
Civitas and the Real World: Problems and Solutions from a Practical Point of View

Stephan Neumann and Melanie Volkamer
CASED \ TU Darmstadt, Germany

Name.Surname@cased.de

Abstract—In the past, researchers have proposed many
voting schemes that satisfy a wide range of security prop-
erties. These schemes often rely on strong trust assumptions
and do not consider the voter sufficiently, which currently
renders them inappropriate for usage in real-world elections.
In this paper we focus on the voting scheme Civitas, which
features provably strong security properties, such as end-to-
end verifiability and coercion-resistance. We identify the strong
trust assumptions and usability weaknesses of the scheme,
which currently prevent its usage in real-world elections. Based
on these results, we show how most of these strong trust
assumptions can be implemented, e.g., by using eID cards in
order to overcome Civitas’ most critical usability problem,
namely credential handling. Together with a voter-process
description and a user-interface, we pave the way for the use
of Civitas in real-world elections.

This work has been published in Proceedings of the Seventh International Conference on Availability, Reliability, and Security (p./pp. 180-185): IEEE
Computer Society. ISBN: 978-1-4673-2244-7. DOI: http://dx.doi.org/10.1109/ARES.2012.75
c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

Over the last decades, many electronic voting schemes
have been proposed. The majority of these schemes make
use of sophisticated cryptographic concepts in order to pro-
vide a variety of security properties, among which the most
important ones are end-to-end verifiability, ballot secrecy,
receipt-freeness, and coercion-resistance. Unfortunately, en-
suring all of these security properties comes at a cost
and requires strong trust assumptions (TA) which cannot
be addressed by means of organizational measures, e.g., a
trusted voting environment, untappable channels, etc. Voters
are therefore obligated to ensure the validity of such strong
TAs. Furthermore, theoretical proposals often do not take
voters into account and therefore impose an intolerable
burden on them, for example, the ThreeBallot scheme [1]
asks voters to also mark candidates for whom they do not
vote. For an electronic voting scheme, to be considered for
real-world elections, it is therefore crucially important to
consider these practical aspects.

In this work, we show how to improve one of the
most famous cryptographic voting schemes with respect
to practical aspects, namely the Civitas voting scheme [2]
presented by Clarkson et al. Civitas is an extension to the
JCJ scheme [3], which provides end-to-end verifiability and
coercion-resistance based on rigorous mathematical proofs.
Civitas ensures coercion-resistance through distributed cre-
dential generation, which allows coerced voters to generate
fake credentials in order to comply with the adversary’s
will, while only votes assigned to the real credential are

tallied. In the past, Civitas has been investigated by many
researchers from different points of view [4], [5] and several
improvements have been proposed, e.g., in [6], [7]. However,
strong TAs as well as the complex handling of real and fake
credentials prevent its use in real-world elections.

In this paper, we first identify strong TAs, i.e., TAs that
cannot be addressed by means of organizational measures
and therefore need a concrete technical implementation.
Furthermore, we discuss usability drawbacks of Civitas and
present implementations of the determined strong TAs. In
addition to other techniques, the concept of smart cards
allows us to tailor our contribution towards usable credential
handling within the Civitas scheme. In order to pave the
way for a usable implementation of the Civitas scheme, we
provide a voter-process description.

II. CIVITAS VOTING SCHEME

In 2005, the JCJ voting scheme [3] was the first voting
scheme to satisfy coercion-resistance. The Civitas voting
scheme was introduced in 2008 [2] and extends the JCJ
scheme with respect to trust distribution and reduces its
complexity. We base our approach on the version proposed
in [7]. Due to the lack of space, we refrain from a description
of the Civitas scheme, but rather point the reader to [7].

A. Entities

Each voter holds two key pairs, a so called registration
key pair and designation key pair. The supervisor is in
charge of naming registration, and tabulation tellers, fixing
the ballot design as well as starting and stopping the election.
The registrar administrates the electoral roll. Registration
tellers independently generate private / public credential
shares for all voters in the electoral roll. At the end of the
election, tabulation tellers collectively decrypt and tally the
cast votes. During the election phase, voters cast their ballots
to the ballot boxes. Once the election is finished, all ballot
boxes forward the stored votes to the bulletin board, where
tabulation tellers access and process them.

