
The road to Hell1 is paved with good intentions:
A story of (in)secure software development

Richard Sassoon∗, Martin Gilje Jaatun†, Jostein Jensen∗
∗Norwegian University of Science and Technology (NTNU)

†Department of Software Engineering, Safety and Security SINTEF ICT
Trondheim, Norway

rsassoon@gmail.com, Martin.G.Jaatun@sintef.no, Jostein.Jensen@idi.ntnu.no

Abstract—In this paper, we present the results of a security
assessment performed on a home care system based on SOA,
realised as web services. The security design concepts of this
platform were specifically tailored to meet new security challenges
and to be compliant with legal frameworks applicable to the
healthcare domain. This security design was fed as input to
the development team, which implemented the system. However,
our assessment revealed a software platform with severe security
weaknesses and vulnerabilities, demonstrating dangers that are,
or should be, well known.

Our experience illustrates that security must be built as an
intrinsic software property and emphasises the need for security
awareness throughout the whole software development lifecycle.

Index Terms—secure software development; secure design;
security assessment; security awareness; SOA

I. I NTRODUCTION

Enabling information systems to communicate via open
networks such as the Internet, will always be associated
with elements of risk. Mavridis et al [1] correctly state that
“Security risks cannot be entirely removed when transmitting
information over the Internet”. The European Parliamentary
Technology Assessment (EPTA) network has made similar
considerations and specifically expressed concerns that pri-
vacy is challenged by the increase in development of ICT
applications for the healthcare sector [2]. Such concerns are
also raised by others, such as Ilioudis and Pangalos [3] and
van der Haak et al. [4]. The privacy of personal data is con-
tinuously threatened by users with bad intentions. Healthcare
systems handle sensitive personal information, and only the
imagination limits the possible misuse of such; pharmaceutical
industry can use it for directed marketing purposes, insurance
companies can adjust their customers’ insurance coverage,and
information such as personal identification numbers can be
used for identity thefts.

Service Oriented Architecture (SOA) is gaining popularity,
and according to independent reports by Computer Economics
[5] and Gartner [6] it has been adopted by more than fifty
percent of companies worldwide, particularly in Europe and
North America. Healthcare organisations are also startingto

1Hell is a small collection of houses, a hotel, and a shopping mall, situated
right next to Trondheim Airport, whose main claim to fame is being the
birthplace of 1990 Miss Universe winner Mona Grudt (a.k.a. “The beauty
queen from Hell”).

develop information systems based on SOA. One example of
such initiative is presented by the National ICT, which is a
Norwegian institution coordinating ICT initiatives in hospital
health services. They recommend SOA as a way of achieving
a common platform for the services within their responsibility
[7]. However, SOA introduces some security concerns, as
pointed out by Epstein et al. [8] and the New Rowley Group
[9], such as access to services from inside and outside the
organisation. Therefore, developing secure SOA based systems
is not trivial and, according to Knight [10], security“will only
be part of your service oriented architecture (SOA) if you build
it in yourself”.

The following sections present experiences related to the
development of a SOA-based service platform intended to
support home care of elderly and people with cognitive disabil-
ities. Information systems designed to treat sensitive personal
information are subject to extensive regulation by legislation
[11] [12] to ensure availability, confidentiality and integrity of
personal information, and as such should be securely designed,
implemented and deployed.

The rest of this paper is organised as follows: In section
II we describe the background for our assessment, including
a brief description of the MPOWER project. Section III
describes our assessment methodology, and high-level results
are given in section IV. We discuss our findings in section V,
and offer some recommendations in section VI. Section VII
concludes the paper.

II. BACKGROUND

The security evaluation was performed on the results of
a European research project, MPOWER, using its security
design as a starting point. As already mentioned, the objective
of MPOWER is to develop a healthcare platform that deals
with sensitive health data and therefore it should comply with
the European Union Directive 95/46/EC [12], which regulates
the handling of private data for the member states of the
EU. This and specifically the Norwegian implementation of
this directive was studied in order to define a set of security
requirements to be included in the security design. As part of
the evaluation, several components of the WS-* specifications
were reviewed, in search of proper ways to deal with security
for Web Services.

