Consistency Checks for Duties in Extended UML2 Activity Models

Abstract—Process-aware information systems sup-
port the execution of business processes. In this con-
text, organizations require the precise specification of
security policies that govern the behavior of subjects
in the systems. Obligation policies specify duties
to be fulfilled by certain subjects. In organizational
contexts, duties are often associated with a certain
task in a business process.

In this paper, we further elaborate two UML2
extensions which provide modeling support for roles,
tasks, and duties in a business process context. In
particular, we introduce the notion of mutual exclu-
sion and binding constraints for duties in process-
related RBAC models. Furthermore, we formally
define respective consistency checks for design-time
and runtime models.

Keywords-Binding of duty; OCL; RBAC; Security;
Separation of Duty; UML;

I. INTRODUCTION

Organizations require the precise specification of poli-
cies that govern the behavior of subjects in information
systems (see, e.g., [12]). While authorization policies
define a subject’s permissions, obligation policies specify
duties which must be fulfilled by certain subjects to
meet legal or organizational requirements [5], [12], [13].
In a business process context, duties are often associated
with a particular task [11] (e.g., a bank clerk negotiating
a contract is obliged to inform the customer on associ-
ated risks).

Security constraints such as mutual exclusion (ME)
and binding constraints are increasingly important in
process-aware information systems to control the ex-
ecution of workflows. They can be applied to enforce
process-related separation of duty (SOD) and binding
of duty (BOD) policies related to a corresponding role-
based access control (RBAC) model [3], [16], [18]. ME
and binding constraints are usually specified on role-
or task-level (see, e.g., [1], [14], [15], [17]). We propose
their definition on duty-level which provides the finest-
grained abstraction level for specifying constraints.

This paper is based on the following two UML2 ex-
tensions. In [15], the UML2 metamodel extension Busi-
nessActivities was presented which allows for modeling
process-related RBAC models. Moreover, this UML ex-
tension supports the definition of ME and binding con-
straints for tasks. In [11], a UML2 metamodel extension
for modeling process-related duties in Business Activities
was introduced.

The contribution of this paper is to further integrate
these UML2 metamodel extensions by considering mu-
tual exclusion and binding constraints for duties and
by formally defining respective consistency checks (see
Figure 1). Defining ME and binding constraints on task-
and duty-level provides two different abstraction levels

UML2 extension mutual exlusion and binding
BusinessActivities ——> constraints for tasks
(see [15]) (see [14], [15])
Iconsistency checks'
UML2 extension mutual exlusion and binding
DutyNodes ——> constraints for duties
(see [11]) (see [11])

Figure 1: Concept overview

for constraint specifications to support their precise im-
plementation. Consistency checks are formally defined
to ensure the compliance of design-time process models
with corresponding consistency requirements. Moreover,
they check the consistency between the expected with
the actually executed behavior, i.e. consistency between
design-time and runtime models.

The remainder of this paper is structured as follows.
Section II summarizes the combined UML2 extension
[11], [15] and introduces mutual exclusion and binding
constraints for duties. Subsequently, in Section III rele-
vant consistency checks are formally defined. Section IV
discusses related work and Section V concludes the

paper.
II. UML2 METAMODEL EXTENSION FOR DUTIES

In [11], [15], modeling support for roles, tasks, and
duties in business processes is provided via extended
UML2 Activity diagrams. UML2 Activity diagrams pro-
vide a process modeling language that allows to model
the control and object flows between different actions.
In particular, a UML2 Activity models a process while
tasks included in an Activity are modeled via Actions
(for details on UML2 Activity diagrams, see [10]).
Providing modeling support for security aspects via a
standard notation like UML is intended to bridge the
communication gap between software engineers, security
experts, and non-technical stakeholders (see, e.g., [8]).
In addition, the Object Constraint Language (OCL) [9]
is applied in [11], [15] to formally define the semantics
of the newly introduced UML elements and to ensure
the consistency of the extended UML models.

A. Main Elements of the UML Extensions

This summary of the BusinessActivities and Duty-
Nodes extensions focuses on the parts relevant for the
subsequent definition of consistency requirements. For a
complete definition of the semantics of all new modeling
elements, please refer to the definition of the metamodel
extensions in [11], [15].

