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Abstract— Researchers and practitioners in computer forensics 

currently must base their analysis on information that is either 

incomplete or produced by tools that may themselves be 

compromised as a result of the intrusion.  Complicating these 

issues are the techniques employed by the investigators 

themselves. If the system is quiescent when examined, most of 

the information in memory has been lost. If the system is 

active, the kernel and programs used by the forensic 

investigators are likely to influence the results and as such are 

themselves suspect. Using virtual machines and a technique 

called virtual machine introspection can help overcome these 

limits, but it introduces its own research challenges.  Recent 

developments in virtual machine introspection have led to the 

identification of four initial priority research areas in virtual 

machine introspection including virtual machine introspection 

tool development, applications of virtual machine introspection 

to non-quiescent virtual machines, virtual machine 

introspection covert operations, and virtual machine 
introspection detection. 

Keywords-virtualization, digital forensics, cirtual machine 

introspection, VMI. 

I.  INTRODUCTION 

Digital forensics is an increasingly important and diverse 
area of computer science, charged with providing vital 
evidence to legal proceedings, determining methods of 
attack, and gathering data to determine what vulnerabilities 
were exploited in an effort to compromise a particular 
system. However, researchers and practitioners in this field 
typically base their analysis on information that is either 
incomplete or produced by tools that may themselves be 
compromised as a result of the intrusion.  

The traditional incident response procedure, known as 
quiescent analysis, is to take custody of the compromised 
system, shut it down, copy the storage media, and then 
analyze the copy using a variety of forensics tools.  The 
shutdown process amounts to either invoking the normal 
system shutdown sequence, or pulling the power cord from 
the system to effect an instant shutdown [1].  In both cases it 
is likely that the storage media no longer accurately reflects 
the state of the system before shutdown.  In the case of the 
normal shutdown, data is read and written to the hard disk, 
which may delete or overwrite forensically relevant content, 
whereas in the case of the immediate power-off, data in the 

disk cache may not be synchronized with the hard disk.  A 
more fundamental problem also exists, in that much of the 
information of interest to the examiner, such as the process 
list, kernel configuration, network status, encryption keys, 
and unencrypted data, may only exist in RAM, and as such 
will not appear in the forensic image of the hard disk. 

As the importance of this volatile data to digital forensics 
analysis has become more evident, non-quiescent analysis 
techniques, in which the system is examined during 
operation, have become increasingly common.  This method 
can provide the investigator with access to the volatile 
information that is inaccessible during quiescent analysis, but 
it too suffers from some serious flaws.  The first problem, 
known as the observer effect, is that any operation performed 
during the live analysis process modifies the state of the state 
system, including the contents of memory and storage media, 
and as such can taint any evidence recovered during the 
investigation.  The second problem is that non-quiescent 
analysis relies, at some level, on the system utilities that exist 
on a potentially compromised system.  As such the results 
can be manipulated by an attacker to be false or misleading.  
In addition, any forensic utilities executed during the live 
analysis can be detected by a sufficiently careful and skilled 
attacker, who can at that point change behavior, delete 
important data, or actively obstruct the investigator’s efforts. 

Ideally, the forensic investigator would be able to analyze 
the system from a distance, leaving no trace of the probing 
(or even of altering data, if such is done). In essence, what is 
needed is an invisible, undetectable path over which the 
target system can be (passively and actively) monitored. 
Such an approach requires special hardware or some form of 
virtualization. The latter is available in the guise of a 
technology called virtual machine introspection. 

The goal of this paper is to apply virtual machine 
introspection to the forensic problems discussed above. We 
identify several research issues that need to be examined in 
order to determine the value of virtual machine introspection 
as a forensic tool, how it can best be used, and what its 
limitations are. 

The next section reviews the idea of virtual machine 
introspection. Section 3 identifies four research issues: the 
development of forensic tools, the monitoring of active 
virtual machines (as opposed to those paused, or quiescent), 
active monitoring (in which data in the virtual machine is 



altered), and the detection of virtual machine introspection 
from within the monitored virtual machine. We conclude 
with a look at other directions. 