A. Security Design

In this section we give an overview of the security design
elaborated for the project. We will see that a proper docu-
mentation is not enough to achieve security, and that security
awareness is an important element throughout the entire devel-
opment process. Table I shows the security components that
were identified, and which should be implemented in order
to fulfill the legal requirements for the platform. The security
requirements are further discussed in Jensen et al. [13].

Component Description
Access Control Access control includes the Authentication

and Authorisation services. The Authentica-
tion service includes operations to verify a
user’s credentials, and initialises a process
for issuing security tokens. The Authorisation
service determines which operations and data
an authenticated user can access, allowing
access to resources only to legitimate, au-
thorised users. Authorisation in MPOWER
is based on a Role-Based Access Control
(RBAC) scheme, extended by a Context-
Based protection2.

User Management The user management service provides oper-
ations to administer users of the system, such
as adding and deleting users, updating users
roles and retrieving user information.

Role Management The role management service enable the ad-
ministrator to manage the roles of the system.
Administrator may e.g. add/delete roles, and
assign/delete users to/from roles

Access Management The access management service includes op-
erations to manage the permissions and ac-
cess profiles associated with the access con-
trol system.

Token Management The token management service is used by the
Authentication and Authorization services to
issue and validate security tokens, which are
used for access control purposes.

Public Key Infrastructure The PKI service provides an interface for
general management of certificates, such as
issue, renew, revoke and verify certificates.

Audit The audit service provides an interface en-
abling other services to log data that needs
to be stored and retrieved for future audit
purposes.

Encryption The encryption mechanism describes func-
tionality related to confidentiality and in-
tegrity protection of data.

Secure Storage The secure storage mechanism describes
functionality for storing data securely and for
retrieving secured data from storage.

Secure Communication Secure communication is the mechanism de-
scribing functionality needed to secure data
being transmitted between two endpoints.

TABLE I
MPOWERSECURITY COMPONENTS. ADAPTED FROM [14]

B. System Environment

The expected environment of the system is presented in fig-
ure 1, where we can visualise the most important components,
and which helps us understand the tests and results. As we will
see in section IV, what we expect is not what we experience.

2Context information is important for limiting a role’s access to a subset
of target objects, depending on context elements associated to the user that
was assigned the role [15]. Such elements include the relationship this user
has with the requested information, e.g., a user with adoctor role that should
have access only to his patients’ data.

Fig. 1. Expected System Environment

C. Project Characteristics

The MPOWER project was funded by the European Com-
mission’s 6th Framework Programme, and thus had to satisfy
a number of constraints. The project partners had to be diverse
in geographical location and represent industry, academiaand
research institutions. EU research proposals all follow a set
template, and it is implicitly assumed that the work will be
organised in “Work Packages”.

Although an agile Scrum approach was chosen for the
project, the different work packages were established in a
conventional manner, and developed independently. A separate
security WP was a part of the plan, which should have been
a good approach, since this would contribute to setting focus
on the security aspects of the project. Unfortunately, due to a
serious lack of continuity of key members in the project, the
security design was delayed for a long period and it had to be
elaborated in parallel with the implementation, and thus the
implementation of the security mechanisms started before the
security design was finished.

Other early project decisions contributed to the delay of
the security design and the resulting parallelism mentioned
above: No threat modeling was employed and no security re-
quirements were thought of. The latter had to be done, finally,
when the security design document was being developed.

The development process followed a Scrum approach for
the most part. The security design process, however, ended up
having more in common with a traditional waterfall approach,
which may have contributed to the security work falling out of
synch with the rest. In line with the chosen Scrum approach, a
backlog of functional requirements was maintained. Somehow,
only the functional results of the security design made it out
of the backlog (e.g. the authentication and token management
services were implemented), leaving most non-functional se-
curity aspects alone in the dark.

III. A SSESSMENTMETHODOLOGY

Every organisation should have some standard methods
for performing its development activities, including security
tests of its applications. A poorly conducted test, i.e., one
that does not find critical vulnerabilities, could expose the

company’s assets, e.g., causing leakage of sensitive data and,
consequentially, financial loss. As Herrman points out [16], the
disclosure of private information makes the company liablefor
not complying to government and industry regulations, and to
lawsuits from clients or customers, besides the damage to its
credibility.

According to NIST [17], the use of a consistent, documented
and repeatable security testing methodology allowsfor benefits
such as:

• Structured security testing, minimising testing risks,
where the results are properly documented for future
reference, providing the means to assure the test has been
conducted as it should be.

