
An Approach to Bridge the Gap between Role

Mining and Role Engineering via Migration Guides

Anne Baumgrass, Mark Strembeck

Institute for Information Systems and New Media

Vienna University of Economics and Business (WU Vienna), Austria

Email: {firstname.lastname}@wu.ac.at

Abstract—Mining approaches, such as role mining or orga-
nizational mining, can be applied to derive permissions and
roles from a system’s configuration or from log files. In this
way, mining techniques document the current state of a system
and produce current-state RBAC models. However, such current-
state RBAC models most often follow from structures that have
evolved over time and are not the result of a systematic rights
management procedure. In contrast, role engineering is applied
to define a tailored RBAC model for a particular organization or
information system. Thus, role engineering techniques produce
a target-state RBAC model that is customized for the business
processes supported via the respective information system. The
migration from a current-state RBAC model to a tailored target-
state RBAC model is, however, a complex task. In this paper, we
present a systematic approach to migrate current-state RBAC
models to target-state RBAC models. In particular, we use model
comparison techniques to identify differences between two RBAC
models. Based on these differences, we derive migration rules that
define which elements and element relations must be changed,
added, or removed. A migration guide then includes all migration
rules that need to be applied to a particular current-state RBAC
model to produce the corresponding target-state RBAC model.
In addition, we discuss different options for tool support and
describe our implementation for the derivation of migration
guides which is based on the Eclipse Modeling Framework
(EMF).

I. INTRODUCTION

In role-based access control (RBAC), roles are used to

model different job positions and responsibilities within a par-

ticular organization or within an information system (see, e.g.,

[10], [30]). They are equipped with a number of permissions

that grant a role the rights to perform specific operations on

specific objects. Human users (subjects) are assigned to roles

according to their competencies and responsibilities in the

organization.

A. Specifying RBAC Models

Role mining approaches apply data mining techniques to

derive RBAC models from the software systems of an or-

ganization (see, e.g., [12], [13], [18]). For example, role

mining is applied to detect patterns in permission-to-subject

assignments which are then used to derive roles. Furthermore,

organizational mining techniques can be used to group people

into “functional units” based on their execution of similar tasks

(see, e.g., [27]). In this context, RBAC artifacts can also be

derived from log files that document the execution history of

business processes in an information system (see, e.g., [3],

[4]). In this way, mining techniques document the current state

of a system and produce current-state RBAC models.

In contrast, role engineering is applied to define a tailored

RBAC model for a certain organization or information system

(see, e.g., [9], [10], [30]). In particular, role engineering

derives permissions from the descriptions of business pro-

cesses and scenarios that specify the workflows conducted in

a particular organization. Thus, role engineering techniques

produce a target-state RBAC model that is customized for

the business processes which are supported via the respective

information system. Similar to mining techniques, certain steps

in the role engineering process can be automated (see, e.g., [5],

[21], [29]).

B. Motivation

Despite well-elaborated access control approaches existing

in the literature and a widespread use of (collaborative or

process-based) software systems in professional organizations,

the management of access control policies and constraints for

real-world software systems often seems to be more of an

“art form” than the result of a systematic rights management

procedure. While there are a number of possible explanations

for this phenomenon1, we also see a strong interest of execu-

tives to change this situation and to introduce systematic rights

management standards in their organizations. From our expe-

riences gained in role engineering projects with companies

and area municipalities (see, e.g., [19], [30]), we can say that,

compared to the situation we had just a few years ago, there is

a significantly increased awareness at the executive level that

access control (and information system security in general)

is a management topic. However, starting from a situation

where we most often have an incomplete documentation of

a company’s business processes and a system’s configuration,

the adoption of a systematic rights management procedure is

a very complex task.

