This also gives a registry facility to support the
process of publishing and discovering services.

On top of these three basic specifications a set of other Web
Service specifications were developed mainly by groups of
software vendors. Some of these specifications which got a
good momentum were later submitted to the two standers
bodies W3C or OASIS. Some of these have been released but
most are still under development. However this led to a stack of
protocols each adding a useful feature to the space of Web
services.

B.Web Service specs for secure reliable communication

1)WS-ReliableMessaging

WS-ReliableMessaging is the most prominent Web service
specification for reliable communication. The specification
was originally initiated by a collaborative effort of Microsoft,
IBM, BEA and TIBCO. This version of the specification was
called 1.0. Later this was submitted to OASIS for
standardization and version 1.1 of the specification is being
developed under the OASIS WSRX technical committee.

WS-ReliableMessaging specification basically tries to obtain
reliability trough a simple acknowledgment based mechanism.
Message exchange will always happen within a context named
a sequence. Two entities hoping to do a reliable message
exchange will first have to establish a sequence by exchanging
several protocol specific messages. After establishing of this
client will send application messages to the server and the
server will send acknowledgment messages time to time. Each
application message in a sequence will be numbered with a
unique message number. Server can use this to do an ordered
invocation of messages.

2)WS-Security, WS-Trust and WS-SecureConversation

These are the family of specifications facilitating the security
needs of the Web service space. WS-Security is aimed at
providing mechanisms to do secure SOAP message exchanges.
WS-Security enhances the basic SOAP model by providing
means to guarantee message integrity, message confidentiality
and authentication of messages. The specification also
provides an extensible mechanism to associate various security
tokens with messages.

WS-Trust specification provides extensions to the WS-Security
specification by providing ways to issue, exchange and validate
security tokens. This also facilitates issuing and distribution of
security credentials within different trust domains.

WS-SecureConversaiton is built on top of both the WS-
Security and WS-Trust specifications. to provide mechanisms
to to secure communication between services. The main focus
is on describing ways to establish security contexts and to do
secured message exchanges within these contexts.

3)WS policy
WS-Policy gives a model to describe and exchange the policies
of web services. WS-PolicyAssertions specification provide
ways to express capabilities and constrains of a certain Web
service while WS-PolicyAttachement define several ways to
attach these policies with Web services.

Other specifications uses the policy specifications described
above or extends it to provide means to specify policies of that
particular domain. For example the WS-SecurityPolicy
specification provides these features for the security set of
specifications described above.

II1. ARCHITECTURE

A.Axis2 architecture
Apache Axis2 has quite a set of architectural concepts is not
possible to be covered here. Mainly Axis2 consists of several
subsystems as given in the diagram below.

internal components

Information Client ARI
Deploymert Processing
xml
processing
Model
WSDL and SOAP
code Generation Processing Transparts
Model

Fig. 1: Architecture of Axis2

The XML processing model of Axis2 is based on a StAX
based XML representation named AXIOM. AXIOM provides
features like differed building which optimizes the
performance by keeping the data in the transport stream until
they are really required.

The SOAP processing model of Axis2 consists of a set of
Flows each containing of a set of handlers which will do
various operations on the messages passed through them. The
handlers are organized in logical groups known as Phases. The
transport model is responsible for accepting the SOAP requests
from various transport mechanisms and for delivering them to
the SOAP processing framework correctly. It is responsible for
writing response SOAP message back to the respective
transports as well.

The deployment model gives facilities to do achieve based
deployment of services and modules. The descriptor files
contained within these archives will give exact information on
how these archives should be deployed. Modules are the
mechanism that have to be used to extend the functionality of
Axis2. A module may introduce a set of handlers which may
need be added to the various flows within the Axis2 system.

B.Our solution for reliability

Sandesha2 was the name of our solution for reliable
communication. Sandesha2 was also a module built on top of
Axis2. So it was leveraged from all the features that were
readily available there.

Sandesha2 implemented the WS-ReliableMessasing
specification that was described above. It currently supports

both available versions of this specification. Therefore
Sandesha2 basically uses an acknowledgment based model to
reliably deliver of SOAP messages from one endpoint to
another.