II. VIRTUAL MACHINE INTROSPECTION 

The increasing availability and use of virtualization 
enables investigators to have access to the complete state of a 
target system in a manner that is in no way reliant on the 
target system to provide information.  In addition, this form 
of live analysis may prove to be extremely difficult for 
attackers to detect, if they can detect it at all.  Suppose a 
computer system runs in a virtual machine (VM), supervised 
by a virtual machine monitor (VMM). The computer system 
has network connections, accounts, and in all ways appears 
to be an ordinary computer system. An attacker breaking into 
the system would probe it and proceed as though the attack 
were on a regular system—which, indeed, it is, as all user 
data (and other data) resides on this VM. But, when the 
attack is discovered or suspected, the security analysts do not 
begin running programs on the attacked system to analyze it. 
Instead, they go to either the VMM or a second VM running 
under the control of the VMM and ―look inside‖ the attacked 
VM. This technique is called virtual machine introspection 
(VMI) and was first introduced by Garfinkel and Rosenblum 
[2]. 

A VM presents the appearance of hardware to those 
processes that run on it—and that includes the resident 
operating system. So, if the operating system in the VM uses 
pages, the page tables are also stored in the VM’s memory 
space. When the process in the VM triggers a page fault, the 
operating system in the VM attempts to fetch the missing 
page. But it executes privileged instructions to do so, causing 
a trap to the VMM. Thus, the VM traps to the VMM, which 
sets the registers of the VM to make it appear that the 
process page fault trapped directly to the VM. It then returns 
control to the VM’s operating system which determines the 
―trap‖ was caused by a page fault, and so loads the page, 
causing another trap to the VMM, which loads the page and 
makes it available to the VM, and then updates the VM’s 
registers. It then returns control to the VM’s operating 
system, which in turn returns control to the process. As far as 
the process is concerned, it interacted only with the operating 
system on the VM and the ―hardware‖ (VM) itself. The 
interesting point is that the VMM has complete access to all 
memory in the VM, and can read and alter it as needed.   

Given this, it is possible for a program to use the VMM 
to reconstruct the contents of a process’s memory space, and 
even the contents of the VM’s kernel memory, by using the 
page table for the VMM to obtain an image of the VM’s 
memory. From that, it accesses the VM kernel memory to 
locate the process(es) of interest, and the associated memory 
pages. The program can then reconstruct exactly what the 
program was doing from this information. 

This approach has additional advantages over standard 
methods of forensic analysis. First, if one performs quiescent 
forensic analysis by imaging the disk and analyzing it off 
line, one generally loses the contents of memory, which (as 
noted above) may be critical to accurately reconstructing the 
events. Second, if one performs non-quiescent forensic 

analysis by executing investigative programs on the system 
while it is running, the data obtained may be deceptive if the 
kernel, libraries, or programs themselves have been 
compromised by (for example) a rootkit.  But if the analysis 
is done from the VMM, any compromised components of the 
operating system, libraries, or programs on the VM will be 
irrelevant as the tools bypass them, and run only on the 
VMM.  In this case, the non-quiescent analysis may look at 
memory, but because the VM is not turned off; it is merely 
quiescent, with memory contents being retained. The 
quiescent analysis poses problems of consistency, because as 
the snapshot is being taken, the locations not yet read may 
change, producing an inconsistent representation of memory 
contents, which can make analysis more problematic.   The 
tools and techniques in virtual machine introspection are 
evolving quickly as virtualization becomes more mainstream 
and its use in production systems increases.Wherever Times 
is specified, Times Roman or Times New Roman may be 
used. If neither is available on your word processor, please 
use the font closest in appearance to Times. Avoid using bit-
mapped fonts if possible. True-Type 1 or Open Type fonts 
are preferred. Please embed symbol fonts, as well, for math, 
etc. 

III. RESEARCH QUESTIONS 

Research in the application of VMI [3] has typically 
focused on intrusion detection rather than digital forensics.  
Recent work [4] has considered digital forensics as a primary 
VMI application area, and there has also been associated 
work in tools that construct forensically relevant information 
from memory images [5, 6]. 

These tools and techniques raise several interesting 
research questions for VMI, and providing answers to such 
questions is vital if VMI is to be used for digital forensics, as 
the results of digital forensics investigations can have serious 
and wide-ranging legal consequences. First, in order to read 
memory correctly, the process memory must be consistent, 
which in the simplest case means the VM must be paused.  
Can the attacker determine this?  If so, the attacker may be 
able to exploit this knowledge to mislead the analysis, or to 
delay until the snapshot is taken before launching specific 
attacks. Second, can a consistent snapshot be taken without 
pausing the system? That is, given a non-static memory, can 
one obtain enough information from a snapshot, or series of 
snapshots taken over time, to determine what is happening? 
Third, beyond the obvious use of digital forensics, to what 
uses can this ability be applied? Certainly intrusion detection 
is an obvious one; another is to analyze the vulnerabilities on 
the system that allow an attacker to breach security. But the 
field of digital forensics, especially when applied to virtual 
machines is so new, ill-defined, and conceptually so wide, 
that it has applications in those areas, and many more 
beyond.  These and other related question led to the 
identification of four initial priority research areas that need 
to be addressed in order to effectively investigate the limits 
of VMI.   These include VMI tool development, applications 
to non-quiescent VMs, VMI covert operations, and VMI 
detection.   

