
Event-Based Monitoring of Open Source Software Projects

Dindin Wahyudin, A Min Tjoa
Institute of Software Technology and Interactive Systems

Vienna University of Technology, Favoritenstrasse 9-11/188, A-1040, Vienna, Austria
{dindin, tjoa}@ifs.tuwien.ac.at

Abstract

Project management traditionally has a strong
focus on human reporting that fits well a tightly
coupled form of organization to ensure the quality of
project reporting. For loosely coupled forms of
organization, such as open source systems (OSS)
development projects, there are very few approaches to
ensure the quality of project reporting; a promising
approach can be to augment human reporting with
data analysis based on the communication and state
changes in an OSS project.

In this paper we propose a concept and an initial
measurement approach for event-based monitoring of
OSS projects to better understand the actual benefit of
tool-supported gathering, correlating and analyzing
processes event data from the OSS community as a
supplement for traditional software project monitoring
data collection. We report on an empirical feasibility
study investigating success and risk indicators of five
OSS projects listed in the Apache Incubator.

Keywords—Software Project Management, System

and Process Monitoring, Event-Based System, Event-
Based Project Monitoring; Open Source Software
Project.

1. Introduction

Successful open source products, such as the

Apache1 web server, have obtained a significant role as
an alternative business solution and have enjoyed
industry-wide adoption. The Apache Software
Foundation (ASF) proposes the Incubator System2 for
newly-added projects under its umbrella. ASF is
mainly interested to invest in projects that are likely to
be successful, which depends to a large extent on a
dynamic community of users and contributing

1 http://news.netcraft.com/archives/web_server_survey.html, last
access: 17/11/2006

2 http://incubator.apache.org/

developers; hence one of the Incubator’s objectives is
to support creating a dynamic communities with
“healthy” success indicators. However, for a casual
visitor of an open source community it is hard to tell
which project is likely to thrive and which are seriously
at risk. There is a number of project management
approaches for monitoring the risk of traditional
projects. However traditional project monitoring
focuses on human reporting that fits well a tightly
coupled form of organization to ensure the quality of
project reporting.

This kind of organization is hardly found in an OSS
project, thus these approaches are only of limited use
for a project leader or observer in an OSS project: most
of the stakeholders are unfamiliar to each other and
temporarily join the project with various constraints in
time, place, and work synchronization. As a result the
stakeholders collaborate by sending messages, data,
and artifacts through a number of communication and
development tools such as SVN, mailing lists and bug
tracker; and respond to subscribed notifications similar
to the publish subscribe schema in an event-based
system.

The development processes in an Open Source
Software project can be modeled as multi-agent event-
based system: in this model the project stakeholders
are agents, and their interactions and state changes are
events. The event-based model and tool support allow
to draw on process and artifact data from the global
OSS project community that can help outsiders to
better understand success and risk factors in the current
state of a project and its community. This kind of data
analysis can be especially helpful if human-based
reports are suspected to be unsystematic, incomplete,
or inconsistent.

In this paper we propose 1. a concept for modeling
an OSS project as a multi-agent event-based system
and 2. an initial measurement approach for event-based
monitoring the rich collections of process events
coming from the OSS project in order to better
understand the actual benefit of tool-supported process

event data gathering, correlating and analyzing
processes event data from the OSS community.

We report an empirical feasibility study
investigating typical and easy-to-observe success and
risk indicators of five OSS projects listed in the Apache
Incubator. The results of this empirical study should
motivate the discussion of current benefits and
limitations of event-based software project monitoring
and its application for balancing human-based
reporting in commercial software project management.

2. Related Work

This section summarizes related work on event-

based systems, different forms of organizing software
development, and the team as focus of project
monitoring.

2.1 Event-Based Systems

The Distributed Event-based Systems3 (DEBS)

community defines event-based systems (EBS) as:
Systems in which producers deliver events, and in

which messaging middleware delivers events to
consumers based upon their previously specified
interest.

A prominent usage paradigm of EBS is the “publish
and subscribe” paradigm, in which producers and
consumers remain mutually anonymous. The
consumers register for their interest in an event or a
pattern of events, in order to be notified subsequently
of any event, generated by a producer that matches
their registered interest through the middleware [14].

Compared to the traditional “request/reply”
paradigm, ”publish and subscribe” imposes total
decoupling [16]: (a) in space: participants’ anonymity,
(b) in time: participants are not required to be available
at the same time, and (c) in synchronization: there is no
interaction blocking a control flow. These advantages
enable EBS to facilitate both scalability and system
evolution [14, 17]. For these reasons, EBS are widely
used for integrating loosely coupled application
components, including sensors, device controllers, and
databases. The use of EBS ranges from home security
system to complex gas/oil pipeline remote monitoring
systems.