Apart from the basic functionalities that were available by
implementing the specification it was taken a bit ahead by
adding several other features that could increase its value quite
a lot in a real business scenario.

One of those was the delivery assurances provided by
Sandesha2. It supports InOrder Exactly-Once delivery
assurance. So Sandesha2 can guarantee that your messages are
delivered to the server endpoint in the same order they were
sent at the client side. Also it guarantees that non of your
messages will be delivered twice to the server endpoint.
Ordering is optional and could be disabled. One reason for this
may be the performance.

Another feature Sandesha2 provide is the support for persistent
storage. This could be really valuable in real business scenarios
both for the server side and the client side.

In the server side RM state will be preserver in crashes.
Assume when the server crashed it had hundred ongoing RM
sequences with various clients. These could be in various
stages. When the system comes back all the RM data will be
restored. Server will start transmitting and retransmitting
pending messages and will start performing pending
invocations. Clients will be able to interacted with the server
from the point they were when the system crashed.

The real value for persistence will come in the client side. This
gives a very high level of guarantee to the client and promises
the delivery of messages even in client crashes. Sandsha2 will
simply start the sequence from the place it was last saved will
will start reliable delivery of messages to the other side.

Sandesha2 follows a WS-Policy based configuration model.
Because of this, Sandesha2 configuration parameters can
easily be presented to the outside using standard mechanisms
like WSDL. Policies can be in the module itself (which are the
default values), in a service or in a operation. When policies
are present in multiple levels affective value will be picked
from the lowest level. For example if module and service
define two values for the RetransmissionInterval policy (which
gives the interval on which the messages are retransmitted) for
thatparticular service Sandesha2 will pick the value defined
there. But for other services value mentioned in the Module
will be used.

Following diagram gives the architecture of Sandesha?2.

Sanceshelnbandler
,—‘ Gobaln-ancler |:>
a Message |:: > Invocer
Prozessors
V
Sandesha0.tHandler Message
Receive”
<] Sexder 4 j
— Message
2rocessors

| Sandesha? Storage Framawork

Fig. 2Architecture of Sandesha2

As it is given in the diagram Sandesha2 introduces three
Handlers to the execution chain of Axis2. These Handlers will
delegate the processing of incoming and outgoing RM
messages to a set of MessageProcessors. Each
MessageProcessor is responsible for processing a specific type
of RM messages. For example
CreateSequenceMessageProcessor will process
CreateSequence messages.

Sender and Invoker and two Thread pools present within
Sandesha2. Sender is responsible for the transmission and
retransmission of messages while the Invoker is responsible for
the invocation of messages in order to guarantee the ordered
delivery feature.

Sandesha Storage framework defines a set of interfaces that
could be implemented by a particular storage mechanism.
These interfaces define several beans (which could represent
database rows in a OR mapping) a set of BeanManager (with
CRUD methods to manipulate these beans) and a transaction
layer. The rest of the Sandesha2 code completely runs on top
of this set of interfaces defined by the Storage framework.
Because of this you can easily define a storage framework for
your own storage mechanism and make sandesha2 work on top
of that.

C.Our solution for security

Apache Rampart was designed specifically to support WS-
Security and WS-secureConversation using WS-SecurityPolicy
as the main configuration language.

1)Rampart Axis2 Module
Rampart was developed as an Axis2 module which is packaged
as a .mar file and could be dropped into an Apache Axis2
repository. When the module is available in an Axis2

repository it can be engaged at service or operation level. The
module will not process messages unless it is configured.

This module consists of two handlers:
RampartSender
RampartReceiver

It is very important to note the positioning of these two
handlers in the execution chains — outflow and inflow.
RampartSender is placed in the “Security” phase in the
outflow after the message out phase.

This is critical to ensure that RampartSender is the last handler
that will modify the message before it is written to the wire.

Similarly RampartReceiver is placed in the “Security” phase of
the inflow which placed right after the transport phase. In this
case the position of the handler is important due to several
reasons. First a service must be configured to apply and
enforce security on messages directed towards it. Therefore the
service or operation must be discovered to pick up the relevant
security configuration to enforce security policies on the
incoming message. Therefore it is important that “Transport
Dispatchers” in the “Transport Pahse” discovers (or
dispatches) the service and/or the operation. Furthermore any
part of the message should not be processed before message
integrity is verified. Therefore all other handlers that uses
information from the incoming SOAP message must be
positioned after RampartReceiver.