A BusinessActivity is a special UML Activity (see
Figure 2). It can include all elements available for
ordinary UML Activities in addition to the newly in-
troduced elements presented in [15]. A BusinessAction



{subsets owner}

Activity

{subsets ownedElement}
+n

ActivityNode

+activity
(from FundamentalActivities) ‘0 1

T Classifier

(from Kernel

BusinessActivity

(from BusinessActivities) i T

)
transitiveJuniorRole
o

(from FundamentalActivities)

]

Action
(from BasicActions)

—D

staticExclusion
B ; fo.-

transitiveRoleOwner <. inherttedTask<,
transitive TaskOwner o.:
. inheritedRole . .
Subject " Role - Busi i
usinessAction ‘dynamicExclusion
(from BusinessActivities)| (from BusinessActivities) . (from BusinessActivities) -
1 ° ;
1 1 1 1 0 0.
juniorRole 1 YleBinding
0.* - 0. ';/statu:Exclus\on .
0.0 —D Classifier
(from Kernel)
-
RoleToSubject RoleToRole DutyToDuty superDyty| Duty S —
Assignment Assignment Assignment [o- (from DutyNodes) (=
(from BusinessActivities) (from BusinessActivities) (from DutyNodes) |o.- 1 .
subD: - X subjectBinding
L i I_/Imleamdmg
0.1
DirectedRelationship 4| DutyTimeConstraint TimeConstraint

(from Kernel)

(from SimpleTime)

(from DutyNodes)

Figure 2: UML2 metamodel extension

corresponds to a task and comprises all necessary per-
missions to perform the task. Furthermore, ME and
binding constraints can be defined for BusinessActions
(see [15] for further details). A Duty is used in a UML
Activity Diagram to model that an action must be
performed by a Subject which is assigned to this Duty
[11]. Each Duty is linked to a BusinessAction indicating
that the Duty needs to be performed when carrying out
the corresponding BusinessAction. Similar to Business-
Actions, ME and binding constraints can also be defined
for Duties. In addition, Roles and Subjects are linked to
BusinessActions and Duties (see Figure 2).

B. SME, DME, RB, and SB Constraints for Duties

Mutual exclusive duties result from the division of
powerful responsibilities to prevent fraud and abuse and
must never be assigned to the same subject (e.g., to sign
a contract and to approve a contract). Duties can be
defined as statically mutual exclusive (SME) (see, e.g.,
[3], [7], [14], [15], [17]). A SME constraint is global with
respect to all process instances in an information sys-
tem. Therefore, two SME duties can never be assigned
to the same subject or role. Two duties can also be
defined as dynamically mutual exclusive (DME). DME
duties can be assigned to the same subject but must not
be discharged by the same subject in the same process
instance. SME and DME constraints can be used to
enforce separation of duty constraints (see, e.g., [1], [4]).
In contrast, binding of duty constraints specify that two
bound duties must be performed by the same subject
or role, i.e. subject binding (SB) or role binding (RB) of
duties (see, e.g., [14], [15], [16]).

In this paper, we introduce the notion of SME, DME,
RB, and SB constraints for Duties in Business Activities
(see Figure 2). In [15], the definition of SME, DME, RB,
and SB constraints for Business Actions is motivated.
Duties provide a more fine-grained view on a Business
Action, as each Business Action may be associated with

several Duties. Therefore, the definition of constraints
on Duty-level is reasonable in case the violation of a
special Duty-related constraint would lead to, e.g., a
penalty. Consider the following example (see Figure 3):

Task-level constraint Duty-level constraint

Figure 3: Task- and duty-level constraints

An employee E records his or her working hours
(BAj7). A superior S has to control the employee’s
working hour records every month (BAj). Task BA;
is associated with the following Duties: The employee
must only record actual working hours — e.g., no lunch
break (D). Moreover, due to industrial safety regula-
tions, the employee must only work at most ten hours
per day (Ds). Task BA, is associated with the following
Duties: The superior must sign the working hour records
(D3). In addition, the superior is obliged to check if
the records follow all industrial safety regulations (Dy).
Due to high workloads, employees in company X usually
work overtime. For company X it is still important
that employees follow the industrial safety regulations.
Otherwise, company X risks to be penalized for violating
these regulations. There are two options to ensure that
no employee can control his or her own working hour
records. Firstly, it is possible to define a SME constraint
between BA; and BA; (see Figure 3a). Therefore, a
subject performing action BA; is not allowed to execute
BA,. Alternatively, the SME constraint can be defined
on Duty-level between Dy and Dy (see Figure 3b). In
this example, defining the SME constraint on Duty-level



has the following advantages: It better reflects the actual
intention of company X for separating these Duties.
Furthermore, even if one of the Duties is assigned to
another task, the constraint between Dy and D, assures
that they still cannot be discharged by the same subject.