A major trend in EBS adoption comes from business
process monitoring, as dynamic business environments
have been forcing many organizations to employ more
sensitive system in order to be more responsive for
capturing time-sensitive business opportunities such as
in stock market monitoring system. A recent

3 http://www.cs.queensu.ca/~dingel/debs05/

methodology to develop responsive systems is SARI
(Sense and Respond Infrastructure) [11, 19], which
facilitates processing internal and external events and
using these events for triggering proactive actions as a
response to changes in the business environment.
SARI is controlled by Sense and Respond Loop as
depicted in figure 1.

Figure 1: The “Sense and Respond” loops [22].

Challenges in engineering Event-based Systems

Mühl et. al. [9] and Fiege [14] report that EBS
research and products are primarily focusing on
scalability issues in terms of communication efficiency
and system size, whereas basic problems of system
engineering and management are often neglected.

Best practices for engineering EBS applications have
not yet been agreed upon, most EBS applications were
developed using reverse engineering emphasizing the
need for more structured EBS development processes.

2.2 Open Source Project Characteristics

Open Source Software (OSS) projects have some

typical characteristics which differ from closed source
project as suggested in [1, 3, and 13]:
• Main contributions come from unpaid participants
• High level of participant distribution
• Weak formal: design, project planning and

management
• Open code base and community-based project

review and controlling
Although the work coordination in an OSS project

may seem unorganized, there are several advantages
suggested by the Open Source Summit4 and Eric
Raymond in his famous essay “The Cathedral and The
Bazaar” [8] such as:
• Rapid development and massive peer review

4 http://linuxgazette.net/issue28/rossum.html

• Flexibility in using and modifying the source code
for user interest

• Low-cost development and technology transfer
• Developer inheritance and the use of a reference

implementation to help develop a standard.
A recent study [18] suggested that the social

structure in OSS projects could provide some hierarchy
of management and controlling based on self-
organizing patterns. This makes OSS projects
interesting objects for the empirical study of
mechanisms software project management.

Several studies have used open source projects to
better understand aspects of successful distributed
development. Several studies observed the OSS
projects by mining repositories such as mailing lists,
SVN/CVS, bug databases [2, 5]. These studies clearly
portrayed the development process and importance of
community involvement as success factor in OSS
projects.

2.3. The Team as Key Success and Risk Factor

In commercial contexts, a management executive

may want to keep an overview over a portfolio of
several projects and detect potential problems early.
Thus they depend on the trustworthiness of monitoring
critical success and risk factors in the project life cycle.

Similar to an OSS project, a commercial project also
has to put a focus on the dynamics of the development
team or project community as the prominent project
success factor. The Standish group, in their famous
Chaos report [20], discloses that over 44% of the
respondents suggested the roles of the project
participant (i.e. user involvement, executive
management support, and competent committed staff)
as the most critical success factor in a software project

Other empirical research reports [2] from distributed
and collaborative software development environments
(i.e., open source software projects) emphasize that
project has also to consider issues of coordination,
communication and other social structures. De Souza
et al. [4] reported similar findings based on several
large distributed NASA software projects.

According to the above mentioned research suggests
that project participant reports are important sources of
project information. However, Keil et al., [15] found a
tendency among participants in troubled projects not to
report problems objectively. This is a key risk issue,
especially in large distributed and loosely coupled
software projects.

3. A Comprehensive View of Software
Project Monitoring

Project manager need software project monitoring to
assess status of the software project in order to take
necessary actions against certain risk conditions based
on collecting selected software metrics along the
project life cycle. To obtain actual status of the
project, software project monitoring is required to
supply accurate and comprehensive project information
as the basis for analysis and decision making.

During development processes, the monitoring
process should balance the observation from both (a)
time-relevant process events data and (b) product-
relevant artifact data as complement to each other. This
combination will provide more accurate, less biased
project information.

In general, there are two monitoring approaches:
tool-based and human-based monitoring. Tool-based
approaches are most suitable for monitoring frequently
a large number of process event data, or when human
resources for monitoring are hard to get. On the other
hand, a human-based approach is best for a
weekly/monthly process such as personal reporting.

However traditional software project management
focuses on tracking formal achievements such as
progress and financial obligation [10] and analyzing
the merit of project participants based on routine
personal reports and deliverables [10, 20].