In this context, mining approaches can be applied to derive

current-state RBAC models (see Section I-A). However, such

current-state RBAC models most often follow from structures

1For example, often no organization-wide standards for permission assign-
ment and revocation exist; after an initial assignment of permissions for a
certain job position additional permissions are assigned by system adminis-
trators in a ad hoc fashion – in this way, long-term employees accumulate
rights; business processes and corresponding permission or role assignments
are insufficiently documented – sometimes they are not documented at all.

that have evolved over time and are not the result of a system-

atic rights management approach. In contrast, role engineering

is applied to define a tailored RBAC model for a certain

organization or information system. Yet, the migration from

a current-state RBAC model to a tailored target-state RBAC

model is a non-trivial task.

In this paper, we present a systematic approach to migrate

current-state RBAC models to target-state RBAC models. In

Section II, we first give a high-level overview of our approach.

Subsequently, Section III discusses the different dimensions in

the model comparison context. Next, Section IV presents the

phases that we consider for a comparison of RBAC models.

In Section V, we describe the migration guide which is a

visualization variant for a comparison of RBAC models. In

Section VI, we present the different options for tool support of

comparison techniques and Section VII provides a discussion

concerning the suitability of these approaches for the migration

of RBAC models. Section VIII discusses related work and

Section IX concludes the paper2.

II. APPROACH SYNOPSIS

We apply model comparison techniques (see, e.g., [1],

[16]) to identify differences of current-state RBAC models

and target-state RBAC models. Based on these differences,

we derive migration rules that define which elements and

element relations must be changed, added, or removed. A

migration guide then includes all migration rules that need to

be applied to a particular current-state RBAC model to produce

the corresponding target-state RBAC model. Figure 1 shows

the different steps in the comparison process and the artifacts

that are produced as a result of each step.

current-state

RBAC model
target-state

RBAC model

RBAC Comparison

RBAC

MetaModel

Migration Guide

(5)

(6)

based on

Apply
Matching

Techniques

Calculate
Differences

Visualize
Differences

Difference
Model

(1)

(2)

(3)

(4)

instance of instance of

Matching
Model

applied to produces

Figure 1. Approach overview: derivation of a migration guide

In the first step, model matching techniques are applied to

produce a so-called matching model for the respective current-

state and target-state RBAC model. Second, this matching

model is used as input for a difference calculation. Based

2We provide an extended version of this paper on our Web page. In the
extended version we re-inserted the text and examples that we had to cut from
the paper due to the page restrictions for the proceedings version.

on this difference calculation, model differencing techniques

are applied to derive a difference model. In steps four and

five, this difference model is further processed to visualize the

differences in a human-readable format and to produce the

corresponding migration guide. In the sixth and final step, the

migration guide is applied to the current-state RBAC model

to convert it into the respective target-state RBAC model (see

Figure 1).

In particular, we apply similarity-based matching techniques

(see [16]) to identify elements with common attributes and

relations that are included in the current-state as well as

the target-state RBAC models. Using a customized matching

algorithm (see Section IV) we obtain the matching model

which contains the elements of the current-state RBAC model

and identifies the elements of the target-state RBAC model

that are either equal, similar, or unequal. After a customized

difference calculation based on the matching model, we obtain

a difference model that highlights the elements of the current-

state RBAC model that need to be added, deleted, changed,

or moved in order to produce the target-state RBAC model.

Based on the difference model we derive the corresponding

migration guide. In essence, the migration guide is a difference

catalog for two specific RBAC models. The migration rules

included in the migration guide describe which RBAC model

elements and element relations have to be changed, added, or

removed. Thereby, they describe a sequence of operations that

can be applied to migrate the current-state RBAC model to the

target-state RBAC model (see Section V).

Note that, although it would be possible, we do not automate

the migration from a current-state to a target-state RBAC

model. This is because we think that the security configuration

of a software system is too sensitive for such an automation

step and should always be approved by a security engineer.

We do, however, provide tool support to produce the migration

guide and to enable a semi-automated step-by-step migration

that is conducted by a security engineer (see Section VI).

III. IDENTIFYING MODEL DIFFERENCES

Model comparison involves the tasks to produce a matching

model and then calculate, represent, and visualize model

differences (see [16], [22]). Figure 2 gives an overview of the

different dimensions that need to be considered in the model

comparison context.