• Facilitate the transition of new assessment personnel.
• Effective planning of resources (e.g., staff, hardware,

software) to use for performing the assessments, thus
reducing overall costs and time to conduct them.

A. Reviewed Methods

Our security assessment was inspired by the following
recognised methodologies and guidelines:

• The Open Source Security Testing Methodology Manual
(OSSTMM)[18], [19], which provides a methodology for
a thorough security test, referred to as an OSSTMM audit.

• The Technical Guide to Information Security Testing
and Assessment - NIST-SP800-115[17]. This document
provides guidelines for planning and conducting an in-
formation security assessment via technical testing and
examination techniques.

• TheOWASP Testing Guide[20], created by the The Open
Web Application Security Project (OWASP). This guide
covers the scope of testing, the principles for a successful
testing process, and the necessary testing techniques.
The focus is the integration of testing in the software
development life cycle.

• TheSIFT Web Services Security Testing Framework[21]
is a methodology specifically designed for testing web
services security.

B. Chosen Method

Our objective was to demonstrate the level of security that
a SOA-based healthcare system can achieve, but without the
illusion of uncovering every possible flaw, as this would be
unrealistic. By following some recommendations from the
methodologies and guidelines presented above, we defined
a custom approach to perform the security testing on the
MPOWER platform. This method consists of the same three
phases defined by NIST, adapted and simplified, to suit our
purpose:

• Planning: In order to plan what kind of tests should
be part of our assessment, we looked at the security
components, outlined in section II-A, which should offer
an acceptable level of security if well implemented. This,
and knowing that the system is implemented via web
services, served as the basis for selecting test cases
associated to relevant threats. Incremental changes to the

test cases played an important part in the process, as new
details of the implementation were unraveled.
During this phase we had to characterise:

– Test target: The assessment would be performed on
a proof of concept application (POCA), that makes
use of the MPOWER middleware services. The tests
would be conducted in a controlled environment,
with no restrictions regarding scope or techniques
to be employed.

– Objective: The main objective was to verify if the
MPOWER security components offered the desired
security level or fell short of their intent. Security
problems discovered in the POCA implementation
might be considered as a consequence of the assess-
ment.

– Techniques: A mix of techniques would be used to
perform the tests, the main one being penetration
testing and, to a lesser extent, code and configuration
reviews. As McGraw [22] tells us, passing a pene-
tration test does not guarantee that an application is
free of vulnerabilities.
It is important to point out that the tester had direct
access to the necessary resources (i.e., source code,
WSDL, application server, database).

– Scope and limitations: The scope of the tests was
not as extensive as it could have been, leaving out,
e.g., operating system specific flaws, wireless trans-
missions, physical security and social engineering.
The focus would be on the functionalities provided
by the MPOWER platform and the observed security
when using them. The test cases better define the
intended scope, and since the assessment was per-
formed in a controlled academic environment, there
were no restrictions on executing tests that could
crash the application, provoking a denial of service.

– Tools: Based on the selected test cases, the following
tools were chosen:

∗ WebScarab and Burp Suite: Their proxy func-
tionality allows for tampering and replay attacks,
besides analysis of HTTP(S) traffic.

∗ Wireshark: Used to inspect packets going through
a specified network interface (including the loop-
back).

∗ soapUI: Having its focus on Web Services testing,
it was a natural choice. It allows for WSDL
inspection and service invocation, besides a good
support for WS-Security.

∗ WSFuzzer: This tool has the objective to automate
SOAP-based web services penetration testing by
dynamically generating several attack vectors, for
fuzzing parameters.

– Constraints: The time frame was quite limited, so
the focus had to be on the most important test
cases. Such factors could negatively influence the
end result.

• Execution: Having established the test cases, these were
put into practice in order to identify vulnerabilities.

• Post-Execution: The results generated during the execu-
tion phase were analyzed and presented together with the
respective countermeasures. General recommendations
based on these findings were proposed.

IV. OVERALL RESULTS

This section presents the test cases which uncovered issues,
together with a short explanation, as well as some other
considerations based on our results. As said before, the basic
security mechanisms, expected and shown in figure 1, were
not active and therefore many attacks were possible.

A. Summary of Risks

Table II gives an overview of the threats that were found
by applying the specific test cases.

