
UC Davis
UC Davis Previously Published Works

Title
Investigating the Implications of Virtual Machine Introspection for Digital Forensics

Permalink
https://escholarship.org/uc/item/7hs6t0nw

Authors
Nance, Kara
Hay, Brian
Bishop, Matt

Publication Date
2009-03-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hs6t0nw
https://escholarship.org
http://www.cdlib.org/

Investigating the Implications of Virtual Machine Introspection

for Digital Forensics

Kara Nance and Brian Hay

Department of Computer Science

University of Alaska Fairbanks

Fairbanks, AK

ffkln@uaf.edu and brian.hay@uaf.edu

MarttBishop

Computer Science Department

University of California Davis

Davis, CA

bishop@cs.ucdavis.edu

Abstract— Researchers and practitioners in computer forensics

currently must base their analysis on information that is either

incomplete or produced by tools that may themselves be

compromised as a result of the intrusion. Complicating these

issues are the techniques employed by the investigators

themselves. If the system is quiescent when examined, most of

the information in memory has been lost. If the system is

active, the kernel and programs used by the forensic

investigators are likely to influence the results and as such are

themselves suspect. Using virtual machines and a technique

called virtual machine introspection can help overcome these

limits, but it introduces its own research challenges. Recent

developments in virtual machine introspection have led to the

identification of four initial priority research areas in virtual

machine introspection including virtual machine introspection

tool development, applications of virtual machine introspection

to non-quiescent virtual machines, virtual machine

introspection covert operations, and virtual machine
introspection detection.

Keywords-virtualization, digital forensics, cirtual machine

introspection, VMI.

I. INTRODUCTION

Digital forensics is an increasingly important and diverse
area of computer science, charged with providing vital
evidence to legal proceedings, determining methods of
attack, and gathering data to determine what vulnerabilities
were exploited in an effort to compromise a particular
system. However, researchers and practitioners in this field
typically base their analysis on information that is either
incomplete or produced by tools that may themselves be
compromised as a result of the intrusion.

The traditional incident response procedure, known as
quiescent analysis, is to take custody of the compromised
system, shut it down, copy the storage media, and then
analyze the copy using a variety of forensics tools. The
shutdown process amounts to either invoking the normal
system shutdown sequence, or pulling the power cord from
the system to effect an instant shutdown [1]. In both cases it
is likely that the storage media no longer accurately reflects
the state of the system before shutdown. In the case of the
normal shutdown, data is read and written to the hard disk,
which may delete or overwrite forensically relevant content,
whereas in the case of the immediate power-off, data in the

disk cache may not be synchronized with the hard disk. A
more fundamental problem also exists, in that much of the
information of interest to the examiner, such as the process
list, kernel configuration, network status, encryption keys,
and unencrypted data, may only exist in RAM, and as such
will not appear in the forensic image of the hard disk.

As the importance of this volatile data to digital forensics
analysis has become more evident, non-quiescent analysis
techniques, in which the system is examined during
operation, have become increasingly common. This method
can provide the investigator with access to the volatile
information that is inaccessible during quiescent analysis, but
it too suffers from some serious flaws. The first problem,
known as the observer effect, is that any operation performed
during the live analysis process modifies the state of the state
system, including the contents of memory and storage media,
and as such can taint any evidence recovered during the
investigation. The second problem is that non-quiescent
analysis relies, at some level, on the system utilities that exist
on a potentially compromised system. As such the results
can be manipulated by an attacker to be false or misleading.
In addition, any forensic utilities executed during the live
analysis can be detected by a sufficiently careful and skilled
attacker, who can at that point change behavior, delete
important data, or actively obstruct the investigator’s efforts.

Ideally, the forensic investigator would be able to analyze
the system from a distance, leaving no trace of the probing
(or even of altering data, if such is done). In essence, what is
needed is an invisible, undetectable path over which the
target system can be (passively and actively) monitored.
Such an approach requires special hardware or some form of
virtualization. The latter is available in the guise of a
technology called virtual machine introspection.

The goal of this paper is to apply virtual machine
introspection to the forensic problems discussed above. We
identify several research issues that need to be examined in
order to determine the value of virtual machine introspection
as a forensic tool, how it can best be used, and what its
limitations are.