B. Security Properties

Civitas ensures coercion-resistance, i.e., voters cannot
prove whether or how they voted, even if they can interact
with the adversary while voting and end-to-end verifiability
as composition of universal verifiability, i.e., any observer
can verify that the votes stored in the ballot boxes are



correctly tallied, and individual verifiability, i.e., each voter
can verify that his vote has been cast as intended and stored
as cast.

C. Adversary Model and Trust Assumptions

Civitas assumes an adversary that can corrupt entities,
thereby obtaining their secrets and / or controlling their be-
havior. The adversary furthermore controls the network, he
may inject, read, and drop messages on public or anonymous
channels. Civitas relies on the the following TAs:

TA 1. The adversary is not capable of simulating the voter
throughout the entire registration process.

TA 2. The adversary is only able to corrupt half of the
registration tellers such that they do not treat the voter’s
credential properly and the adversary cannot see or use
the channel from one trusted registration teller to the voter
anyhow.

TA 3. The adversary cannot control or manipulate voters’
voting environments containing the client-side voting soft-
ware, the operating system as well as the hardware in use,
e.g., by installing malware.

TA 4. The adversary cannot observe who sends messages
to the ballot boxes.

TA 5. The adversary is not able to corrupt all ballot boxes
and the adversary cannot drop the voters’ votes towards the
correct ballot box.

TA 6. The adversary is not able to corrupt more than k out
of all n tabulation tellers.

TA 7. The adversary is restricted to probabilistic polynomial
time computations and cryptographic primitives work.

III. ANALYSIS

In this section, we review Civitas’ TAs from a practical
point of view and determine those TAs that need to be
implemented with special care before Civitas can be used
in real-world elections. Afterwards, we study the protocol
from the voter’s perspective to identify usability problems.

A. Trust Assumptions Analysis

TAs 2 (first part), 5 (first part) and 6 are assumptions on
election authorities. These assumptions can be implemented
by organizational measures and scaled depending on the
election form (e.g., each party could provide one registration
teller, one ballot box and one tabulation teller). Hence,
these assumptions are not critical with respect to Civitas’
real-world application. TA 7 is a standard assumption for
cryptographic systems and not critical for Civitas’ real-world
usage. As such, we do not address this assumption but rather
rely on cryptographic concepts.

The remaining assumptions constitute a serious hurdle
for the real-world application of Civitas as they require

voters’ specific actions or, at least partially, are under the
voters’ control and therefore need the voters’ awareness
about underlying concepts and threats. Hence, we intend to
concretize these assumptions into clear concepts which lifts
the burden from the voter’s shoulders. We therefore show
for each of the remaining assumptions why it is of central
importance to implement them by means of procedural or
technical measures.

Civitas assumes that the voter cannot be controlled by the
adversary throughout the entire registration phase (TA 1). It
is entirely under the voter’s control to implement or violate
this assumption. Hence, a voter could easily offer / could
be forced by the adversary to stay with him throughout the
registration phase.

Civitas’ specification requires one untappable channel (TA
2). Untappable channels in general are a strong physical
assumption. While this assumption is crucial to coercion-
resistance, concrete implementations are missing.

Coercion-resistance can be easily violated if the voting
environment is malicious, which is excluded by TA 3.
Moreover, the stored-as-cast part of individual verifiability is
obtained by assuming that the voting environment behaves
properly. Hence, Civitas ensures that all cast votes are stored
in the ballot boxes. Correspondingly, voters may never notice
problems or even the absence of their vote in the final
tally, which excludes voters’ complaints by assumption.
By assuming a fully trusted voting environment, Civitas
furthermore ensures cast-as-intended verifiability. It is clear
that individual verifiability and coercion-resistance strongly
rely on the voter-side and the adversary could force the voter
to use malicious hard- or software. We therefore aim to
direct this assumption towards a more conceptual task less
vulnerable to adversarial attacks.

Forced abstention attacks are explicitly excluded by
anonymous channels (TA 4). An anonymous channel cannot
be established by organizational measures as the sender
should be explicitly hidden from the system, including
server, observers, etc. Hence, it is the voter’s responsibility
to establish such a channel. Therefore, we intend to shift the
responsibility away from the voter-side.