If a constraint is defined on two Duties, this Duty-
related constraint also applies for the corresponding
Business Action, and vice versa. This is because each
subject being assigned to a Business Action is necessar-
ily also assigned to the associated Duties (see Section
ITI-B and [11]). Thus, the simultanecous definition of a
SME constraint for two Duties and a SME constraint for
the two corresponding Business Actions is redundant,
because the definition of a SME constraint on two Du-
ties already implies that the associated Business Actions
cannot be discharged by the same subject. Whether a
constraint is defined on Business Action- or Duty-level
depends on the required abstraction level. Definitions on
Business Action-level are more abstract than definitions
on Duty-level.

III. CONSISTENCY REQUIREMENTS

UML diagrams often can not provide all the relevant
aspects of a specification. Therefore, there is a need
to define additional constraints about the modeling
elements. Such constraints are often described in nat-
ural language which may result in ambiguities. OCL
has been developed to provide a formal language that
remains easy to understand [9]. OCL is a pure speci-
fication language. Thus, evaluating an OCL expression
does not change anything in the model. We apply the
OCL to define additional constraints for Duties. In
particular, the constraints defined in Sections ITI-A and
ITII-B ensure the compliance of the designed process
model including Duties with corresponding consistency
requirements. These OCL invariants therefore ensure
the correct design of UML models using the modeling
elements proposed in [11], [15]. In Section III-C, the con-
sistency between the designed and the actually executed
processes is addressed. These OCL invariants ensure
the correct enforcement of the corresponding process
instances.

A. Constraints on Duties

Each SME, DME, RB, or SB constraint defined on
Business Action-level also applies for the corresponding
Duties, and vice versa. Thus, when defining SME, DME,
RB, or SB constraints for Duties, constraints already
defined for the associated Business Actions need to be
considered to avoid inconsistent constraint definitions.
Figure 4 shows conflicting combinations of constraints
between Business Actions and Duties.

If a SME constraint has been defined between two
Business Actions, the associated Duties cannot be de-
fined as DME, role- or subject-bound (see Figure 4a
and OCL constraint 1). For instance, the two Business
Actions BA; (record working hours) and BAs (control
working hour records) are defined as SME and therefore
must always be performed by two different subjects.
Each subject being assigned to a Business Action also
needs to discharge the associated Duties. Thus, D (fol-
low industrial safety regulations) and Dy (check if the

OCL Constraint 1 OCL Constraint 2

SME DME

RB

Figure 4: Consistency of Duty Constraints

records follow all industrial safety regulations) also must
be discharged by two different subjects. Consequently,
Dy and D4 cannot be defined as role- or subject-
bound. Moreover, it is not possible to define a DME
constraint for Dy and D4s. DME Duties are executed
by two different subjects during one process instance,
while SME Business Actions need to be executed by two
different subjects in all process instances. Therefore, two
Business Actions and its associated Duties can either
be statically or dynamically mutual exclusive (see also
[15]). The separate definition of a SME constraint on
Duty-level is redundant but possible (e.g. to ensure that
these Duties can still not be assigned to the same subject
if they are associated with other Business Actions).

Similarly, the simultaneous definition of a DME con-
straint for two Business Actions and a SME or a SB
constraints for the associated Duties is not possible
(see Figure 4b and OCL constraint 2). DME and SB
constraints conflict, because a SB constraint defines
that in the context of the same process instance the
instances of two bound duties must be performed by
the same subject. In contrast, a DME constraint defines
that during one process instance the instances of two
Business Actions must not be performed by the same
subject [15].