 



A. VMI Tool Development 

Under any current virtualization system, compromise of 
the VMM is catastrophic to almost any security property of 
all virtual machines running under the VMM.  As such, a 
good approach is to follow a policy in which the VMM is, to 
borrow a phrase from Einstein, ―as simple as possible, but 
not simpler‖.  The addition of any VMI capabilities to the 
VMM itself must, therefore, be carefully weighed against 
this goal in order to ensure that functionality that could be 
implemented in the virtual machine be identified and 
implemented in the appropriate location, rather than taking 
the easier route of simply adding functionality directly to the 
component with the highest privilege level on the system, 
namely the VMM.  There are several approaches under 
current investigation that may allow the VMM to remain 
unmodified, or at most slightly modified, while enhancing 
the opportunities for VMI.  For example, a privileged virtual 
machine (called Dom0) under Xen [7] serves, in many cases, 
as the direct interface to physical hardware, such as the 
network cards. So monitoring of non-privileged virtual 
machine (called DomU) interactions with hardware may 
require modifying Dom0.  Extending this approach further, it 
is possible in some circumstances to relocate the underlying 
driver for physical hardware from Dom0 to a DomU (which 
is known as a ―driver domain‖).  This allows an application 
running in an unprivileged VM to provide the introspection 
capabilities with respect to the interaction between target 
VMs and certain hardware components.  Relocating the 
driver into the unprivileged DomU alters the mechanism 
performing the virtualization of the hardware, and not the 
virtual hardware itself, and so should be invisible to the 
processes and systems in DomU. 

Mapping memory from DomU systems into Dom0 is not 
limited to read-only access, and as such it is also interesting 
to consider what additional capabilities might be gained, and 
what associated costs would be incurred, by modifying, even 
temporarily, memory within a target DomU VM.  For 
example, write access could be used to provide VMI  
―breakpoints‖ in DomU applications, although doing so in a 
manner that preserved the difficulty of detecting VMI may 
be challenging (although such a tradeoff may be acceptable 
depending on the intended use, and may still be less 
detectable than current monitoring techniques, such as those 
employed by Sebek, for example).  One approach in this 
category under current investigation is the temporary 
replacement of instructions in an executable with calls that 
trap to the VMM, which can then be redirected to Dom0 for 
processing. 

B. Application to Non-quiescent VMs 

The current state of the art in analyzing virtual machines 
allows an analyst to pause or suspend the VM, and take a 
dump (called a snapshot) of its memory.  While a valuable 
investigative technique, this approach limits forensic analysis 
because it does not capture the causes of the changes to 
memory. More valuable would be the ability to observe the 
system calls and other functions actually executed; such 
information is critical to establishing what happened [8]. 

The application of virtual machine techniques and tools 
to non-quiescent VMs is an interesting area that is likely to 
lead to further research questions in order to test the limits of 
what information can be gleaned when virtual introspection 
tools are applied to non-quiescent VMs.  In [9], Carrier 
describes the risks of analyzing incidents on the systems on 
which they occur (which he called ―live analysis‖). He 
focuses on the untrustworthiness of the system components, 
using as an example a system with a kernel-based rootkit. He 
proposes using tools that effectively emulate the kernel’s 
routines for reading files, and suggests using system calls to 
read individual sectors of the disk. He noted that a rootkit 
that modified the kernel’s read system call would be difficult 
to write and, hence, unlikely to be part of an attacker’s 
repertoire. 

There are additional problems, most notably that of 
consistency.  The kernel cannot be trusted to enforce mutual 
exclusion between the analysis programs and the system for 
several reasons, including potential compromise of the 
kernel.  Additionally, the kernel would have to lock large 
portions of memory (including its own) and disk, which 
would not only cause problems for other processes on the 
system, but is also simply not an ability that most kernels 
possess.  Thus, one part of the ―snapshot‖ of the process will 
reflect the state of the process at one time, and another part 
will reflect the state of the process at a later time. This is 
analogous to traditional problems of concurrency and 
synchronization without mutual exclusion, especially the 
readers-writers problem [10] and in this context may be 
called inconsistent static auditing [11]. 