Applicability DifferencingMatching

S
e
m

a
n

ti
c Metamodel

dependent
(language and

domain specific)

Change Move

Add Remove

G
e
n

e
ra

lity

Metamodel
independent

(generic)

S
im

il
a
ri

ty
S

ig
n
a
tu

re

Id
e
n
ti
ty

Directed
delta

(edit script)

Symmetric
delta

(coloring)

Visualization

Figure 2. Different dimensions of model comparison

In general, one can distinguish between metamodel inde-

pendent (generic) and metamodel dependent (language and

domain-specific) model comparison approaches. Metamodel

independent approaches are able to compare models based

on arbitrary metamodels (see, e.g., [15], [16]). In addition,

such approaches are often adaptable and can be configured to

(efficiently) compare models that are based on the same meta-

model (see, e.g., [6], [32]). In contrast, metamodel dependent

comparison approaches provide language-specific and domain-

specific matching algorithms. For these approaches, syntactic

and semantic information of the respective (textual or graphi-

cal) modeling language or modeling domain is considered to

calculate differences between two models (see, e.g., [7], [23]).

The application of metamodel dependent comparison ap-

proaches in the context of RBAC models has the advantage

that negligible changes in RBAC models (such as the order

of the elements in an RBAC model) can be excluded from

a model comparison via customization. Moreover, metamodel

dependent approaches are able to consider the syntax and se-

mantics of specific (modeling) languages to make the compari-

son more precise. However, tailoring a comparison approach to

a certain syntax and corresponding language semantics usually

requires a high customization effort.

Model matching is conducted to find common elements

in two comparable models. A matching is based on unique

identities, the signature, or the similarity of the elements in two

models (see, e.g., [15], [16], [32]). In identity-based matching,

elements with the same persistent identifier are matched. In

signature-based matching, the uniquely identifying signatures

of model elements are used for a matching. The signature of

a certain element can be calculated based on the attributes

and relations of this element. For similarity-based match-

ing, a so-called similarity function calculates the similarity

between two model elements. Elements are considered to

be similar if the result of the calculation is greater than a

predefined threshold value. Corresponding algorithms can be

customized, for example by assigning weights to attributes

or to relations of the elements to express their relevance

for the calculation. Furthermore, language-specific matching

algorithms are similarity-based approaches that are customized

for a particular modeling language (see, e.g., [16]).

A matching model is the result of a matching algorithm.

It consists of equal, similar, or unequal (unmatched) pairs of

elements originating from the compared models. The matching

model is the basis for the difference calculation. The differ-

ences of two models are derived from the similar and unequal

elements and result in rules that describe what elements or

element relations were (or need to be) changed, added, or

removed from one model to the other.

Visualizations of model differences can be subdivided into

two types of approaches: “symmetric delta” and “directed

delta” (see [22]). Symmetric delta displays the differences as

a union of two compared models. For example, “coloring”

techniques produce a diagram that highlights the equal parts

as well as the unequal parts (e.g. by using different colors).

Directed delta, also called “edit script”, describes a sequence

of operations needed to convert the current model into the

future model. This means, it describes actions specifying how

the current model (e.g. a current-state RBAC model) must be

modified to produce the future model (e.g. a target-state RBAC

model).

For the purposes of this paper, we assume the most gen-

eral case that current-state RBAC models and target-state

RBAC models are constructed (or derived) independently of

each other. For this reason, we cannot apply identity-based

or signature-based matching algorithms which use persistent

identifiers or the signature of model elements. In our ap-

proach, we therefore use metamodel dependent similarity-

based matching algorithms. To consider the language-specific

semantic and syntax of RBAC models we customized the

matching and difference calculation (see also Sections IV-B

and IV-C).