If a RB constraint is defined for two Business Actions,
they need to be performed by subjects being member
of the same role. For instance, the role-bound tasks
negotiate a contract (BAs) and sign a contract (BAy)
need to be performed by subjects being member of the
role bank clerk. Therefore, the associated duties Ds
(inform customer on associated risks) and D7 (approve
the contract by a second bank clerk) are also discharged
by members of the bank clerk role. Thus, the definition
of a SME constraint for D5 and Dy is not possible,
because SME Duties must not be performed by the same
subject or role (see Figure 4c and OCL constraint 3).
However, DME constraints and RB constraints do not
conflict, as a DME constraint only requires different
subjects discharging two Duties which also may be
member of the same role (see [14] for details).

Two Duties being assigned to two SB Business Ac-
tions cannot be defined as mutually exclusive (see Fig-
ure 4d and OCL constraint 4). This is because two SB
Business Actions must be performed by the same sub-



ject, while a ME constraint defines that the associated
duties must be discharged by two different subjects.

Below we provide the respective OCL invariants
which check the consistency of UML models including
Duties with these requirements.

OCL Constraint 1: Two Duties being associated
with two SME Business Actions must not be defined
as DME, role- or subject-bound:

context BusinessAction inv:
self.staticExclusion->forAll(sme |
self.duty->forAll(dl |
sme.duty->forAl1(d2 |
d1.dynamicExclusion->select (dmel |
dmel.name = d2.name)->isEmpty() and
d2.dynamicExclusion->select (dme2 |
dme2.name = di.name)->isEmpty() and
dl.roleBinding->select(rbl |
rbl.name = d2.name)->isEmpty() and
d2.roleBinding->select (rb2 |
rb2.name = di.name)->isEmpty() and
dl.subjectBinding->select(sbl |
sbl.name = d2.name)->isEmpty() and
d2.subjectBinding->select(sb2 |
sb2.name = d1.name)->isEmpty() )))

OCL Constraint 2: Two Duties being associated
with two DME Business Actions must not be defined
as SME or subject-bound:

context BusinessAction inv:
self.dynamicExclusion->forAll(dme |
self.duty->forAl1(dl |
dme.duty->forAl1(d2 |
dl.staticExclusion->select(smel |
smel.name = d2.name)->isEmpty() and
d2.staticExclusion->select (sme2 |
sme2.name = dl.name)->isEmpty() and
dl.subjectBinding->select(sbl |
sbl.name = d2.name)->isEmpty() and
d2.subjectBinding->select(sb2 |
sb2.name = d1.name)->isEmpty() )))

OCL Constraint 3: Two Duties being associated
with two role-bound Business Actions must not be
defined as SME:

context BusinessAction inv:
self.roleBinding->forAll(rb |
self.duty->forAll(dl |
rb.duty->forAl1(d2 |
dl.staticExclusion->select(smel |
smel.name = d2.name)->isEmpty() and
d2.staticExclusion->select (sme2 |
sme2.name = dl.name)->isEmpty() )))

OCL Constraint 4: Two Duties being associated
with two subject-bound Business Actions must not be
defined as SME or DME:

context BusinessAction inv:
self.subjectBinding->forAll(sb |
self.duty->forAll(dl |
sb.duty->forAll(d2 |
dl.staticExclusion->select(smel |
smel.name = d2.name)->isEmpty() and
d2.staticExclusion->select(sme2 |
sme2.name = dl.name)->isEmpty() and
dl.dynamicExclusion->select(dmel |
dmel.name = d2.name)->isEmpty() and
d2.dynamicExclusion->select (dme2 |
dme2.name = di.name)->isEmpty() )))

B. Assignments of Duties

Duties are directly assigned to Business Actions and
are transitively assigned to Roles and Subjects (see
Figure 2). Besides checking the consistency between
constraints defined for Business Actions and constraints
defined for Duties (see Section ITI-A), we also need to
ensure the consistency for all assignments of Duties.

OCL Constraint 5 OCL Constraint 6 OCL Constraint 7/8

BA, xS ®
- DME
a) b) c)

OCL Constraint 9 OCL Constraint 10

®::::SME % SME

2 s

d) e)

Figure 5: Consistency of Duty Assignments

In a business process context, each duty is associated
with a particular task [11]. Thus, each Duty is dis-
charged when performing the respective Business Action
(see Figure ba and OCL constraint 5). Consequently,
two or more Duties assigned to the same Business
Action must not be mutually exclusive (see OCL con-
straint 6). Otherwise, a subject which is assigned to a
Business Action is unable to discharge all associated
Duties. Figure 5b shows conflicting Duty assignments,
because the two ME Duties D; and D5 cannot be
assigned to the same Business Action. Moreover, a Role
being assigned to a Duty must also be authorized to per-
form the respective Business Action, and vice versa (see
Figure 5¢ and OCL constraints 7 and 8). For instance,
if a superior is obliged to check if the employees’ records
follow all industrial safety regulations, the superior also
needs to be assigned to the corresponding Business
Action authorizing him to fulfill this Duty.