It should be noted that Rampart Axis2 module is configured
according to the WS-Policy framework using WS-
SecurityPolicy and some Rampart specific assertions. The
Rampart specific assertions provides additional meta-
information required in enforcing policy specified by the WS-
SecurityPolicy assertions.

2)Rahas — WS-Trust components

Rahas provides the SecurityTokenService (STS) functionality
and a client API required to interact with the STS according to
the WS-Trust specification. The STS functionality provided by
Rahas comes in two flavors, a service and a module. The STS
service is an Axis2 web service that can act as a standalone
STS. And the STS module is an Axis2 module which can be
engaged on an existing service. This module will append the
additional operations into the service to be able to handle
different types of security token requests.

The Request Dispatcher figures out the type of request coming
in and then routes it into the configured Token Issuer, Token
Canceler, Token Renewer or Token Validator implementation.
All request information include intermediate processing
results are stored in the Rahas Data data structure and this is

used by the implementations to obtain required information on
the request. The STS will be configured with a Token Storage
implementation and this will be used by the Token Issuers,
Token Cancelers, Token Renewers and Token Validators to
store and obtain security tokens.

3)Rampart and Rahas Marriage

In supporting WS-SecureConversation scenarios the initial
handshake requires the service to be aware of the WS-Trust
protocols. Therefore the Rahas module (STS module) is used
to append STS operations to the service. The initial handshake
is secured by the bootstrap policy specified in the policy in
establishing the security context token and Rampart handlers
tracks the establishment of the security context and uses the
Token Storage to hold the security context token.

D.Combining Security & Reliability

At first there was no need for the combination of the two
modules. Depending on the configuration set by the user
Rampart/Rahas could guarantee the secured message exchange
and Sandesha2 could guarantee the reliable ordered delivery
of messages.

But with the advances of the underlying protocols there was a
need to bring the ReliableMessasing and SecureConversation
contexts together. Each Reliable Messasing sequence had to
have a associated SecureConversation session. At the
destination Reliable Messaging layer had to validate the
messages to make sure that the each message of a sequence
processes the correct security tokens.

To leverage this a SecurityManager interface was introduced to
Axis2. An interface based model was followed to minimize
coupling and to allow a future integration of a different
SecureConversation implementation into Sandesha2. The
SecurityManager introduced several functions to do tasks such
as manipulating issued security tokens, validating RM
messages and attaching security tokens into RM messages. An
implementation of this named RampartBasedSecurityManager
was developed by us to leverage the marriage of Sandesha2
and Rampart implementations.

I'V.IMPLEMENTATION

A.Implementing Reliability

Sandesha2 project was started on late 2005 and a 1.0 release
was done on May 2006.

The implementation is being done in two languages. The first
one was the Java implementation which introduced most of its

concepts and is to be wused with the Axis2 Java
implementation. This was quickly followed by a C
implementation aiming the Axis2 C stack. The C
implementation tries to provide reliability with a maximum
level of performance because of being run in a native (non
virtual machine) environment.

B.Implementing Security

The implementation of Rampart uses Apache WSS4J for
producing and processing secured SOAP messages. Apache
WSS4J uses XML-Security to obtain XML-Signature and
XML-Encryption functionality.

In securing messages WSS4J provides a set of message
builders to perform different security operations on a SOAP
message such as addition of a timestamp and/or a username
token into a security header, encrypting a part of a message,
signing a part of a message. These are used by the Rampart
Sender handler in constructing the secured SOAP message as
specified by policy.

In processing a secured message Rampart Receiver handler
hands over control to the Security Engine provided by WSS4J.
This processes the security header of the given SOAP message
and performs required operations to authenticate, validate and
decipher the message. Once this is completed Rampart
Receiver will process the results of security processing against
the policy to check conformance with the policy.