The next section reviews the idea of virtual machine
introspection. Section 3 identifies four research issues: the
development of forensic tools, the monitoring of active
virtual machines (as opposed to those paused, or quiescent),
active monitoring (in which data in the virtual machine is

altered), and the detection of virtual machine introspection
from within the monitored virtual machine. We conclude
with a look at other directions.

II. VIRTUAL MACHINE INTROSPECTION

The increasing availability and use of virtualization
enables investigators to have access to the complete state of a
target system in a manner that is in no way reliant on the
target system to provide information. In addition, this form
of live analysis may prove to be extremely difficult for
attackers to detect, if they can detect it at all. Suppose a
computer system runs in a virtual machine (VM), supervised
by a virtual machine monitor (VMM). The computer system
has network connections, accounts, and in all ways appears
to be an ordinary computer system. An attacker breaking into
the system would probe it and proceed as though the attack
were on a regular system—which, indeed, it is, as all user
data (and other data) resides on this VM. But, when the
attack is discovered or suspected, the security analysts do not
begin running programs on the attacked system to analyze it.
Instead, they go to either the VMM or a second VM running
under the control of the VMM and ―look inside‖ the attacked
VM. This technique is called virtual machine introspection
(VMI) and was first introduced by Garfinkel and Rosenblum
[2].

A VM presents the appearance of hardware to those
processes that run on it—and that includes the resident
operating system. So, if the operating system in the VM uses
pages, the page tables are also stored in the VM’s memory
space. When the process in the VM triggers a page fault, the
operating system in the VM attempts to fetch the missing
page. But it executes privileged instructions to do so, causing
a trap to the VMM. Thus, the VM traps to the VMM, which
sets the registers of the VM to make it appear that the
process page fault trapped directly to the VM. It then returns
control to the VM’s operating system which determines the
―trap‖ was caused by a page fault, and so loads the page,
causing another trap to the VMM, which loads the page and
makes it available to the VM, and then updates the VM’s
registers. It then returns control to the VM’s operating
system, which in turn returns control to the process. As far as
the process is concerned, it interacted only with the operating
system on the VM and the ―hardware‖ (VM) itself. The
interesting point is that the VMM has complete access to all
memory in the VM, and can read and alter it as needed.

Given this, it is possible for a program to use the VMM
to reconstruct the contents of a process’s memory space, and
even the contents of the VM’s kernel memory, by using the
page table for the VMM to obtain an image of the VM’s
memory. From that, it accesses the VM kernel memory to
locate the process(es) of interest, and the associated memory
pages. The program can then reconstruct exactly what the
program was doing from this information.

This approach has additional advantages over standard
methods of forensic analysis. First, if one performs quiescent
forensic analysis by imaging the disk and analyzing it off
line, one generally loses the contents of memory, which (as
noted above) may be critical to accurately reconstructing the
events. Second, if one performs non-quiescent forensic

analysis by executing investigative programs on the system
while it is running, the data obtained may be deceptive if the
kernel, libraries, or programs themselves have been
compromised by (for example) a rootkit. But if the analysis
is done from the VMM, any compromised components of the
operating system, libraries, or programs on the VM will be
irrelevant as the tools bypass them, and run only on the
VMM. In this case, the non-quiescent analysis may look at
memory, but because the VM is not turned off; it is merely
quiescent, with memory contents being retained. The
quiescent analysis poses problems of consistency, because as
the snapshot is being taken, the locations not yet read may
change, producing an inconsistent representation of memory
contents, which can make analysis more problematic. The
tools and techniques in virtual machine introspection are
evolving quickly as virtualization becomes more mainstream
and its use in production systems increases.Wherever Times
is specified, Times Roman or Times New Roman may be
used. If neither is available on your word processor, please
use the font closest in appearance to Times. Avoid using bit-
mapped fonts if possible. True-Type 1 or Open Type fonts
are preferred. Please embed symbol fonts, as well, for math,
etc.

III. RESEARCH QUESTIONS

Research in the application of VMI [3] has typically
focused on intrusion detection rather than digital forensics.
Recent work [4] has considered digital forensics as a primary
VMI application area, and there has also been associated
work in tools that construct forensically relevant information
from memory images [5, 6].