It is unclear how inconsistent static auditing affects 
reconstruction of the state. The effect will depend on the 
organization of data within memory and the system. 
Specifically, let a ―snapshot‖ be composed of one or more 
units, defined as the contents of (virtual) memory or disk that 
the monitoring process can read as a single entity. Then the 
contents of each unit will be consistent because they are 
―locked‖ while the I/O transferring the contents from the 
object to the memory of the monitoring process is in 
progress. But the contents of different units may be 
inconsistent. So, if the critical information for the analysis is 
in the same unit; if those units can be shown to have been 
taken while the process was quiescent (for example, swapped 
out); or if the nature of the inconsistency can be determined 
and its effect on the analysis compensated for, the analysis 
should be unaffected. 

How to determine this, and how to compensate for it—or 
determine that it cannot be compensated for and inform the 
analyst—requires a detailed analysis of what the VMI tools 
do and how they do them. This speaks directly to the testing 
and measuring of the effectiveness of these tools, because the 
environment in which they are used may affect their 
accuracy. When the target is a paused VM, evaluating the 
tools is straightforward. But when the target is an active VM, 
the evaluation must take into account inconsistencies of the 
sort described above, and the tools must know whether they 
can compensate for these inconsistencies (and if so how), or 
merely report the problem to the investigators.  As changes 
are made in VMI techniques and extended to non-quiescent 



VMs, the investigation of the detectability of the tools 
becomes an increasingly interesting research question. 

C. VMI Covert Operations 

The development of VMI tools such as VIX [4] has 
resulted in some unanticipated capabilities beyond the 
original intent.   With access to the presumed private data 
associated with a particular VM, a VMI tool has the inherent 
potential to inject new data or code or modify existing data 
on the VM.  Since VMI capabilities potentially provide 
ancillary powers that can be used for good or evil, those 
capabilities, in turn, introduce a plethora of interesting 
research problems beyond those originally identified.   A 
VM should ultimately be able to protect itself from, or at 
least detect, the activities of a malicious user (insider from 
the VM perspective), a malicious VMM administrator 
(outsider to the VM, but insider to the VMM), and a 
malicious remote attacker (outsider to both the VM and 
VMM).   

VMI Modification investigates the application of 
deception techniques [12] involving the modification of the 
VM’s (virtual) hardware and processes from Dom0. The idea 
is to simulate hardware failure, or to change program 
instructions or data in order to influence the actions of the 
suspect programs. The analyst can present the illusion of 
hardware that is broken, or that works intermittently to slow 
an attack. When the suspect program interacts with other 
processes on the VM, the analyst can alter the way the 
processes act so as to present a VM with multiple 
inconsistent configurations. Numerous studies have reported 
on the use of deception as a defensive mechanism [13, 14, 
15, 16, 17]. The use of virtual machine eliminates the need 
for host-based deception to use a modified kernel and 
modified software. This type of modification raises all the 
issues of monitoring non-quiescent systems discussed above.  

The range of potential research problems, such as the 
ability for a given VM to protect itself certainly has some 
similarities and potentially may be viewed as analogous to 
those in non-virtualized environments.  It remains to be 
determined how closely coupled the two research areas are 
and, if the issues in the virtualized environment supersede 
those evident in the analogous non-virtualized environment.  
In addition, there are obvious questions about how well the 
approaches to addressing these issues in a non-virtualized 
environment will map to the virtualized environment.   These 
issues area closely related to the ability to detect VMI, as that 
would likely be a logical step in addressing issues associated 
with VMI covert operations. 

D. VMI Detection 

The VMI Detection investigates under what conditions, 
and to what degree of certainty, a process on the VM can 
determine it is being monitored.  In both of the previously 
mentioned deployment environments, digital forensics and 
honeynets, it is important to understand the extent to which 
the monitoring can be detected from within the target virtual 
machine.  In many cases, a user running processes in a 
virtual machine can reliably determine that those processes 
are running in a VM [18, 19], but this is a different and 

essentially irrelevant issue.  In the past, x86 virtual machines 
were seldom deployed as production systems, and an 
attacker who detected virtualization could reasonably assume 
that the compromised system was part of a honeynet, or a 
low value target, at which point they could either disconnect 
or modify their behavior.  However, the surge in VM 
deployment for production systems, and the likely continued 
increase in mainstream usage of VMs as multi-core, multi-
processor systems become common place, means that the 
fact of virtualization does not imply that the system is a 
honeypot.  It is important to be able to determine whether a 
user on a virtual machine can also detect the VMI 
monitoring, and if so to what extent and under what 
conditions.  It would be easy to suggest that no detection can 
be possible in cases such as VIX, based on the fact that the 
VMI techniques require no modification to the target VM, 
nor is there any monitoring process running on the target 
VM.  However, it is not clear that this is the case, even if the 
VMI is performed while the target VM is paused and only 
read operations on the target VM’s resources are employed.  
Several channels have already been identified through which 
the target VM may be able to determine that VMI is actually 
occurring, or even that it is likely to be occurring, including 
the following: 