Finally, Civitas assumes that the voter casts his ballot to
at least one correct ballot box (TA 5). While the existence
of a correct ballot box can be addressed by organizational
measures, casting a ballot to a correct ballot box needs to
be ensured by the voter.

B. Usability Analysis

Civitas’ coercion-resistance is achieved through a sophis-
ticated processing of data: Once the voter acquired his
private credential shares from the registration tellers, the
voter is in charge of producing and managing both real
and fake credentials: In the case where the voter is not
under adversarial influence, the voter prepares a ballot by
associating his real vote with the real credential. If the

2



voter is coerced, the ballot is prepared with the adversarial
vote associated with the fake credential. While from a
theoretical point of view, the way coercion-resistance is
ensured is innovative, maintaining coercion-resistance under
these duties becomes a difficult task for the voter from a
practical point of view.

IV. CONCEPTS

The implementations of TAs, which we propose in the
following sections, rely on the following concepts: We
propose shifting Civitas’ remote registration to a semi-
supervised registration. The voter therefore first registers at
a supervised registration authority and then completes his
registration remotely. In addition, we will use the Benaloh
challenge [8], a probabilistic game in which a prover (i.e.
the voter-side voting software) can convince a voter that it
encrypted the voter’s vote correctly. The implementation of
anonymous channels by anonymization networks has been
studied intensively and many techniques exist. As one such
technique, we propose to incorporate the TOR approach1.
We also propose the use of eID cards that provide the
following routines: The function gen_keys prompts the
card to generate a registration key pair and a designation key
pair. The public keys are returned to the issuing authority.
The function set_pin prompts the cardholder to set a
voting PIN. The functions get_supervised_cred and
get_remote_creds are called in order to obtain and
store private credential shares together with the correspond-
ing DVR proofs on the card from the supervised registration
authority and the remote registration tellers respectively.
The function prepare_ballot prepares the voter’s ballot
based on his selection and his submitted PIN, i.e., if the voter
submits his correct voting PIN, a valid ballot is prepared,
otherwise the generated ballot contains a fake credential.
The function cast_ballot casts the prepared ballot. As
further feature of the card, it outputs the hash value of the
ballot on the card reader’s display. We propose that ballot
boxes upon reception of ballots publish hash values of the
received ballots on the bulletin board. In order to verify the
presence of his vote, a voter has to search his ballot’s hash
value on the bulletin board. Note, it is of importance to
use the browser search functionality rather than providing a
server-side search feature. If the server would offer a search
functionality, hash values could be arbitrarily added by the
server.

V. SYSTEM DESCRIPTION

This section is dedicated to a stepwise voter-process
description based on the concepts of the previous section.
The voter-process is enriched by a clear user-interface and
lessons learned from the Helios voting interfaces discussed
in [9]. An overview of the modified Civitas scheme is

1https://www.torproject.org

Remote 
Registration 

Tellers

Ballot Boxes Bulletin Board

Tabulation 
Tellers

Registrar
Supervisor

Voter

Supervised 
Registration 

Auhority

Figure 1. Sketch of the modified Civitas voting scheme.

provided in Figure 1, the voter-process description in Figure
2, and the user-interface in Figure 3. In the voter-process
description numbered arrows indicate the sequence of inter-
actions throughout the protocol run. We omit the description
of setup and tabulation phase as they remain unchanged from
the original specification.

A. Registration

In order to register, the voter has to consult a supervised
registration authority. It is important that this authority
ensures that the voter is not controlled by the adversary
during the stay, i.e., the adversary cannot see the voter’s
interaction with the election official and the card terminal.
The voter then identifies and authenticates using his eID
card. The authority then calls the function set_pin upon
which the voter has to set his voting PIN used in the
voting phase to release his real credential. The authority
calls get_supervised_cred in order to store its private
credential share cVSRA on the eID card (Figure 2(a)). Then,
the voter leaves the supervised registration authority and can
continue the registration process immediately or together
with the voting phase. In the unsupervised part of the
registration the voter inserts his eID card into his card reader
and visits the election website, which loads a JavaScript.
The voter obtains instructions and information about the
voting process upon which he can proceed. Thereafter, the
voter is asked to decide if he wants to finish the remote
registration, proceed with the voting or verify the presence
of a previously cast vote ((Figure 3(a))). If he decides to
finish the registration phase, the JavaScript calls the func-
tion get_remote_creds and the registration proceeds
according to the original Civitas specification (Figure 2(b)),
hence, trusted registration tellers output their shares cVRTi