IV. COMPARING CURRENT-STATE AND TARGET-STATE

RBAC MODELS

Comparing two models means to find their equivalences,

similarities, and differences. Although the general characteris-

tics of two RBAC models, such as the number of roles, sub-

jects, or permissions/tasks, can be used to measure a similarity

value between these RBAC models, this type of similarity

value is most often unsuitable to reveal their differences. This

means, while the number of elements in two models can be

identical, the RBAC models may have completely different

semantics. Therefore, this paper does not aim to determine the

similarity of two models but to reveal the elements that differ

between two compared RBAC models. Thus, we examine the

properties and associations of each RBAC artifact (subjects,

roles, permissions/tasks, and constraints). The subsequent sec-

tions describe the phases for the migration of current-state

RBAC models to target-state RBAC models.

A. Definition of RBAC Models

A current-state RBAC model can be derived via mining

approaches. On the other hand, target-state RBAC models

are defined by applying role engineering techniques (see

Section I-A). For our approach, we assume that current-state

and target-state RBAC models conform to the same RBAC

metamodel. We think this is a reasonable assumption because

RBAC is a well-understood domain with well-defined model

elements (subjects, roles, permissions/tasks, and constraints).

Furthermore, we assume that the RBAC models are available

(or can be exported) in a machine-readable format that we

can use for our model comparison, for example as XML

documents. In this paper, we use the process-related RBAC

metamodel from [31] and export RBAC models in XML-based

formats for model comparison purposes. We decided to use

this metamodel because we apply it in our role engineering

projects and because a UML extension for this metamodel

exists that allows for a straightforward visualization of the

different model elements (see [31]). Note, however, that our

general approach for the derivation of migration guides does

not rely on a specific RBAC metamodel variant but can easily

be adapted to other metamodel variants. The metamodel from

[31] includes the basic concepts of process-related RBAC

models, i.e. subjects, roles, tasks, and (business) processes.

In addition, it supports the definition of mutual exclusion and

binding constraints for tasks.

b)

a)
T

a
s
k
s

R
o

le
s

S
u

b
je

c
ts

Clerk

Alice

Bank

Manager

junior

senior

T
a

s
k
s

R
o

le
s

S
u

b
je

c
ts

Approve

credit

Employee

Alice

Bank

Manager

Negotiate

contract

Check credit

worthiness

Bank

Director

SMESB

junior

senior

Approve

credit

Negotiate

contract

Check credit

worthiness

DMESB

Figure 3. Examples for a) a current-state and b) a target-state RBAC model

Figure 3 shows two simple RBAC models that we use as

a running example in the remainder of this paper. In Figure

3a, the current-state RBAC model consists of three roles

named “Employee”, “Bank Manager”, and “Bank Director”,

the three tasks “Negotiate contract”, “Approve credit”, and

“Check credit worthiness”, and a subject named “Alice”. Alice

is assigned to the roles “Employee” and “Bank Manager”.

The role “Bank Manager” is a junior-role of “Bank Director”.

Furthermore, the current-state RBAC model defines a subject-

binding (SB) constraint between the tasks “Negotiate contract”

and “Check credit worthiness” and a static mutual exclusion

(SME) constraint is defined between the tasks “Negotiate

contract” and “Approve credit”. In Figure 3b, the target-

state model contains a role “Clerk” and its senior-role “Bank

Manager”, three tasks named “Approve contract”, “Negotiate

contract”, and “Check credit worthiness”, and the subject

“Alice” assigned to the “Bank Manager” role. The target-

state RBAC model also includes a SB constraint between the

tasks “Negotiate contract” and “Check credit worthiness” and

a dynamic mutual exclusion (DME) constraint between the

tasks “Negotiate contract” and “Approve contract”.

B. Matching of RBAC Models

When comparing two RBAC models, we essentially dis-

tinguish two perspectives. The content perspective considers

the properties of an artifact. For our purposes, we use the

unique identifier and the name of an artifact as properties

in the content perspective. The context perspective considers

the structure of an artifact, i.e. its relations to other elements

(e.g. role-to-subject assignments or a mutual exclusion relation

between two permissions/tasks). Thus, an RBAC artifact is

characterized through its attributes and its relations to other

artifacts. For example, the tasks assigned to a role represent

a part of the role’s context and the name of the role rep-

resents its content. Table I summarizes the RBAC artifacts

and corresponding relations in the context perspective that are

considered in a matching calculation.