As consequences most traditional project
management is human-based monitoring, which often
misses process and events information during project
execution. This can be very risky, if a problem occurs,
as Keil et.al [15] found participants to tend not to
report the actual condition of the project. Thus
additional data for comprehensive balanced reporting
is needed before and during a crisis for raising issues
well in advance to identify and mitigate project risks.

Current trends in distributed software development
such as OSS project, signify three challenging
conditions: 1. a large amount of process event data to
be monitored, 2. shortage of human resources for
monitoring, and 3. most important a loosely coupled
project community as the result of global project work;
consequently, monitoring such a system using a
human-based approach only is likely to be costly, time
consuming, and error prone.

In this situation, a project leader should rely not only
on human-based reports and project artifacts, but also
supplement these sources of information with tool-
supported process event data monitoring.

In this paper we propose the following research

issues:
• From project manager goals we derive a set of

useful events and propose a way to measure,
correlate and refine the collected data

• Investigate the potential contribution of project
event data and their monitoring during the
software development process?

• Propose an initial measurement model for event-
based project monitoring and discuss the relevance
of a sample of Open Source Project event data.

In this work we focus on process event data as
object of monitoring. Events are processed into
business information through event identification,
event correlation and analysis. Later we perform
measurement from event correlation metrics.

4. An Event-Based Project Monitoring
Concept

The key risks condition which typically threatening
OSS projects are the absence of key committers and
the demotivation of project community. Many
projects suffers heavy blow after abandoned by their
key committers, this “brain drain” brings the project
into troubles such as in Apache Xindice. Other risky
situation also found in projects which have provided
stable and useful releases in the past, but the target
market may change and a specific technology may not
particularly be interesting any longer (like native XML
databases) which later demotivate the developers.
These are obviously risky situations for the project and
its users. However detecting such issues is a
complicated task. Many different parameters have to
be taken into consideration. This is particularly
problematic if a large number of projects need to be
monitored.

4. 1 Correlated Events as Status Indicators

An OSS project offers rich collection of process

events and artifacts which could be observed during
project lifetime. This collection may indicate the status
of the project whether the project is in good condition
or in deep trouble.

Based on our observations from many OSS projects,
we found there are some community correlated events-
that project leading teams routinely use as status
indicator to assess an open source project, such as the
following data:
• Open issues, service delays: Bugs and Issues are

listed in the bug-tracking system, but the

relevant/necessary fixes are not done in an
appropriate time.

• Proportions: Calculate proportions of elements
such as volume of mailing list postings, bugs per
time slot, updates in the SVN, and use these
metrics to compare projects to try to learn what a
fine relationships are like.

• Community activity and intensity: indicate if a
project has a dynamic community, e.g., the
number of downloads compared to mailing list
postings; the number of active power user (a user
who help another user) in the mailing list and their
email contribution intensity, developer interactions
in (different) mailing lists.

A recent study [7] provided empirical support on the
correlation of developers’ (in particular, key
committers’) email contributions with project
survivability. The study gathered the number of
monthly developer mail contributions in the developer
mailing list from two successful OSS projects (HTTPD
and Tomcat) and two challenged projects (Xindice, and
Slide) during the projects’ life time which spanned a
period of more than 6 years. The results indicate that
both challenged projects were seems abandoned by
their core developers/committers leading to brain drain
in the project and demotivate other developers to
remain in the project. As a consequence, the project
became inactive.

These illustrating examples clearly describe that the
correlation of events may provide a brief outlook of the
project status of the project or signify early warning of
risky situations.

4.3 Event-based OSS Project Monitoring

The development processes in an Open Source

Software project can be modeled as multi-agent event-
based system: in this model the project stakeholders
are agents, and their interactions and state changes are
events.

During the development processes, agents interact
and move from one state to another triggered by
events. They may act as producer who publish event
through messaging middleware (i.e. mailing list, bug
tracker, SVN), which then deliver events to other
agents who act as consumers/subscriber based upon
their previously specified interest.

Since most of the participants are: (a) unfamiliar
with each other, (b) distributed around the globe with
different time zone and work schedules, and (c) use
various technologies and development-communication
interfaces, as result, most of the messages and

deliverables during development processes are made
with publish/subscribe-like interaction schemas as
illustrated in Figure 2.