Test Case Results
WSDL Scanning Internal operations that do not need au-

thorisation can be invoked directly via
SOAP messages.

Replay Attacks Any kind of replay attack is possible,
with or without modification, at any
time.

Parameter Tampering Requests can be modified on the fly,
without detection.

Forced Browsing Users can access interfaces and func-
tionalities related to roles they do not
have.

Cross Site Scripting
(XSS)

It is possible to recover session cookies
and then hijack users’ sessions.

XML Injection Can trigger XSS attacks.
Test the username/-
password authentication
scheme

Login credentials are transmitted over
insecure channels and passwords are
stored in cleartext in the database.

Test the transmission of
security tokens
Test the effectiveness of
the security token

The tokens may be captured by an
attacker wishing to send direct SOAP
requests, and can also be modified in an
attempt to trigger other operations not
indicated.

Session Management It is possible to steal session cookies
and impersonate users for long periods
of time.

TABLE II
SUMMARY OF RISKS

B. Looking Further

The assessment proved that the POCA and the MPOWER
platform are vulnerable to common attacks targeting web
applications. Considering theOWASP Top 10 web application
vulnerabilities[23], seven of them are present in our case study
system:

1) Cross Site Scripting (XSS)
2) Injection Flaws
3) Information Leakage and Improper Error Handling
4) Broken Authentication and Session Management
5) Insecure Cryptographic Storage
6) Insecure Communications
7) Failure to Restrict URL Access
Based on our observations, we can infer that SOA-based

systems in general are expected to suffer from the same
problems if security is not treated properly. While this is

not surprising, the fact that an organisation that is concerned
with data confidentiality and integrity does not implement
basic security mechanisms, makes us wonder how many other
similar cases that are completely vulnerable.

Even though we evaluated a healthcare system, we can ex-
trapolate the results to other domains since the vulnerabilities
found are not specific. Therefore, the findings presented are
relevant when considering the development of secure applica-
tions, based on SOA or not. Problems related to disclosure of
personal information will cause a loss of users’ trust and make
the organisation(s) behind the applications liable to lawsuits,
no matter if it happens in the healthcare domain or any other.

V. D ISCUSSION

Although our dedicated testing environment and access to
all necessary resources made it easier to execute the attacks
(e.g., via proxying or sniffing), we have to bear in mind
that a skilled attacker could perform the same actions on the
system, only needing more preparation to do so. Just having
the possibility for an attack is enough reason to be worried
about the security of a system. In a production environment
the system will be exposed, and if we haven’t been able to
weed out all the security flaws, we should expect some form
of attack to be successful. Thus, the vulnerabilities foundhave
to be mitigated; assuming that they won’t be found by the
hackers is bordering on the naı̈ve.

It may seem that we are dealing with an old topic here,
but we have to consider that, even though there is a careful
planning and security design, problems exist and should not
be discovered too late. A proper security validation has to be
performed periodically during the software development life
cycle to make sure that there are no loose ends in any module
or their integration.

We also have to take into account that both POCA and
the MPOWER platform are prototypes of an ongoing research
project, and are still not ready for production. Even that being
the case, it is not an excuse for the probable relaxed focus
on the security aspects, considering that the formal plans
maintained a high security posture. Nevertheless, the costs for
fixing the issues at this point in the project are certainly higher
than if the assessment was performed earlier, or if security
testing had been part of the secure development lifecycle
(SDLC).

We can also wonder about the project aspects that may have
influenced the security achieved and perceived. Is SCRUM
the problem? Is it Waterfall? Or is it simply communication
problem? As the original project plan did not comprise testing,
no problems could be discovered and associated to a particular
moment in time. What happened is due to a combination of
factors and no single element can be pointed as the sole culprit.

Although agile methods make it difficult (or impossible?)
to comply with the stringent documentation requirements of,
e.g., the Common Criteria [24], several authors have argued
that agility and security need not be inversely proportional
measures. Beznosov [25] opines that the agile XP methodol-
ogy can provide “good enough” security, while Wäyrynen et

al. [26] claim that the solution to achieving security in an XP
development is simply to add a security engineer to the team.
Siponen et al. [27] advocate a solution that more or less can be
summed up as ”think about security in every phase”. Although
this may be a result of their choice of example agile method
(Feature-Driven Development), we are not entirely convinced
that simply declaring security aspects to be yet another feature
will result in secure software.