RBAC Artifact Relation

Subject Role-to-subject assignment

Role

Senior-role relation

Junior-role relation

Permission/task-to-role assignment

Task

Dynamic mutual exclusion (DME) constraint

Static mutual exclusion (SME) constraint

Role-binding (RB) constraint

Subject-binding (SB) constraint

Table I
ARTIFACTS AND RELATIONS IN THE CONTEXT PERSPECTIVE

In particular, we apply a similarity-based matching to find

common elements with common attributes and relations in

current-state and target-state RBAC models (see Section III).

We customized this matching approach to include RBAC-

specific matchings. For example, we assume that the context

of RBAC artifacts is more relevant than their names. This

is because, changing the context of an artifact may change

the semantic meaning of an artifact, while renaming does not

necessarily define a new meaning for an artifact. Therefore,

we first compute a matching between artifacts with a similar

context. For example, the role named “Employee” of the

current-state RBAC model and the role named “Clerk” of the

target-state RBAC model (see Figure 3) are considered to be

similar when their associations to other artifacts are similar.

In addition, we can apply a linguistic comparison to identify

semantic similarities between artifact names (see, e.g., [25]).

The similarity between the name “Clerk” and “Employee” can

be identified, for example, via hypernyms, common substrings,

string edit distance metrics, user-provided name matchers, a

pre-defined taxonomy, an ontology, or dictionary systems (see,

e.g., [25]).

At the end of this phase, the matching model contains ele-

ments of the current-state RBAC model and the counterparts

from the target-state RBAC model that are equal, similar, or

unmatched. An excerpt of the matching model for our example

from Figure 3 is shown in Figure 4. Equal elements are not

considered for further analysis, since they do not need to be

adapted to produce the target-state RBAC model. Thus, the

similar or unequal elements from the matching model are used

to identify model differences in the subsequent phase.

C. Calculating Differences of RBAC Models

Based on the matching result from the previous phase,

we calculate a delta that contains the differences between

the RBAC models we compared. These differences include

artifacts or artifact relations that need to be added, removed,

moved, or changed in the current-state RBAC model to

produce the target-state RBAC model (see Figure 2). The

Alice

senior

junior

Check credit

worthiness

Similar UnmatchedEqual

Employee
Bank

Manager

Bank

Director

Alice

senior

junior

Clerk
Bank

Manager

Model

(instance) level

Meta model

level

based on

based on

target-state

RBAC model

future model

present model

RBAC

metamodel

current-state

RBAC model

Check credit

worthiness

Figure 4. RBAC model matching example

visualization of these differences is conducted in the next

phase (see Section IV-D).

Our customization of the matching algorithm to the specific

characteristics of RBAC models (e.g. the context of an artifact

is more relevant than its name, see Section IV-B), identifies the

roles “Employee” and “Clerk” as similar elements (see Figure

4). Therefore, the differencing algorithm proposes to rename

the “Employee” role of the current-state RBAC model into

“Clerk” instead of removing the “Employee” role and adding

a new role named “Clerk” in the current-state RBAC model.

A
ft
e
r

B
e
fo

re

a) Remove Assignment

e) Add Artifactd) Add Assignment

b) Remove Artifact

g) Rename Artifact h) Change Assignment

A
ft
e
r

r1

r2

r3

r1

r2

r3r1

r2

s1

s2

r6

r2

s1

s2

r1

r2

r5

RolesSubjects

r1

r2

r3

s1

s2
r4

r2 r4

t1

t3

rb

t2

Tasks

c) Remove task-based

constraint

t2

t3

rb

r4

f) Add task-based

constraint

t1 t2
sb

t3

rb

A
ft
e
r

i) Change type of

task-based constraint

t3

t2

sb

Figure 5. Differences for artifacts, assignments, and constraints

In general, we differentiate between nine classes of dif-

ferences that may result from the comparison of two RBAC

models (see Figure 5 – removals are colored red, additions are

colored green, and changes are colored blue). Removals in-

clude removed assignment relations, artifacts, and constraints

between tasks (see Figure 5a-c). For example, Figure 5a,

shows a role-to-role assignment between the roles r1 and

r2 that has been removed from the model (with respect to

the model in the “Before” compartment of Figure 5). In

case an artifact is removed, the respective relations to other

artifacts (assignments or constraints) also have to be removed.