These tools and techniques raise several interesting
research questions for VMI, and providing answers to such
questions is vital if VMI is to be used for digital forensics, as
the results of digital forensics investigations can have serious
and wide-ranging legal consequences. First, in order to read
memory correctly, the process memory must be consistent,
which in the simplest case means the VM must be paused.
Can the attacker determine this? If so, the attacker may be
able to exploit this knowledge to mislead the analysis, or to
delay until the snapshot is taken before launching specific
attacks. Second, can a consistent snapshot be taken without
pausing the system? That is, given a non-static memory, can
one obtain enough information from a snapshot, or series of
snapshots taken over time, to determine what is happening?
Third, beyond the obvious use of digital forensics, to what
uses can this ability be applied? Certainly intrusion detection
is an obvious one; another is to analyze the vulnerabilities on
the system that allow an attacker to breach security. But the
field of digital forensics, especially when applied to virtual
machines is so new, ill-defined, and conceptually so wide,
that it has applications in those areas, and many more
beyond. These and other related question led to the
identification of four initial priority research areas that need
to be addressed in order to effectively investigate the limits
of VMI. These include VMI tool development, applications
to non-quiescent VMs, VMI covert operations, and VMI
detection.

A. VMI Tool Development

Under any current virtualization system, compromise of
the VMM is catastrophic to almost any security property of
all virtual machines running under the VMM. As such, a
good approach is to follow a policy in which the VMM is, to
borrow a phrase from Einstein, ―as simple as possible, but
not simpler‖. The addition of any VMI capabilities to the
VMM itself must, therefore, be carefully weighed against
this goal in order to ensure that functionality that could be
implemented in the virtual machine be identified and
implemented in the appropriate location, rather than taking
the easier route of simply adding functionality directly to the
component with the highest privilege level on the system,
namely the VMM. There are several approaches under
current investigation that may allow the VMM to remain
unmodified, or at most slightly modified, while enhancing
the opportunities for VMI. For example, a privileged virtual
machine (called Dom0) under Xen [7] serves, in many cases,
as the direct interface to physical hardware, such as the
network cards. So monitoring of non-privileged virtual
machine (called DomU) interactions with hardware may
require modifying Dom0. Extending this approach further, it
is possible in some circumstances to relocate the underlying
driver for physical hardware from Dom0 to a DomU (which
is known as a ―driver domain‖). This allows an application
running in an unprivileged VM to provide the introspection
capabilities with respect to the interaction between target
VMs and certain hardware components. Relocating the
driver into the unprivileged DomU alters the mechanism
performing the virtualization of the hardware, and not the
virtual hardware itself, and so should be invisible to the
processes and systems in DomU.

Mapping memory from DomU systems into Dom0 is not
limited to read-only access, and as such it is also interesting
to consider what additional capabilities might be gained, and
what associated costs would be incurred, by modifying, even
temporarily, memory within a target DomU VM. For
example, write access could be used to provide VMI
―breakpoints‖ in DomU applications, although doing so in a
manner that preserved the difficulty of detecting VMI may
be challenging (although such a tradeoff may be acceptable
depending on the intended use, and may still be less
detectable than current monitoring techniques, such as those
employed by Sebek, for example). One approach in this
category under current investigation is the temporary
replacement of instructions in an executable with calls that
trap to the VMM, which can then be redirected to Dom0 for
processing.

B. Application to Non-quiescent VMs

The current state of the art in analyzing virtual machines
allows an analyst to pause or suspend the VM, and take a
dump (called a snapshot) of its memory. While a valuable
investigative technique, this approach limits forensic analysis
because it does not capture the causes of the changes to
memory. More valuable would be the ability to observe the
system calls and other functions actually executed; such
information is critical to establishing what happened [8].

The application of virtual machine techniques and tools
to non-quiescent VMs is an interesting area that is likely to
lead to further research questions in order to test the limits of
what information can be gleaned when virtual introspection
tools are applied to non-quiescent VMs. In [9], Carrier
describes the risks of analyzing incidents on the systems on
which they occur (which he called ―live analysis‖). He
focuses on the untrustworthiness of the system components,
using as an example a system with a kernel-based rootkit. He
proposes using tools that effectively emulate the kernel’s
routines for reading files, and suggests using system calls to
read individual sectors of the disk. He noted that a rootkit
that modified the kernel’s read system call would be difficult
to write and, hence, unlikely to be part of an attacker’s
repertoire.