 

 Analysis of the wall clock timing of VM execution.  
On a virtualized system, VMs are scheduled for 
execution in much the same way that processes are 
scheduled on a modern operating system, and as 
such there are always ―pauses‖ in the execution of a 
VM whether it is being monitored or not.  But the 
pattern of execution frequency or the periods for 
which the VM is paused may vary from some norm 
during VI monitoring, which may provide an 
indicator by which the monitoring can be detected 
from the VM, despite the VI process not having 
made any change to the VM state. 

 Analysis of page faults.  When a process requests 
access to a memory address, the relevant data may 
either exist in RAM or may have been paged out to 
disk, in which case the process must wait while the 
appropriate data is loaded from swap to RAM.  If 
the VI process results in data associated with a 
target VM being either paged out or in, a process 
within the VM may be able to detect the 
inconsistency between the actual state of the page 
(in RAM or swap) and the expected state.  As 
before, this is likely to occur during normal 
operations on a virtualized system, but the pattern 
with which these inconsistencies occur may provide 
an indication that monitoring is underway. 

 Paravirtualization versus full virtualization.  Virtual 
machines can be deployed in either fully virtualized 
or paravirtualized modes.  A fully virtualized VM 
requires no modification to the guest operating 
system, and the VM behaves in exactly the same 
manner that it would were it not virtualized.   Under 
the paravirtualized model, the guest system is 
changed in some manner to allow the VM to 



cooperate with the VMM to implement the 
virtualization.  An example of such a change is the 
replacement of some privileged instruction in the 
guest operating system with calls directly to the 
VMM. There are advantages and disadvantages to 
both approaches. It will be instructive to determine 
to what extent the VM can cooperate with the 
VMM (i.e., use paravirtualization) without enabling 
VI monitoring to be detected.  

This is certainly not an exhaustive list, but is 
representative of the types of issues that must be examined 
before any claims of ―undetectable monitoring‖ can be made.  
Research efforts may result in the discovery of methods that 
provide absolute and reliable indications that monitoring is 
underway.  Alternatively, we may discover that the VM may 
be able to detect anomalies that could lead a user to suspect, 
but not be certain, that monitoring is taking place.  In either 
case, the extent to which the monitoring can be detected, and 
the circumstances that enable such detection, will affect the 
implementation of the tools and the procedures for the use of 
the tools (for example, in a digital forensics investigation, an 
investigator may want to use tools for which no detection 
method is known first, followed by those methods which 
may be detectable). 

The research in non-quiescent systems described in the 
previous section will influence the issue of detectability. A 
key question is whether the target VM must remain paused 
for the duration of a single VI operation (such as a search of 
process memory for encryption keys), or whether reliable 
results can be obtained by spreading the operation across 
multiple periods during which the target VM is not 
scheduled for execution.  Some operations may be 
sufficiently simple that they fit in the normal unscheduled 
periods, whereas other may require significantly longer 
access to the state of the VM, and unusually long periods in 
which the target VM is paused might be detectable by an 
attacker.  A potential solution to this issue may be to quickly 
record the relevant portions of the VM state, so the analysis 
can be conducted over a longer time period, while allowing 
the VM to continue operation, thus modifying the original 
state but not the copy.   These and other emerging questions 
provide for a rich research arena in VMI. 

 

IV. CONCLUSIONS 

Virtual Machine Introspection may help the digital 
forensics community address some of the limitation of 
current investigative techniques, particularly as the use of 
virtualization becomes more commonplace.  However, the 
results of digital forensics investigations can have serious 
and significant legal and societal consequences, and as such 
new tools and techniques should be introduced into this 
domain very carefully.  This paper describes several open 
problems which will determine how applicable VMI really is 
to digital forensics, and help to determine the reliability of 
results obtained using VMI techniques.  Identified areas for 
future research include virtual machine introspection tool 
development, applications of virtual machine introspection to 
non-quiescent virtual machines, virtual machine 

introspection covert operations, and virtual machine 
introspection detection.   
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