Two SME Duties must not be discharged by the same
subject or role. Thus, two SME Duties D; and Dy must
not be assigned to the same Role R (see Figure 5d
and OCL constraint 9). Otherwise, each subject being
member of R has to perform two SME Duties. Moreover,
no subject must be assigned to two Roles R; and Ry
which are assigned to two SME Duties (see Figure 5e
and OCL constraint 10). Otherwise, subject S would
subsequently be obliged to discharge two SME Duties.

OCL Constraint 5: Each Duty must be associated
with a certain Business Action:

context Duty inv:
self .businessAction->notEmpty ()

OCL Constraint 6: Two SME or DME Duties
must never be assigned to the same Business Action:

context BusinessAction inv:
self.duty->forAll(d1l, d2|
dl.staticExclusion->select (sme |
sme.name = d2.name)->isEmpty() and
dl.dynamicExclusion->select (dme |
dme.name = d2.name)->isEmpty() )))

OCL Constraint 7: Each Role assigned to a Duty
is also assigned to the associated Business Action:
context Duty inv:
self.role->exists(rl |

self .businessAction.role->exists(r2 |
rl.name = r2.name))

OCL Constraint 8: Each Role assigned to a
Business Action is also assigned to the corresponding



Duties:

context BusinessAction inv:
self.duty->forall(d |
d.role->exists(r1l
self.role->exists(r2 |
ril.name = r2.name)))

OCL Constraint 9: A Role must never be assigned
to two SME Duties:

context Role inv:
self.duty->forAll(d1l, d2 |
dl.staticExclusion->select(sme |
sme.name = d2.name)->isEmpty ()

OCL Constraint 10: A Subject must never be
assigned to two Roles which own SME Duties
context Subject inv:
self.roleToSubjectAssignment->forAll(rsal, rsa2 |
rsal.role.duty->forAll(d1
rsa2.role.duty->forAl1(d2 |

dl.staticExclusion->select(smel
sme.name = d2.name)->isEmpty() )))

C. Runtime Assignments

All OCL constraints presented above refer to the con-
sistency of elements and relationships at design-time.
In addition, we also need to secure that runtime pro-
cess instances comply with all consistency requirements.
The following consistency checks ensure the proper
enforcement of Duties at runtime. OCL constraint 11
monitors if a subject being assigned to a Business
Action also discharges the associated Duties. This is
achieved by checking if a BusinessAction’s executing-
Subject attribute corresponds to the associated Duty’s
responsibleSubject attribute in case they are included
in the same BusinessActivity instance. The attributes
ezecutingSubject and responsibleSubject determine the
Subjects that execute a particular Business Action or
Duty instance, respectively (see [11], [15]).

To enforce constraints on Duties, two SME Duties
must always be executed by two different subjects, while
two DME Duties only need two different responsible
subjects if they are included in the same BusinessActiv-
ity (see OCL constraints 13 and 14). In contrast, two RB
and SB Duties must be associated with the same role or
subject, respectively (see OCL constraints 15 and 16).

OCL Constraint 11: In the same BusinessActivity
instance, a Duty’s responsible Subject corresponds to
the associated Business Action’s executing Subject:

context Duty inv:
self.instanceSpecification->forAl11(i |
i.slot->select(sil |
sil.definingFeature.name = associatedProcessInstance
i.slot->select(si2 |
si2.definingFeature.name = responsibleSubject
self.businessAction.instanceSpecification->forAl11(j |
j.slot->select(sjl |
sjl.definingFeature.name = owningProcessInstance
j.slot->select(sj2 |
sj2.definingFeature.name = executingSubject
if (sil.value = sjl.value) then
(si2.value = sj2.value)
else true endif ))))))