For example in a bug tracking process scenario, a
user/developer who reports an issue can be considered
as producer who send message about a bug existence
into bug tracker (bug_reporting_event), then after
performing some internal management operation, the
bug tracker broadcasts the new bug information, e.g.,
through a mailing list (new_bug_notification_event).
Later some subscribed user/developer may respond by
making the diagnosis of the bug and send the result
into the bug tracker (bug_diagnoses_event).

Figure 2: OSS project as event-based system

Event-based OSS project monitoring system focuses
on exploiting process event data and their correlation
during project execution to obtain relevant project
information. The monitoring system starts with sensing
the status change in project by identifying, and
collecting events from OSS projects, later the system
interprets collected events by correlating events and
performs some measurements in order to transform the
correlations into meaningful project information.
Analysis is the next step based on the result of
measurement which indicates the project status.

Afterwards the project status and the perception of
the user of the system will define the decisions to be
taken and what kind of responses should be executed.
The decision stage is related to role specification, and
decision guidelines. The response stage is basically as
the result of the decision taken by the user which may
have impact to the project community.

In this model we define two classes of the system

user. These users are outsider who wants to have an
outlook of the OSS projects for various purposes based
on specific roles. The first user class are the common
observer; they monitor OSS projects to enrich their

knowledge and extract some valuable information for
their own rationale about development processes, and
decide whether a project is worth noting.

Figure 3: Event-based OSS project monitoring

system

The second class of user are the decision maker; a
decision maker is an observer with more significant
roles, as they have stronger motivation for monitoring
OSS projects. They are responsible in making decision
and perform necessary actions as respond to status
indicator of the projects. For example IT manager
who wants to make feasibility study and risk
assessment before using OSS solutions or to assure the
survivability of currently use solutions. Other example
of this user class is the project manager or project
board such as in Apache Incubator who needs to
monitor the status of many projects community
consecutively as basis for risk mitigation, support
allocation or dismantle unpromising projects in the
incubator.

5. Measurement Process

Measurement is essential part of monitoring, in view
of the fact that it provides meaningful project
information for decision support. In this section we
propose an initial structured model for measurement
process using a simple scenario based on a project
success factor and risk that commonly observed by
expert in OSS community.

5.1 The Measurement Model

The stages in this model in general are motivated by

(a) goal/question/metric (GQM) technique for defining

the monitoring goals and purpose; and (b) sense and
respond loops for controlling the data collection and
data analysis process, which consists of the following
steps:
1. Monitoring Definition. The contextual level

definition of monitoring is necessary to have clear
direction of the measurement processes based.

2. Data Collection. Data collection is a process where
the event-data are sensed from real system and
interpreted for analysis purposes. This process
consists of event identification, event gathering,
and interprets collected event into project
information. The interpretation consists of event
correlation analysis, and performance measurement
based on event correlation.

3. Data Analysis. Analysis is a process to extract the
meaning of the combination of event during
development process. The purpose of analysis is to
discover current situation or exceptions of the
project, and provide basis for taking appropriate
decisions and responses.

5.2 Measurement Execution

As described in previous sections, one of the OSS
project success indicators is developer contribution
which points up the trust of the community for a
project. The level of contributions can be observed by
retrieving process event data in project repositories
such as SVN, bug tracker, wiki and developer mailing
lists.

In this work we focus on the developer contribution
in the developer mailing list as an initial measurement
example. We select developer mailing list due its
importance level during development process such as
described in [15] and the easiness of data retrieval.

5.2.1 Monitoring Definition
Goal: the purpose is to monitor the timeliness of
developer contribution in developer mailing list from
the view point of project leader.
Question: what is the current contribution intensity of
developers in the mailing list?
Metric:
• Average number of emails per month. Monitoring

this metrics will show observer the trend line of
developer contributions. A positive trend line
indicate the developers are active and show their
willingness to the project

• Percentage of cases outside the lower limit of
number of emails/month. This metric important as

early warning of low level of developer
contribution of developers in a month.

5.2.1 Data Collection

Identifying relevant event is the fundamental task in
event-based monitoring. As events may come either
from internal monitoring system or the observed
systems, thus we should have better understanding of
the observed system.

Luckham [6] proposed an Event Processing Agent
(EPA) for identifying and interpret the event patterns.
Start with identifying an in_action which could be an
event that come and change the status of an agent and
invoke a respond called out_action. We define
incoming email from email producer into the
processing email use case as in_action that should be
monitored We called this event as incoming_email
event with attributes as described in listing 1.