In an earlier contribution, Poppendieck [28] argues that agile
methods (specifically: XP) are just as suitable as traditional de-
velopment methods for developing safety-critical applications.
It may not follow immediately that “safe” software is also
“secure”, but the former is required to pass auditing procedures
that should be customisable to suit requirements for the latter.

Was the idea to implement a security work package a good
one? Work packages are typically enough unto themselves,
evolving on their own while ignoring other WPs. Is it better
to implement security in every work package? We have to
consider that there are re-usable security “components”, and
these are probably best developed in a separate work package.
Furthermore, a separate security WP gives security the proper
attention/focus, avoiding a project falling into the usualtrap:
”We’ll take care of security AFTER everything else works”.

McGraw argues that security needs to be in focus from
the beginning [29], as our experience demonstrate, and that
the focus should continue during the whole project. The fact
that the security design was delayed and, therefore, other
components were developed without considering the security
work package, set the stage for a big hole in the platform (one
glaring example was hard-coded values in a web service that
ended up conflicting with the security design). Communication
problems among project members intensified the issues, by
not bringing word about the integration of the results from
the security WP and the consequences related to their (non)
use. According to Howard and Lipner [30], there is a need for
a security pushin the whole organisation, or project groups,
in order to focus on security alone and find problems.

Security requirements were not part of the project require-
ments. Partly using a Model-Driven Development (semi-agile)
approach, the system design was based on models/diagrams,
such as use cases, from where functional requirements were
derived. The use cases in question did not cover security, and
thus no security requirements were generated (we would have
expected some obvious ones, such as confidentiality-protection
of a doctor-patient message). Employing misuse cases would
have been good idea in this setting, but they were voted down
early in the project.

As we can see, there are many subtleties to be considered,
which could affect the end result of a project. If any of those
are out of synchrony with the others, bad things are bound to
happen.

VI. GENERAL RECOMMENDATIONS

This practical experience on evaluating the security of such
a platform is important to enlighten system designers and
developers with regard to the security features of a complex

project, and should be exposed to interested parties as a wake-
up call since it demonstrates that common vulnerabilities are
there for a reason: not enough attention was put into security
during the software development life cycle.

The literature is abundant with methods to tighten the
security of an application, but our intention here is just to
give an idea of what can be done and why. Table III shows
some recommendations.

Test Case / Threat Countermeasures
WSDL Scanning Do not make a WSDL file publicly available,

only to trusted parties. If not possible and the
internal operations cannot be removed from
the application, at least hide these operations
and give them non-intuitive names, i.e., not
easily guessable. Another option is to restrict
access to these operations via an XML Fire-
wall [31].

Replay Attacks Use of a signed message freshness identi-
fier, such as a WS-Security timestamp [32],
would prevent such attacks as an end-to-end
complement to the point-to-point SSL/TLS.
Since Web Services can communicate with
other services, message layer security (pro-
vided by WS-Security) is essential to avoid
intermediary manipulation.

Parameter Tampering Ideally, both SSL/TLS and WS-Security
should be implemented to avoid this attack.
Building from the above recommendation,
figure 1 illustrates that modifications to the
requests can be made in both links 1 and 2
(data in transit), but there are cases when we
have to consider the possibility of data tam-
pering in intermediary nodes, which justifies
the use of WS-Security. As this consideration
applies to other recommendations described
here, the approach to follow also depends
on the specific scenario (e.g., are there any
intermediary nodes that can manipulate data
if only SSL/TLS is implemented?).

Forced Browsing The RBAC module and its utilisation by the
POCA should be revised to prevent unautho-
rised access to interfaces and operations. The
access should be granted by the middleware
services, and not the POCA, by analyzing the
security token, for example.

Cross Site Scripting
(XSS)
XML Injection

Input sanitisation via regular expressions, for
example, are a common way to restrict the
input received. Shanmugam et al. [33] and
Steel et al. [34] propose similar approaches
to validate the input through regular expres-
sions.

Test the user-
name/password
authentication scheme

First, use of SSL/TLS together with WS-
Security, to prevent eavesdropping. Second,
store a salted hash of the password, avoiding
to keep it as cleartext, and attacks that make
use of pre-computed hash tables (Rainbow
Tables).