.
The card computes the private credential as

cV = cVSRA ·
∏

i∈TRT (V )

cVRTi
.

B. Voting Phase

The voter then starts the voting process by selecting the
candidate (or other options depending on the voting policy)

3



3.

1. auth.2. set 
voting PIN

(a) Supervised Registration.

4. auth.

5.

(b) Remote Registration.

6.

7.

8.

(c) Voting Phase Part 1.

9. verify

10.

12. verify if

11.

(d) Verification Process.

13. accept
PIN (real / fake)

14.

14.

15. publish

(e) Voting Phase Part 2.

Figure 2. Voter-Process.

encoded in v (Figure 3(b)) upon which the JavaScript calls
the function prepare_ballot.

The card prepares a randomized encryption of the voter’s
choice obtained by the JavaScript and commits on that
encryption by showing a hash value of the encryption on
the reader’s display (Figure 2(c)). The voter needs to write
down this value for cast-as-intended verifiability. He is asked
if he wants to verify the encryption process or if he is going
to use the generated ballot (Figure 3(c)). In the case where
he chooses to verify the encryption, the voter’s choice, the
used randomness and the vote are returned to the JavaScript
as shown in Figure 2(d). The voter can charge an external
institution (e.g. universities) with the verification process or
verify a QR code (Figure 3(d)) with his smartphone. In
both cases, the voter’s choice and the randomness used to
encrypt this choice are forwarded. The encryption process
can be repeated independently and the voter can obtain
evidence that the generated ballot contains his choice (Figure
3(e)). The voter thereafter has to restart the selection in
order to maintain secrecy of his vote. If the voter confirms
the process without verification, the card demands the PIN
and prepares a ballot of the form 〈{c}r1pkTT

, {v}r2pkTT
, ZK〉,

where depending on the voter’s PIN, the real or a fake
credential is used. The voter obtains the hash value of
the entire ballot on the reader’s display. He writes down
that value and can use it for the purpose of stored-as-cast
verifiability. Upon the cast_ballot call, the eID sends
the ballot to all ballot boxes. The ballot boxes publish the

hash value of the received data immediately on the bulletin
board as shown in Figure 2(e) and Figure 3(f).

The concept we incorporate allows voters to verify im-
mediately after vote-casting if their votes have been stored
correctly. If not, they do not need to complain, but rather
repeat the voting process from another voting environment.

VI. DISCUSSION

By conducting the registration partially supervised, TA 1
is realized, as a trusted registration authority can guarantee
that the adversary cannot simulate an eligible voter in this
registration step. Furthermore, the partial supervision allows
to implement the untappable channel between the used eID
card and one trusted registration authority as assumed in the
second part of TA 2. Hence, TAs 1 and the second part of
2 can be replaced by New TA 1:

New TA 1. Each voter trusts at least half of the remote
registration tellers and the supervised registration authority
with respect to credential distribution.

In the voter-process description, voters still cast their votes
over their machines, however the machine does not obtain
information if a fake or the real credential is associated
to that vote. Yet, our proposal can only be implemented
if voters are equipped with smart card readers offering
the possibility to enter PINs directly at the reader and to
show hash values of 32 characters. Hence, with respect to
coercion-resistance TA 3 can be replaced by New TA 2.

New TA 2. Voters trust their eID cards and their smart card
readers.