OCL Constraint 12: In the same BusinessActivity
instance, a Duty’s responsible Role corresponds to the
associated Business Action’s executing Role:

context Duty inv:
self.instanceSpecification->forAll(i |

i.slot->select(sil |
sil.definingFeature.name = associatedProcessInstance
i.slot->select(si2 |
si2.definingFeature.name = responsibleRole
self.businessAction.instanceSpecification->forA11(j |
j.slot->select(sjl |
sjl.definingFeature.name = owningProcessInstance
j.slot->select(sj2 |
sj2.definingFeature.name = executingRole
if (sil.value = sjl.value) then
(si2.value = sj2.value)
else true endif ))))))

OCL Constraint 13: To enforce SME constraints
on Duties, we specify that the instances of two SME
Duties must never have the same responsible subject:

context Duty inv:
self.staticExclusion->forAll(sme |
self.instanceSpecification->forAl1(i |
sme.instanceSpecification->forAll(j |
i.slot->forAll(is |
j.slot->forAll(js |
if is.definingFeature.name = responsibleSubject and
js.definingFeature.name = responsibleSubject then
not (is.value = js.value)
else true endif )))))

OCL Constraint 14: To enforce DME constraints
on Duties, for each BusinessActivity the instances
of two DME Duties which are included in this
BusinessActivity must be executed by two distinct
subjects:

context Duty inv:
self .dynamicExclusion->forAll(dmel|
self.instanceSpecification->forAl1(i|
dme.instanceSpecification->forAl11l(j|
i.slot->select(sill
sil.definingFeature.name = associatedProcessInstance
j.slot->select(sj1l
sjl.definingFeature.name = associatedProcessInstance
i.slot->select(si2|
si2.definingFeature.name = responsibleSubject
j.slot->select(sj2|
sj2.definingFeature.name = responsibleSubject
if (sil.value = sjl.value) then
not (si2.value = sj2.value)
else true endif )))))))

OCL Constraint 15: To enforce RB constraints
on Duties, instances of these Duties must always be
associated with the same responsible role.

context Duty
inv: self.roleBinding->forAll(rbtl|
self.instanceSpecification->forAl1(il
rbt.instanceSpecification->forAl1(jl
i.slot->select(sill
sil.definingFeature.name = associatedProcessInstance
j.slot->select(sj1l
sjl.definingFeature.name = associatedProcessInstance
i.slot->select(si2|
si2.definingFeature.name = responsibleRole
j.slot->select(sj2|
sj2.definingFeature.name = responsibleRole
if (sil.value = sjl.value) then
(si2.value = sj2.value)
else true endif )))))))

OCL Constraint 16: To enforce SB constraints
on Duties, instances of these Duties must always be
associated with the same responsible subject.

context Duty
inv: self.subjectBinding->forAll(sbt]|
self.instanceSpecification->forAl1(i|
sbt.instanceSpecification->forAl1(j|
i.slot->select(sill
sil.definingFeature.name = associatedProcessInstance
j.slot->select(sj1l|
sjl.definingFeature.name = associatedProcessInstance
i.slot->select(si2|
si2.definingFeature.name = responsibleSubject
j.slot->select(sj2|
sj2.definingFeature.name = responsibleSubject



if (sil.value = sjl.value) then
(si2.value = sj2.value)
else true endif )))))))

IV. RELATED WORK

Many contributions discuss constraint specifications
when defining SOD and BOD constraints. Our approach
complements existing approaches by considering SOD
and BOD constraints for duties in a process-related
RBAC context. In [1], the RCL 2000 language for the
specification of role-based authorization constraints is
introduced. Separation of duty constraints can also be
expressed in RCL 2000. In addition, the authors discuss
different conflicts that might occur when specifying con-
straints via RCL 2000. In [2], a language for expressing
SOD constraints and respective consistency checks for
these constraints in a workflow-context is presented.
Botha and Eloff [3] discuss possible conflicts of static
and dynamic SOD constraints in workflows. Tan et al.
[16] define a model for constrained workflow systems,
including SOD and BOD constraints. They discuss sev-
eral consistency issues regarding these constraints and
define formal consistency rules. In [6], RBAC/Web is
introduced, which provides a model and implementation
for RBAC in Web servers and discuss consistency issues
of SOD constraints in role-hierarchies.