There are additional problems, most notably that of
consistency. The kernel cannot be trusted to enforce mutual
exclusion between the analysis programs and the system for
several reasons, including potential compromise of the
kernel. Additionally, the kernel would have to lock large
portions of memory (including its own) and disk, which
would not only cause problems for other processes on the
system, but is also simply not an ability that most kernels
possess. Thus, one part of the ―snapshot‖ of the process will
reflect the state of the process at one time, and another part
will reflect the state of the process at a later time. This is
analogous to traditional problems of concurrency and
synchronization without mutual exclusion, especially the
readers-writers problem [10] and in this context may be
called inconsistent static auditing [11].

It is unclear how inconsistent static auditing affects
reconstruction of the state. The effect will depend on the
organization of data within memory and the system.
Specifically, let a ―snapshot‖ be composed of one or more
units, defined as the contents of (virtual) memory or disk that
the monitoring process can read as a single entity. Then the
contents of each unit will be consistent because they are
―locked‖ while the I/O transferring the contents from the
object to the memory of the monitoring process is in
progress. But the contents of different units may be
inconsistent. So, if the critical information for the analysis is
in the same unit; if those units can be shown to have been
taken while the process was quiescent (for example, swapped
out); or if the nature of the inconsistency can be determined
and its effect on the analysis compensated for, the analysis
should be unaffected.

How to determine this, and how to compensate for it—or
determine that it cannot be compensated for and inform the
analyst—requires a detailed analysis of what the VMI tools
do and how they do them. This speaks directly to the testing
and measuring of the effectiveness of these tools, because the
environment in which they are used may affect their
accuracy. When the target is a paused VM, evaluating the
tools is straightforward. But when the target is an active VM,
the evaluation must take into account inconsistencies of the
sort described above, and the tools must know whether they
can compensate for these inconsistencies (and if so how), or
merely report the problem to the investigators. As changes
are made in VMI techniques and extended to non-quiescent

VMs, the investigation of the detectability of the tools
becomes an increasingly interesting research question.

C. VMI Covert Operations

The development of VMI tools such as VIX [4] has
resulted in some unanticipated capabilities beyond the
original intent. With access to the presumed private data
associated with a particular VM, a VMI tool has the inherent
potential to inject new data or code or modify existing data
on the VM. Since VMI capabilities potentially provide
ancillary powers that can be used for good or evil, those
capabilities, in turn, introduce a plethora of interesting
research problems beyond those originally identified. A
VM should ultimately be able to protect itself from, or at
least detect, the activities of a malicious user (insider from
the VM perspective), a malicious VMM administrator
(outsider to the VM, but insider to the VMM), and a
malicious remote attacker (outsider to both the VM and
VMM).

VMI Modification investigates the application of
deception techniques [12] involving the modification of the
VM’s (virtual) hardware and processes from Dom0. The idea
is to simulate hardware failure, or to change program
instructions or data in order to influence the actions of the
suspect programs. The analyst can present the illusion of
hardware that is broken, or that works intermittently to slow
an attack. When the suspect program interacts with other
processes on the VM, the analyst can alter the way the
processes act so as to present a VM with multiple
inconsistent configurations. Numerous studies have reported
on the use of deception as a defensive mechanism [13, 14,
15, 16, 17]. The use of virtual machine eliminates the need
for host-based deception to use a modified kernel and
modified software. This type of modification raises all the
issues of monitoring non-quiescent systems discussed above.

The range of potential research problems, such as the
ability for a given VM to protect itself certainly has some
similarities and potentially may be viewed as analogous to
those in non-virtualized environments. It remains to be
determined how closely coupled the two research areas are
and, if the issues in the virtualized environment supersede
those evident in the analogous non-virtualized environment.
In addition, there are obvious questions about how well the
approaches to addressing these issues in a non-virtualized
environment will map to the virtualized environment. These
issues area closely related to the ability to detect VMI, as that
would likely be a logical step in addressing issues associated
with VMI covert operations.