When it comes to verifiability, a malicious voting environ-
ment may still alter or drop votes. The Benaloh challenge
allows voters to verify that the cast ballot reflects their
intention. The dependence on the voting environment is
however reduced by additionally encoding the vote together
with the randomness into a QR code. A smartphone can be
used to read this code and compute the hash value internally.
It would be enough if either the verification environment
or the voter’s smartphone is trusted. This would then lead
to individual verifiability in the sense of cast-as-intended.
In order to verify that the voter’s ballot reached the ballot
box as cast, the voter can verify that the hash value of the
generated ballot appears in the list of hash values generated
by the ballot boxes and correspondingly decide whether or
not to re-vote from a more trustworthy machine. Relying
on this concept also allows the voter to verify the correct
handling of his vote in the non-verifiable anonymization
network. It turns out that either the voting environment or the
verification environment, i.e., the machine where the voter
verifies the presence of the hash value of his cast ballot,
needs to be trusted; hence we replace TA 3 by New TA 3
with respect to verifiability:

4



(a) Welcome Page. (b) Candidate Selection (c) Verify or Cast your Ballot?

(d) Benaloh Challenge. (e) External Verification. (f) Vote is stored correctly?

Figure 3. User-interface

New TA 3. The adversary cannot control the voting envi-
ronment and the verification environment at the same time.

Publishing hash information after the vote casting allows
voters to detect problems immediately and re-vote if their
vote was lost. Hence, TA 4 is replaced by New TA 4.

New TA 4. The adversary cannot control or manipulate all
nodes in the anonymization network.

Finally, the part of TA 5 which assumes that each vote
is cast to one correct ballot box is ensured by sending the
ballot to all ballot boxes, which leads to New TA 5:

New TA 5. The adversary is not able to corrupt all ballot
boxes.

The absence of the voter’s ballot’s hash code would then
raise the need to re-vote from another environment.

The presented concepts allow us to implement the critical
TAs 1 to 5 identified in Section III, yielding five new TAs.
While the original assumptions were the voter’s responsibil-
ity, only New TA 3 is under the voter’s control. All other
new TAs can be ensured by organizational measures and are
therefore not critical for Civitas’ real-world application.

The presented implementation of TAs is tailored for
usable credential handling; the use of smart cards fits this
need exactly, as the computation capability of smart cards

enables the card to come up with real or fake credentials
automatically depending on the PIN submitted to the card
without revealing any further details. To that end, voter-
side assumptions are implemented by the presented concepts
while furthermore in the particular the usage of eID cards
and the voting PIN allow for a practical realization of
credential handling.

VII. RELATED WORK

JCJ and Civitas have been investigated thoroughly from
theoretical points of view, e.g. [10], [4]. To the best of
our knowledge, Civitas has been investigated from practical
directions in only two works. In [6], Bursuc et al. proposed
the Trivitas scheme. Their work mainly focuses on usability
aspects and states that the complex mixing process of Civitas
is not comprehensible to the average voter, furthermore
trusted devices are needed to verify zero-knowledge proofs
generated throughout the mixing. Therefore, they introduced
trial credentials, which are indistinguishable from real cre-
dentials to all entities but the threshold set of decryption
authorities. Their proposal addresses universal verifiabil-
ity and moves that aspect towards individual verifiability
without the need to verify complex zero-knowledge proofs
about the correct behavior of election entities. However,
credential handling is not addressed, which is crucial to

5



maintaining strong properties as coercion-resistance. In fact,
the distribution of trial credentials results in even more
complex credential handling.

In [11], Mendes improved Civitas by promoting usability
through the use of smart cards. Mendes removed the remote
registration in favor of a fully supervised and trusted reg-
istration. While the author thereby addresses the problem
of implementing strong trust assumptions, especially trust
in the voting environment, his solution apparently bases
the entire trust on the registrar. The distribution of smart
cards remains unclear, and PIN codes to access smart cards
are generated by another entity, which implicitly has to
be trusted too. The author explicitly invented a further
entity, the CodeCardReplier in order to increase stored-as-
cast verifiability, which imposes another trust assumption
on the scheme. It, however, turns out that cast-as-intended
verifiability is not satisfied as the voting environment may
still manipulate votes before handing them over to the smart
card. Individual verifiability remains only partially satisfied,
and the approach therefore fails to reduce the trust in the
voting environment.