V. CONCLUSION

SME, DME, RB, and SB constraints can be defined
for duties to regulate which role/subject is allowed to
execute a particular duty. In this paper, we extended
existing approaches for modeling security aspects in
business process models by considering mutual exclu-
sion and binding constraints for duties in a process-
related RBAC context. Moreover, we formally defined
consistency checks to ensure the design-time and run-
time compliance of UML models with the respective
consistency requirements.

REFERENCES

[1] G. Ahn and R. Sandhu. Role-based Authorization
Constraints Specification. ACM Transactions on Infor-
mation and System Security (TISSEC), 3(4), November
2000.

[2] E. Bertino, E. Ferrari, and V. Atluri. The specifica-
tion and enforcement of authorization constraints in
workflow management systems. ACM Transactions on
Information and System Security (TISSEC), 2(1), 1999.

[3] R. A. Botha and J. H. Eloff. Separation of duties for
access control enforcement in workflow environments.
IBM Systems Journal, 40(3), 2001.

[4] D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security policies. In
IEEE Symposium of Security and Privacy, April 1987.

[5] J. Cole, J. Derrick, Z. Milosevic, and K. Raymond.
Author Obliged to Submit Paper before 4 July: Poli-
cies in an Enterprise Specification. In Proceedings of
the International Workshop on Policies for Distributed
Systems and Networks, January 2001.

(6]

(10]

[11]

[15]

[16]

[17]

18]

D. Ferraiolo, J. Barkley, and D. Kuhn. A Role-Based
Access Control Model and Reference Implementation
within a Corporate Intranet. ACM Transactions on In-
formation and System Security (TISSEC), 2(1), Febru-
ary 1999.

J. Mendling, K. Ploesser, and M. Strembeck. Speci-
fying Separation of Duty Constraints in BPEL4People
Processes. In Proc. of the 11th International Conference
on Business Information Systems, volume 7 of Lecture
Notes in Business Information Processing, May 2008.

H. Mouratidis and J. Jiirjens. From Goal-Driven Secu-
rity Requirements Engineering to Secure Design. Inter-
national Journal of Intelligent Systems, 25(8), 2010.

OMG. Object Constraint Lan-
guage Specification. available at:
http://www.omg.org/technology/documents/formal/ocl.htm,
February 2010. Version 2.2, formal/2010-02-01, The
Object Management Group.

OMG. Unified Modeling Language (OMG
UML): Superstructure. available at:
http://www.omg.org/technology/documents/formal /uml.htm,
May 2010. Version 2.3, formal/2010-05-03, The Object
Management Group.

S. Schefer and M. Strembeck. Modeling Process-Related
Duties with Extended UML Activity and Interaction
Diagrams. In Proc. of the International Workshop on
Flexible Workflows in Distributed Systems, Workshops
der wissenschaftlichen Konferenz Kommunikation in
verteilten Systemen (WowKiVS), volume 37 of FElec-
tronic Communications of the EASST, March 2011.

M. S. Sloman. Policy Driven Management for Dis-
tributed Systems. Journal of Network and Systems
Management, 2(4), 1994.

M. Strembeck. Embedding Policy Rules for Software-
Based Systems in a Requirements Context. In Proc.
of the 6th IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY), June
2005.

M. Strembeck and J. Mendling. Generic Algorithms for
Consistency Checking of Mutual-Exclusion and Binding
Constraints in a Business Process Context. In Proc.
of the 18th International Conference on Cooperative
Information Systems (CooplS), volume 6426 of Lecture
Notes in Computer Science (LNCS). Springer Verlag,
October 2010.

M. Strembeck and J. Mendling. Modeling Process-
related RBAC Models with Extended UML Activity
Models. Information and Software Technology, 53(5),
2011. DOI: 10.1016/j.infsof.2010.11.015.

K. Tan, J. Crampton, and C. A. Gunter. The Con-
sistency of Task-Based Authorization Constraints in
Workflow Systems. In Proceedings of the 17th IEEE
workshop on Computer Security Foundations, June
2004.

R. K. Thomas and R. S. Sandhu. Task-based Au-
thorization Controls (TBAC): A Family of Models for
Active and Enterprise-oriented Authorization Manage-
ment. In In Proceedings of the IFIP WG11.3 Workshop
on Database Security, Lake Tahoe, August 1997.

J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC -
A Workflow Security Model Incorporating Controlled
Overriding of Constraints. International Journal of
Cooperative Information Systems, 12(4), 2003.