V.ANALYS1S/COMPARISON

A.Comparison with vendor specific implementations

Today it is possible to find a vast number of SOA solutions
provided by various vendors. These solutions are mainly
driven by various software firms and are taking different
approaches in the approach to develop a secure and reliable
distributed communication mechanism. The approach that
were taken by us had several advantages over the approach
that were taken by these vendor driven solutions. Some of
them are listed below. Our main focus was on popular SOA
stacks such as WCF from Microsoft and J2EE from Sun
Microsystems.

1)Loosely coupled components

As it was stated above the main integration of security and
reliability components happens through a SecurityManager
interface. Someone who wants to combine his own
SecureConversation implementation with Sandesha2 module
can easily do so by defining his own SecurityManager
implementation. Also there is nothing that prevents somebody
who want to use his own RM implementation with Rampart

and Rahas. Many other systems available in the marked do not
show such composability. In most of the case the components
in their systems are tightly coupled and it is far too difficult or
impossible to plug-in a part of an different implementation into
it.

2)Simple and SOA oriented API

Many web service framework vendors provide easy to use API
for making the task easy for web service developers. Most of
these APIs resembles the previous languages or programming
methodologies provided by the same vendor. Because of this
the many APIs have lost the focus on SOA and the final
solution have become quite difficult for a client who is not
familiar with similar technologies from the same vendor. Due
to this complexity many APIs had lost their SOAness. What
was meant by this was the easiness for a user who is not
familiar with the particular technology but who is familiar with
general SOA concepts to adapt to and use these APIs.

Our solution uses the simple API based on the ServiceClient,
OperationClient based approach of Axis2. In Axis2 a
ServiceClient simply represents a client for a remote service. A
user can ask the ServiceClient for OperationClients, each
representing a operation of this service . All the parameters to
the ServiceClient are passed through an Options object which
has get/set methods for manipulating commonly used values
and a property layer to enter any other additional parameters.

Both Sandesha2 and Rampart are based on this simple APIL
No additional extensions are added other than introducing
some keys for users to enter certain domain specific properties.
This makes the API much simple an easy to use for any
developer familiar with general SOA concepts.

3)No proprietary protocols

Most of the frameworks provide support for the open
specifications but many of these provide additional support
when both the client and service implementations are from the
same vendor. Some of these extensions leverage the features
enabled from specifications like WS-Policy but there is no
guarantee to say that the other vendor specific protocol
mechanisms will not be used.

This creates several problems. Firstly this will confuse the
user. He will have to bypass the general mechanisms offered by
service description languages such as WSDL to find out other
information about the service, such as the vendor and the
software version. Secondly this will seriously harm the
interoperability. The client will be able to nicely interoperate
with a service developed using the same technology but may
have trouble as soon as he tries to access a service developed
using a different one. This will confuse the users and will
undermine the whole idea of using open standards which is

having complete interoperability between implementations
from various vendors.

Our solution is completely open and do not use any closed
communication mechanisms. Our solution is fully adherent to
the open standards provided in the Web service stack. Any
extension was and will be based on open and excepted
mechanisms such as WS-Policy.

4)Not a mix of legacy and SOA

Many of the solutions provided above tries to maintain
backward compatibility with other legacy distributed
computing mechanisms, most of the time from the same
vendor. The reasons are mainly financial or marketing not
merely due to the technological requirements or limitations of
the newly introduced technology.

Due to the fact of trying to being compatible with these legacy
and mostly outdated technologies some of the vendors lack the
opportunity to freely architecture the new product to fully
leverage the benefits offered by SOA. They may end up in
having links to old concepts like the distributed object model
and may lack both in the cleanness of the architecture and in
the overall feature set offered to the user. This may also affect
the API which now may be a more generalized version than a
one that tries to resemble the concepts of SOA.

Our implementation completely focuses on providing a Web
service solution. There was no aim to have a goal to come up
with a solution generalized with other distributed
communication mechanisms and there will not be such an aim
in the future as well. The soul aim was in coming up with a
architecturally clean solution to realize the Web service stack
and provide a user friendly API which resembles the values
offered by SOA.

B.Comparison with solutions from academia

This section will present two distributed secure/reliable
systems that were developed in academia and will try to
analyze and compare the approaches that were taken by them
with the our solution.