VIII. CONCLUSION AND FUTURE WORK

The increasing interest in practical electronic voting
schemes motivates our work in paving the way for Civitas’
usage in real-world elections as a widely studied approach
that relies on modern cryptographic concepts to achieve end-
to-end verifiability and coercion-resistance. While Civitas
has been at the center of many theoretical publications, the
scheme unfortunately remains an abstract concept when it
comes to real-world elections. First, Civitas relies on strong
assumptions (TA), which render the scheme inappropriate
to be used in real-world elections. Second, the complex
handling of real and fake credentials assumes the voters’
awareness of underlying concepts and threats. Third, even
though Civitas’ way of achieving coercion-resistance is
indisputably innovative, the scheme lacks a voter-process
that guides a voter, while at the same time maintaining the
security properties.

In this paper, we first identified Civitas’ TAs that cannot
be addressed by organizational measures but rather are the
responsibility of voters (namely five out of seven TAs).
We presented an improvement of the Civitas scheme to
implement TAs 1 to 5. While we introduced five new TAs,
four of them can be addressed by organizational means.
The remaining TA that is under the voter’s control could
be relaxed even further. Together with the presented voter-
process description and the user-interface, this work lays
the foundations for a real-world application of the Civitas
scheme. We are aware of the fact that the requirements
placed on the eID card are high demands. At this stage,
however, we do not see a less resource-demanding im-
plementation providing the same level of security. Even
though the implementation presented herein relaxes most

of the voter-side assumptions, not every problem is solved.
An important task for the future is to provide stored-as-
cast verifiability without relying on a trusted verification
environment. One idea is to adapt the approach from [11]
towards reliance on distributed authorities instead of a sin-
gle CodeCardReplier. The acceptance of technology always
comes with a clear user manual and process description.
Therefore, remote voting schemes should not only consider
the voter-process but also other election entities as lawyers,
politicians and technical staff.

ACKNOWLEDGMENT

This paper has been developed within the project
”ModIWa2” which is funded by the DFG.

REFERENCES

[1] R. L. Rivest, “The ThreeBallot voting sys-
tem,” 2006, http://people.csail.mit.edu/rivest/
Rivest-TheThreeBallotVotingSystem.pdf (last accessed
March, 11 2012).

[2] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward
a secure voting system,” in IEEE Symposium on Security and
Privacy, May 2008, pp. 354–368.

[3] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant
electronic elections,” in ACM Workshop on Privacy in the
Electronic Society, 2005, pp. 61–70.

[4] R. Kuesters and T. Truderung, “An epistemic approach to
coercion-resistance for electronic voting protocols,” in 30th
IEEE Symposium on Security and Privacy, 2009, pp. 251–
266.

[5] B. Smyth, M. Ryan, S. Kremer, and M. Kourjieh, “Towards
automatic analysis of election verifiability properties,” in Joint
Conference on Automated Reasoning for Security Protocol
Analysis and Issues in the Theory of Security, 2010, pp. 146–
163.

[6] S. Bursuc, G. Grewal, and M. Ryan, “Trivitas: Voters directly
verifying votes,” in Third International Conference on E-
voting and Identity, 2011.

[7] F. Shirazi, S. Neumann, I. Ciolacu, and M. Volkamer, “Ro-
bust electronic voting: Introducing robustness in civitas,”
in International Workshop on Requirements Engineering for
Electronic Voting Systems, 2011, pp. 47 –55.

[8] J. Benaloh, “Simple verifiable elections,” in Accurate Elec-
tronic Voting Technology Workshop 2006 on Electronic Voting
Technology Workshop, 2006, pp. 5–5.

[9] F. Karayumak, M. Kauer, M. M. Olembo, T. Volk, and
M. Volkamer, “User study of the improved Helios voting sys-
tem interface,” in First Workshop on Socio-Technical Aspects
in Security and Trust, 2011, pp. 37–44.

[10] S. G. Weber, R. Araujo, and J. Buchmann, “On coercion-
resistant electronic elections with linear work,” in Second
International Conference on Availability, Reliability and Se-
curity, 2007, pp. 908–916.

6



[11] J. M. B. da Silva Mendes, “Trusted Civitas: Client trust in
Civitas electronic voting protocol,” Master’s thesis, 2011.

7