Test the transmission of
security tokens
Test the effectiveness of
the security token

SSL/TLS and WS-Security provides the nec-
essary confidentiality and integrity protection
for the security token, which guarantees a
proper transmission and avoids its modifica-
tion.

Session Management In order to prevent the session cookie from
being stolen, SSL/TLS should be used.

TABLE III
SUMMARY OF RECOMMENDATIONS

VII. C ONCLUSION

We have presented the results of a security assessment
performed on an eHealth platform, demonstrating that just
having proper documentation/design covering data privacyand
integrity is not enough to construct a secure system. We

have discussed many factors that may have contributed to this
malaise, but the main lesson learned is that it is necessary
that every person involved in such a project is aware of the
consequences of not thinking about, implementing and testing
security from the beginning. Only then will it be possible to
achieve more secure systems.

ACKNOWLEDGMENT

This paper is based in part on a MSc thesis at the Norwegian
University of Science and Technology [35].

REFERENCES

[1] I. Mavridis, C. Georgiadis, G. Pangalos, and M. Khair, “Access control
based on attribute certificates for medical intranet applications,” J Med
Internet Res, vol. 3, no. 1, p. e9, Mar 2001. [Online]. Available:
http://www.jmir.org/2001/1/e9/

[2] EPTA, “ICT and Privacy in Europe, Experiences from technology as-
sessment of ICT and Privacy in seven different European countries) (ac-
cessed 12-03-2009),” URL: http://epub.oeaw.ac.at/ita/ita-projektberichte/
e2-2a44.pdf, 2006.

[3] C. Ilioudis and G. Pangalos, “A framework for an institutional high
level security policy for the processing of medical data andtheir
transmission through the internet,”J Med Internet Res, vol. 3, no. 2, p.
e14, Apr 2001. [Online]. Available: http://www.jmir.org/2001/2/e14/

[4] M. van der Haak, A. C. Wolff, R. Brandner, P. Drings,
M. Wannenmacher, and T. Wetter, “Data security and protection in cross-
institutional electronic patient records,”International Journal of Medical
Informatics, vol. 70, no. 2-3, pp. 117 – 130, 2003, mIE 2002 Special
Issue. [Online]. Available: http://www.sciencedirect.com/science/article/
B6T7S-48WJWDF-2/2/9c027e5d8b9b2ee0e15c0da43e83df85

[5] Computer Economics, “SOA Adoption Surges (accessed 16-02-2009),”
URL: http://www.computereconomics.com/article.cfm?id=1423&tag=
rbspot, January 2009.

[6] Gartner, Inc, “Gartner Says the Number of OrganizationsPlanning to
Adopt SOA for the First Time Is Falling Dramatically (accessed 16-02-
2009),” URL: http://www.gartner.com/it/page.jsp?id=790717, November
2008.

[7] Nasjonal IKT, “Tjenesteorientert arkitektur i spesialhelset-
jenesten (SOA for specialized health services),” Available at
http://www.nasjonalikt.no/Publikasjoner/Tjenesteorientert arkitektur i
spesialisthelsetjenestenhovedrapportfull v1 0e.pdf, 2008.

[8] J. Epstein, S. Matsumoto, and G. McGraw, “Software security and SOA:
danger, Will Robinson!”Security & Privacy, IEEE, vol. 4, no. 1, pp.
80–83, 2006.

[9] New Rowley Group, Inc, “The Challenge of Securing SOA,” Available
at ftp://ftp.software.ibm.com/software/uk/flexible/wp/the challengeof
securingsoa.pdf, 2006.

[10] W. Knight, “Security – built-in or bolted-on to the
soa?” Infosecurity Today, vol. 2, no. 2, pp. 38 – 40,
2005. [Online]. Available: http://www.sciencedirect.com/science/article/
B7GWT-4G4NCXC-H/2/64f624da4a619a4e760cb256fca643bb

[11] J. H. Celine van Doosselare, Petra Wilson and D. Silber,
“ehealth...... but is it legal?”Eurohealth, vol. 13, pp. 1 – 4,
2007. [Online]. Available: http://www.sciencedirect.com/science/article/
B7GWT-4G4NCXC-H/2/64f624da4a619a4e760cb256fca643bb

[12] Commission of the European Communities, “Directive 95/46/EC of the
European Parliament and of the Council of 24 October 1995: Onthe
Protection of Individuals with Regard to the Processing of Personal
Data and on the Free Movement of such Data,”Official Journal of the
European Communities L 281, 23 November 1995, p. 31.