1)Ricochet from Cornell University

A family of solutions from the Cornell university is aimed at
providing a time-critical and reliable experience to the real
time needs of the distributed systems. The work is based on a
protocol called Ricochet.

Ricochet is aimed at an environment where a large number of
nodes will decide each one belonging to one or more groups.
Ricochet obtains reliability by using error correction
mechanisms to recover lost packets. At the receivers an error

correction packet will be generated by using a random set of
groups to which that particular node belongs to. This error
correction packet will be send to the other nodes that belong to
the same set of nodes. Nodes use the incoming error correction
packets to recover lost packets or burst losses.

For the packets that cannot be recovered Ricochet uses an
acknowledgment based model. The receivers sends negative
acknowledgments to the senders asking for a retransmission of
the packets that could not be recovered.

There are several differences between the attempt followed by
the Ricochet team and the approach that were followed by us in
the space of reliability in distributed systems. Ricochet was
more aimed at IP level using IP multicast techniques to send
packets back and forth where as were were aiming at the
application layer protocols. Ricochet followed a mix model of
error correction and acknowledgments but our system was
totally based on an acknowledgment/retransmission based
model. Overall the solutions are aimed at two environments.
Ricochet aims at a datacenter kind of environment where a
large number of nodes communication with each other where
both reliability and time criticality is a requirement. Our aim is
at the reliable communication between two entities through the
Web where reliability is the main concern.

2)Narada broker from Indiana University

This is a solution based on the concepts of brokering. A
Narada system will consist of a set of widely dispersed set of
brokers. These brokers are organized in a hierarchy where a
brokers consists of a cluster which is a part of s super-cluster
etcetera. Communication between a cluster is generally quite
efficient and reliable than communication between the same
cluster and a super-cluster.

Clients register their interests and message formats in the
broker system. After this they can freely disconnect and the
system will make sure that that events which map to these
requirements are flown and delivered to the client in
subsequent reconnects. Clients will normally connect to their
local broker than to a remote one minimizing bandwidth
limitations that could occur if a large number of remote clients
connect to the same remote broker.

Developers of this system have implemented distributed
protocols like JMS and the Web services stack on top of this
brokering environment. An implementation of WS-
ReliableMessaging has been developed to facilitate reliable
delivery of messages. Nadada has its own subsystem to
manage secured message exchange.

When comparing this with our solution again a difference in
the environment where these two will be applied is visible.

Narada is more aimed at a widespread network of computers
which are primarily doing the communication using a
underlying brokering system. Even though our approach was
based on similar specification the targeted environment is
basically the Internet.

VI.Furure WoRk

The work was done by us to bring security and reliability
layers into Axis2 is not over. There are several areas that could
be improved or modified and some other where one more
research could be carried out.

One key aspect is performance. It has been noted that when
both Sandesha2 and Rampart are acting together there is a
noticeable reduction in performance specially for messages of
larger sizes. One reason for this could be the number of
protocol messages that are exchanged in Sandesha2. Another
could be the DOM conversion that happens in Rampart.

Sandesha2 send a number of protocol message back and forth
thought the lifetime of the sequence. Some of these may be
sent only once per sequence but some others like
Acknowledgment messages get transmitted quite often. To
minimize traffic several features were introduced to optimize
this flow of acknowledgments. One way was piggybacking
acknowledgment messages with other application messages
that are aimed at the same destination. Another way was to
delay sending of these messages until a certain time period
expires. Still more could work be done in this area. More ways
have to be found out to optimize the acknowledgment flow.
This could give a considerable improvement to the overall
performance of the system.

Axis2 is based on a StAX based XML infoset representation
called AXIOM. But WSS4J and XML-Security uses DOM as
the XML object model. To bridge this gap the authors came up
with a hybrid implementation of DOM and AXIOM called
DOOM. When a SOAP message reaches a Rampart handler is
first converted into DOOM and then the components that
expects the input to be DOM processes the message using
DOM interfaces and the components that expects the message
to be AXIOM uses AXIOM interfaces. However this
conversion proves to be very expensive and it forgoes one of
the main the advantages of using AXIOM, which is deferred
building.