<incoming_email>

<contributor>Jackson@hotmail.com</contributor>
<date>2006-12-27</date>
<header>session replication</header>
<message> Hi there, I have …..</message>

</incoming_email>

Listing 1 Incoming_email event

The metrics of this monitoring specify some kind of
early warning signal if the developer contribution is
bellow a normal standard. Thus we define the second
event which is an out_action called alert, as described
in XML format in listing 2.

<alert>

<type>Red</type>
<date>2007-01-30</date>
<header> Email contribution<60 </header>

</alert>
Listing 2 Alert event

The third step in EPA is to identify the correlation,

behavior and rules of these events. Study of [7]
suggests that two challenged projects (Xindice and
Slide) went belly after consecutively acquired less then
70 email contributions/month. Thus we define the
developer contribution status is considered as (a)
“normal” if the number of email contribution is more
or equal than 70 email or (b) “abnormal” if the number
of email contribution is less then 70 which signifies
low level of developer contributions.

The “abnormal” status indicates an early warning of
a risky situation. Based on this rule we define
following algorithm to depict the behavior of the

monitoring.
At the end of each month the system will triggers

alert which either green, yellow or red based on
number of incoming email counted from the developer
mailing list, which signify the developer contribution
status.

foreach(month in year)

{
for(day=beginOfMonth[month];
day<=endOfMonth[month];day++)
 {
 if (day==beginOfMonth)
 {counter[month,year]=0}
 else
 {if(incomingEmail&&
 emailHeader!="announcement"))
 {counter[month,year]=++;}
 }
 }
 if(counter[month,year]>=70){alert(green);}
 elseif(counter[month,year]>=60)
 {alert(yellow);}
 else {alert(red);}
}

Listing 3 Behavior rules

5.2.1 Data Analysis and Discussion

We collected the incoming_email events on monthly

basis from five OSS projects in Apache Incubator,
which are Woden5, OpenJPA6, Lucene.Net7, Roller8,
and Ode9. We retrieved data from developer mailing
lists beginning in March 2006 until December 2006 for
each project.

The result as depicted in figure 4 reveals that
Wooden can be considered as a healthy as there is no
alert triggered with average 224.3 email contributions
per month and standard deviation = 112. Open JPA,
Roller and Ode have total average of 20% of cases of
outside lower limit and total average of 142.2 emails
per month, which seems to be normal as these projects
are in incubation and may attract more developer
contributions in the future.

However Lucene.Net seems to be in trouble, since in
the last 8 months of development there are 6 “red”
alerts (depicted as red dots in figure 4) or 75 % of case
of outside lower limit which indicate the low
contribution of developer into the mailing list with

5 http://incubator.apache.org/woden/
6 http://incubator.apache.org/openjpa/
7 http://incubator.apache.org/lucene.net/
8 http://incubator.apache.org/roller/
9 http://incubator.apache.org/ode/

average of 40.6 emails/month which is more then 120
email bellow of total average email contributions of the
other 4 projects.

We investigate further the situation faced by
Lucene.Net, by locating the alarm triggered events in
which periods, and observe other time-relevant
correlated events in developer activity such as product
releases. We found that in the last 8 months,
Lucene.Net10 has produced several important events,
such as 1 major release (v. 2.0), 1 minor release (v.
1.9.), and two micro releases (v 1.9.0 and v 1.9.1).

0

50

100

150

200

250

300

350

400

450

500

Mar-06 May-06 Jul-06 Aug-06 Oct-06 Nov-06 Jan-07

Lucene.Net

Ode

Roller
Open JPA

Woden

Figure 4 Developer emails contribution

 We found that there is a contradiction in challenged

project (Lucene.Net) which in generally well
developed and provide regular releases, and
appreciated by the user community, but it might
actually be driven by very few active committers since
the developer contribution in the mailing list is very
low compare to other observed projects. This risky
situation of Lucene.Net in the long run could threaten
the project survivability, which required more attention
from the Apache Incubator.

7. Conclusion and Future Work

Event-based OSS software project monitoring is an

approach of using EBS in the context of systems
engineering and software project management. This
paper provides an initial concept for project
monitoring based on process event data.

The result of our initial feasibility study using
developer contributions into the developer mailing list
reveals evidence that tool-supported event based
monitoring can act as the supplement of traditional
project monitoring. In principle this concept can be
implemented in commercial software project context,
which share the same characteristic with OSS project

10 Last retrieved at 19/01/2007, from

http://incubator.apache.org/lucene.net/

such as in global or distributed software project
development.