[13] J. Jensen, I. Anne Tøndel, M. Gilje Jaatun, P. Håkon Meland, and H. An-
dresen, “Reusable Security Requirements for Healthcare Applications,”
in ARES 2009: Proceedings of the Fourth International Conference on
Availability, Security, and Reliability. IEEE Computer Society, 2009.

[14] J. Jensen,Security Middleware Design - MPOWER Project Deliverable
D5.2. MPOWER Consortium, 2008.

[15] A. Kumar, N. Karnik, and G. Chafle, “Context sensitivityin role-based
access control,”SIGOPS Oper. Syst. Rev., vol. 36, no. 3, pp. 53–66,
2002.

[16] M. Herrmann, “Security strategy: From soup to nuts,”Information
Security Journal: A Global Perspective, vol. 18, no. 1, pp. 26–32, 2009.

[17] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh,NIST Special
Publication 800-115: Technical Guide to Information Security Testing
and Assessment. NIST, 2008.

[18] P. Herzog,OSSTMM 3 LITE - Introduction and Sample to the Open
Source Security Testing Methodology Manual. ISECOM, 2008.

[19] ——, OSSTMM 2.2 - Open Source Security Testing Methodology
Manual. ISECOM, 2006.

[20] OWASP,OWASP Testing Guide v3.0. The OWASP Foundation, 2008.
[21] C. Wong and D. Grzelak,A Web Services Security Testing Framework

- Version 1.0. SIFT Pty Limited, 2006.
[22] B. Arkin, S. Stender, and G. McGraw, “Software Penetration Testing,”

IEEE Security & Privacy, vol. 3, no. 1, pp. 84–87, 2005.
[23] OWASP, “OWASP Top 10 2007 (accessed 03-05-2009),” URL:http:

//www.owasp.org/index.php/Top10 2007.
[24] F. Keblawi and D. Sullivan, “Applying the common criteria in systems

engineering,”IEEE Security and Privacy, vol. 4, no. 2, pp. 50–55, 2006.
[25] K. Beznosov, “eXtreme Security Engineering: On Employing XP Prac-

tices to Achieve ”Good Enough Security” without Defining It,” in
Proceedings of the First ACM Workshop on Business Driven Security
Engineering (BizSec), 2003.

[26] J. Wäyrynen and M. Boden and G. Bostrøm, “Security engineering and
eXtreme programming: An impossible marriage?” inExtreme Program-
ming and Agile Methods - Xp/ Agile Universe 2004, Proceedings, ser.
Lecture Notes in Computer Science, vol. 3134. Springer-Verlag Berlin,
2004, pp. 117–128.

[27] M. Siponen, R. Baskerville, and T. Kuivalainen, “Integrating security
into agile development methods,” inProceedings of Hawaii Interna-
tional Conference on System Sciences, 2005.

[28] M. Poppendieck and R. Morsicato, “XP in a Safety-Critical Environ-
ment,” Cutter IT Journal, vol. 15, pp. 12–16, 2002.

[29] G. McGraw,Software Security: Building Security In. Addison-Wesley
Professional, 2006.

[30] M. Howard and S. Lipner,The Security Development Lifecycle. Red-
mond, WA, USA: Microsoft Press, 2006.

[31] M. Jensen, N. Gruschka, R. Herkenhoner, and N. Luttenberger, “SOA
and Web Services: New Technologies, New Standards - New Attacks,”
in ECOWS ’07: Proceedings of the Fifth European Conference on Web
Services, 2007., Nov. 2007, pp. 35–44.

[32] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker,Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004) - OASIS
Standard incorporating Approved Errata. OASIS Open, 2006.

[33] J. Shanmugam and M. Ponnavaikko, “A solution to block cross site
scripting vulnerabilities based on service oriented architecture,” Com-
puter and Information Science, ACIS International Conference, vol. 0,
pp. 861–866, 2007.

[34] C. Steel, R. Nagappan, and R. Lai,Core Security Patterns: Best
Practices and Strategies for J2EETM, Web Services, and Identity Man-
agement. Prentice Hall PTR, 2005.

[35] R. Sassoon, “Security in soa-based healthcare systems,” Master’s thesis,
Norwegian University of Science and Technology (NTNU), 2009.