Another key area that more work have to be on is
interoperability. Some work was done to interoperate our
system with other popular systems from vendors like
Microsoft, IBM, SAP and Oracle but the work is not over.
Some of the scenarios interoperated quite well but more work
are needed in several others. Yet these interops were quite
promising and the successfully completed scenarios showed
that the goals explained in the specifications were truly
realizable.

VII.CoNcLusioN

Our aim was on providing a framework that would enable
secure and reliable message exchanges in distributed systems.
Apache Axis2 was chosen as the underlying framework and
several leading Web service specifications were implemented
to provide mechanisms to do secure and reliable message
exchanges. The end result was consisting of modular
components which could be used separately or could be
combined to do a fully secure and reliable exchange of
messages within a distributed system.

REFERENCES

[11 (2006, Mar.). Windows Communication Foundation Architecture
Overview. Microsoft Corporation. [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnlong/html/wcfarch.asp

[2] M. Balakrishnan and K. Birman, "Reliable Multicast for Time-Critical
Systems,"

[3] G. Fox and S. Pallickara, "The Narada Event Brokering System:
Overview and Extensions,”

[4] (2004, Feb.). Web Services Architecture. W3C. [Online]. Available:
http://www.w3.org/TR/ws-arch/

[S] V. Tosic, A.V. Moorsel and R. Wong, "Quality of Service (QoS)
Middleware for Web Services," In MWS 2005.

[6] A. Sheth, J. Cardoso, J. Miller and K. Kochut, "QoS for Service-
oriented Middleware," In Conference on Systemics, Cybernetics and
Informatics, Orlando, FL, July 2002.

[71 K.P.BIRMAN and THOMAS A. JOSEPH, "Reliable Communication
in the Presence of Failures," In ACM Transactions on Computer
Systems (TOCS), Feb 1987

[8] X.Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman and
R. Constable, "Building reliable, high-performance
communication systems from components," In ACM Symposium on
Operating Systems Principles, 1999

[9]1 D.F. Ferguson, B. Lovering, "Secure, Reliable, Transacted Web
Services: Architecture and Composition,”

[10] K.P.Birman, "T HE PROCESS GROUP APPROACH TO RELIABLE
DISTRIBUTED COMPUTING,"

[11] S. Pallickara, G. Fox, B. Yildiz, S. L. Pallickara, S. Patel and D. Yemme,
"On the Costs for Reliable Messaging in Web/Grid Service
Environments,"

[12] S. Pallickara, M. Pierce, H. Gadgil, G. Fox, Y. Yan, Y. Huang, "A
Framework for Secure End-to-End Delivery of Messages in
Publish/Subscribe Systems,"

[13] K. Birman, M. Balakrishnan, D. Dolev, T. Marian, K. Ostrowski and A.
Phanishayee, "Scalable Multicast Platforms for a New
Generation of Robust Distributed Applications,"

[14] C. Vasters. (2006, jul.). Introduction to Reliable Messaging with the
Windows Communication Foundation . Microsoft Corporation.
[Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnlong/html/introtowcfreliablemessaging.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/introtowcfreliablemessaging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/introtowcfreliablemessaging.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/wcfarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/wcfarch.asp

	I.INTRODUCTION
	A.Previous Work
	B.Our approach
	1)Pluggability:
	2)Versioning:
	3)Configuration:

	C.Summary of the paper

	II.Background
	A.Introduction to web services and ws-*
	B.Web Service specs for secure reliable communication
	1)WS-ReliableMessaging
	2)WS-Security, WS-Trust and WS-SecureConversation
	3)WS policy

	III.Architecture
	A.Axis2 architecture
	B.Our solution for reliability
	C.Our solution for security
	1)Rampart Axis2 Module
	2)Rahas – WS-Trust components
	3)Rampart and Rahas Marriage

	D.Combining Security & Reliability

	IV.Implementation
	A.Implementing Reliability
	B.Implementing Security

	V.Analysis/Comparison
	A.Comparison with vendor specific implementations
	1)Loosely coupled components
	2)Simple and SOA oriented API
	3)No proprietary protocols
	4)Not a mix of legacy and SOA

	B.Comparison with solutions from academia
	1)Ricochet from Cornell University
	2)Narada broker from Indiana University

	VI.Future Work
	VII.Conclusion