However this concept poses limitations such as the
lack of empirical proven events correlation as indicator
of the project status, which are many of this correlation
should be manually investigated from various OSS
communities. As a tool-based monitoring approach,
event based project monitoring system can provide
early or complement indicator of project status, but the
part of analysis, decision and response should be
accompanied or emphasized by human wisdom for
better result.

In future work, the concept should be enriched by
more event correlation as project status indicator and
further empirically investigated by implementation into
some real life scenarios and some extension to
commercial software project domain.

Acknowledgement

This paper is part of larger research called
Monitoring Distributed Software System Development
and Operation. More details of the event based OSS
project monitoring concept can be seen in our technical
report11.

This work has been partly supported by Technology-
Grant-South-East Asia No. 124-2/BAMO/2005,
financed by ASIA-Uninet in co-operation with the
Austrian Council for Research and Technology.

References

[1] A. Capiluppi, P. Lago, and M. Morisio. Characteristics

of Open Source Projects. In proceeding of the 7th
European Conf. Software Maintenance and
Reengineering (CSMR 03), IEEE CS Press, 2003, 317–
330.

[2] A. Mockus, R. Fielding, and J. Herbsleb. Two case
studies of open source software development: Apache
and mozilla. ACM Transactions on Software
Engineering and Methodology, Volume 11 , Issue 3,
2002.

[3] C. Gacek, B. Arief. The many meanings of open source,
IEEE Software, 21, 2004, 34-40.

[4] C.R.B de Souza, D. Redmiles, G. Mark, J. Penix, M.
Sierhuis. Management of Interdependencies in
Collaborative Software Development. In proceeding of
the International Symposium on Empirical Software
Engineering (ISESE'03), 2003.

[5] D. German & A. Mockus. Automating the
Measurement of Open Source Projects. in Proceedings

11 http://www.ifs.tuwien.ac.at/~dindin

of the 3rd Workshop on OSS Engineering, Portland,
May 2003

[6] D. Luckham, The Power of Event: An Introduction to
Complex Event Processing in Distributed Enterprise
System, Addison Wesley, 2002

[7] D. Wahyudin, A. Schatten, K. Mustofa, S. Biffl, A.
Tjoa, Introducing Health Perspective In Open Source
Web-Engineering Software Projects, Based On Project
Data Analysis. The 8th International Conference on
Information Integration and Web-based Applications &
Services (IIWAS2006), Yogyakarta, Indonesia. 2006.

[8] E. Raymond, The Cathedral and the Bazaar, O’Reilly,
1999.

[9] G. Mühl,, L. Fiege, P. Pietzuch, Distributed Event-
Based Systems, Springer, 2006

[10] J. Philips, IT Project Management: On Track from Start
to Finish, Mc Graw Hill, 2002

[11] J. Schiefer , A. Seufert, Management and Controlling
of Time-Sensitive Business Processes with Sense &
Respond, In proceeding of the International Conference
on Computational Intelligence for Modelling, Control
and Automation, 2005

[12] J. Schiefer, C. Mc Gregor, Correlating Events for
Monitoring Business Processes, International
Conference on Enterprise Information Systems, Porto,
2004.

[13] K.Fogel. Producing Open Source Software: How to Run
a Successful Free Software Project. O’Reilly, 2005.

[14] L. Fiege, Visibility in Event-based System, PhD
Dissertation, Darmastadt University of Technology,
2005

[15] M Keil, H.J. Smith, S.Pawlowski, L. Jin. “Why Didn’t
Somebody Tell Me?” Climate, Information Asymmetry,
and Bad News about Troubled Projects. ACM SIGMIS
Database,35, 2 (spring, 2004), 65-84.

[16] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec The
Many Faces of Publish/Subscribe. ACM Computing
Surveys, 2003. 35(2).

[17] P. Pietzuch, HERMES. A Scalable Event-based
Middleware, PhD Dissertation, Queens’ College
University of Cambridge, 2004

[18] S. Valverde, G. Theraulaz, J. Gautrais, V. Fourcassie,
R.V. Sole. Self-Organization Patterns in Wasp and
Open Source Communities. IEEE Intelligent System, 21,
2, (March 2006).

[19] T.M. Nguyen, J. Schiefer, A..M. Tjoa, Sense & response
service architecture (SARESA): an approach towards a
real-time business intelligence solution and its use for a
fraud detection application. In Proceedings of the 8th
ACM international workshop on Data warehousing and
OLAP, 2005.

[20] W. Royce. Software Project Management: A Unified
Framework. Pearson Education, 2000.