D. VMI Detection

The VMI Detection investigates under what conditions,
and to what degree of certainty, a process on the VM can
determine it is being monitored. In both of the previously
mentioned deployment environments, digital forensics and
honeynets, it is important to understand the extent to which
the monitoring can be detected from within the target virtual
machine. In many cases, a user running processes in a
virtual machine can reliably determine that those processes
are running in a VM [18, 19], but this is a different and

essentially irrelevant issue. In the past, x86 virtual machines
were seldom deployed as production systems, and an
attacker who detected virtualization could reasonably assume
that the compromised system was part of a honeynet, or a
low value target, at which point they could either disconnect
or modify their behavior. However, the surge in VM
deployment for production systems, and the likely continued
increase in mainstream usage of VMs as multi-core, multi-
processor systems become common place, means that the
fact of virtualization does not imply that the system is a
honeypot. It is important to be able to determine whether a
user on a virtual machine can also detect the VMI
monitoring, and if so to what extent and under what
conditions. It would be easy to suggest that no detection can
be possible in cases such as VIX, based on the fact that the
VMI techniques require no modification to the target VM,
nor is there any monitoring process running on the target
VM. However, it is not clear that this is the case, even if the
VMI is performed while the target VM is paused and only
read operations on the target VM’s resources are employed.
Several channels have already been identified through which
the target VM may be able to determine that VMI is actually
occurring, or even that it is likely to be occurring, including
the following:

 Analysis of the wall clock timing of VM execution.
On a virtualized system, VMs are scheduled for
execution in much the same way that processes are
scheduled on a modern operating system, and as
such there are always ―pauses‖ in the execution of a
VM whether it is being monitored or not. But the
pattern of execution frequency or the periods for
which the VM is paused may vary from some norm
during VI monitoring, which may provide an
indicator by which the monitoring can be detected
from the VM, despite the VI process not having
made any change to the VM state.

 Analysis of page faults. When a process requests
access to a memory address, the relevant data may
either exist in RAM or may have been paged out to
disk, in which case the process must wait while the
appropriate data is loaded from swap to RAM. If
the VI process results in data associated with a
target VM being either paged out or in, a process
within the VM may be able to detect the
inconsistency between the actual state of the page
(in RAM or swap) and the expected state. As
before, this is likely to occur during normal
operations on a virtualized system, but the pattern
with which these inconsistencies occur may provide
an indication that monitoring is underway.

 Paravirtualization versus full virtualization. Virtual
machines can be deployed in either fully virtualized
or paravirtualized modes. A fully virtualized VM
requires no modification to the guest operating
system, and the VM behaves in exactly the same
manner that it would were it not virtualized. Under
the paravirtualized model, the guest system is
changed in some manner to allow the VM to

cooperate with the VMM to implement the
virtualization. An example of such a change is the
replacement of some privileged instruction in the
guest operating system with calls directly to the
VMM. There are advantages and disadvantages to
both approaches. It will be instructive to determine
to what extent the VM can cooperate with the
VMM (i.e., use paravirtualization) without enabling
VI monitoring to be detected.

This is certainly not an exhaustive list, but is
representative of the types of issues that must be examined
before any claims of ―undetectable monitoring‖ can be made.
Research efforts may result in the discovery of methods that
provide absolute and reliable indications that monitoring is
underway. Alternatively, we may discover that the VM may
be able to detect anomalies that could lead a user to suspect,
but not be certain, that monitoring is taking place. In either
case, the extent to which the monitoring can be detected, and
the circumstances that enable such detection, will affect the
implementation of the tools and the procedures for the use of
the tools (for example, in a digital forensics investigation, an
investigator may want to use tools for which no detection
method is known first, followed by those methods which
may be detectable).

The research in non-quiescent systems described in the
previous section will influence the issue of detectability. A
key question is whether the target VM must remain paused
for the duration of a single VI operation (such as a search of
process memory for encryption keys), or whether reliable
results can be obtained by spreading the operation across
multiple periods during which the target VM is not
scheduled for execution. Some operations may be
sufficiently simple that they fit in the normal unscheduled
periods, whereas other may require significantly longer
access to the state of the VM, and unusually long periods in
which the target VM is paused might be detectable by an
attacker. A potential solution to this issue may be to quickly
record the relevant portions of the VM state, so the analysis
can be conducted over a longer time period, while allowing
the VM to continue operation, thus modifying the original
state but not the copy. These and other emerging questions
provide for a rich research arena in VMI.

IV. CONCLUSIONS

Virtual Machine Introspection may help the digital
forensics community address some of the limitation of
current investigative techniques, particularly as the use of
virtualization becomes more commonplace. However, the
results of digital forensics investigations can have serious
and significant legal and societal consequences, and as such
new tools and techniques should be introduced into this
domain very carefully. This paper describes several open
problems which will determine how applicable VMI really is
to digital forensics, and help to determine the reliability of
results obtained using VMI techniques. Identified areas for
future research include virtual machine introspection tool
development, applications of virtual machine introspection to
non-quiescent virtual machines, virtual machine

introspection covert operations, and virtual machine
introspection detection.

REFERENCES

[1] B. Carrier, File System Forensic Analysis, Addison-Wesley, Boston,

MA (2005).

[2] T. Garfinkel, and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proceedings of the 10th

Annual Symposium on Network and Distributed System Security
(NDSS 2003), pages 191–206, Feb. 2003.

[3] K. Nance, M. Bishop, and B. Hay. Virtual Machine Introspection:

Observation or Interference? IEEE Security & Privacy. Volume 6
Issue 5, Set.-Oct. 2008 pp. 32-37.

[4] B. Hay, and K. Nance. Forensics examination of volatile system data

using virtual introspection. SIGOPS Oper. Syst. Rev. 42, 3 (Apr.
2008), 74-82. DOI= http://doi.acm.org/10.1145/1368506.1368517

[5] N. Petroni, A. Walters, T. Fraser, and W. Arbaugh, FATKit: A

Framework for the Extraction and Analysis of Digital Forensic Data
from Volatile System Memory, Digital Investigation Journal

3(4):197-210, December 2006

[6] A. Walters and N. Petroni, ―Volatools: Integrating Volatile Memory
Forensics into the Digital Investigation Process,‖ Black Hat (Feb.

2007). Retrieved December 20, 2008 from
www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-

Walters-WP.pdf.

[7] P. Barham, B. Dragovic, K. Frasier, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, ―Xen and the Art of
Virtualization,‖ Proceefings of the 2003 Symposium on Operating

Systems Principles (Oct. 2003).

[8] S. Peisert, M. Bishop, S. Karin, and K. Marzullo, ―Principles-Driven
Forensic Analysis,‖ Proceedings of the 2005 New Security Paradigms

Workshop pp. 85–93 (Sep. 2005).

[9] B. Carrier, Risk of Live Digital Forensic Analysis, Communications
of the ACM 49(2) pp. 56–61 (Feb. 2006).

[10] P. Courtois, F. Heymans, and D. Parnas, Concurrent Control with

Readers and Writers, Communications of the ACM 14(10) pp. 667–
668 (Oct. 1971)

[11] M. Bishop, Computer Security: Art and Science, Addison Wesley

Professional, Boston, MA (2002), sec. 24.4.1.1, pp. 702–703

[12] V. Neagoe and M. Bishop, Inconsistency in Deception for Defense,
Proceedings of the New Security Paradigms Workshop pp. 31–38

(Sep. 2006).

[13] W. Cheswick, An Evening with Berferd, in Which a Cracker is

Lured, Endured, and Studied, Proceedings of the Winter 1992
USENIX Conference pp. 163–173, (Jan. 1992).

[14] B. Hernacki, Bennett, J., and Lofgran, T. Symantec Deception Server:

Experience with a Commercial Deception System, Proceedings of the
Seventh International Symposium in Recent Advances in Intrusion

Detection pp. 188–202 (Sep. 2004).

[15] J. Michael, On the Response Policy of Software Decoys: Conducting
Software-based Deception in the Cyber Battlespace, Proceedings of

the 26th Annual International Computer Software and Applications
Conference pp. 957–962 (Aug. 2002).

[16] N. Rowe, Counterplanning Deceptions to Foil Cyber-Attack Plans,

IEEE Workshop on Information Assurance pp. 221–228 (June 2003).

[17] C. Stoll, Stalking the Wily Hacker, Communications of the ACM
31(5) pp. 484–497 (May 1988).

[18] P. Ferrie, Attacks on Virtual Machine Emulators. Symantec

Advanced Threat Research. Retrieved January 15, 2008 from
http://www.symantec.com/avcenter/reference/

Virtual_Machine_Threats.pdf

[19] J. Rutkowska, Red Pill... or how to detect VMM using (almost) one

CPU instruction, 2005. Retrieved February 15, 2008 from
http://invisiblethings.org/papers/redpill.html.