Additions include the definition of new assignment relations,

artifacts, and constraints between tasks (see Figure 5d-f).

For example, Figure 5f shows a new subject-binding (SB)

constraint between the tasks t1 and t2 that has been added

to the model. Changes include renaming an artifact, changing

an assignment relation, or changing the type of a constraint

(e.g. changing a static-mutual exclusion (SME) constraint into

a dynamic mutual exclusion (DME) constraint or vice versa)

(see Figure 5g-i). Note that we consider moved artifacts as

change of the corresponding assignment relations. In other

words, moving an RBAC artifact means a change of one

(or more) assignment relation(s). In Section V, we define the

migration guide based on these nine classes of differences.

D. Visualizing Differences of RBAC Models

The difference model contains information about the arti-

facts, assignment relations, and constraints that have to be

added, removed, or changed in the current-state RBAC model

to produce the target-state RBAC model. To actually conduct

such a migration, we have to “visualize” the difference model

in a human-readable (and/or machine-readable) format. Edit

scripts (see Section III) for RBAC models describe a sequence

of add, remove, or change operations to convert the current-

state RBAC model into the target-state RBAC model. The

migration guide is one particular visualization of an edit script

resulting from the comparison of two RBAC models (Section

V describes migration guides in detail). A symmetric delta,

also referred to as coloring, is used to display differences in a

diagram. This diagram is the union of two compared models

with common and differential parts highlighted (see Section

III).

V. MIGRATION GUIDES FOR RBAC MODELS

In our approach, the migration guide is a visualization

variant of the difference model (see Section IV-C) and contains

the corresponding migration rules. Each migration rule (MR)

describes a particular edit step. The migration guide includes

an ordered list of migration rules and thereby describes the

ordered sequence of edit steps that need to be applied to

a particular current-state RBAC model to produce the cor-

responding target-state RBAC model. In other words, the

migration guide describes the modifications for a current-state

RBAC model so that the result conforms to the target-state

RBAC model.

Based on the nine difference classes described in Section

IV-C, we define the following generic migration rules:

Remove rules:

Migration Rule 1: Remove a constraint

A (mutual exclusion or binding) constraint that is not included

in the target-state RBAC model must be removed from the

current-state RBAC model.

Migration Rule 2: Remove an assignment relation

An assignment relation that is not included in the target-state

RBAC model must be removed from the current-state RBAC

model.

Migration Rule 3: Remove an artifact

An artifact (subject, role, permission/task) that is not included

in the target-state RBAC model must be removed from the

current-state RBAC model.

Change rules:

Migration Rule 4: Rename an artifact

The name of an artifact in the current-state RBAC model must

match the name of the corresponding artifact in the target-state

RBAC model.

Migration Rule 5: Change an assignment relation

An assignment relation in the current-state RBAC model must

be equal to the comparable assignment relation in the target-

state RBAC model.

Migration Rule 5.1: Change the source of an assignment

The source of an assignment relation in the current-state

RBAC model must be equal to the source of the comparable

assignment relation in the target-state RBAC model.

Migration Rule 5.2: Change the target of an assignment

The target of an assignment relation in the current-state

RBAC model must be equal to the target of the comparable

assignment relation in the target-state RBAC model.

Migration Rule 6: Change the type of a constraint

The type of a (mutual exclusion or binding) constraint in the

current-state RBAC model must be equal to the type of the

comparable constraint in the target-state RBAC model.

Add rules:

Migration Rule 7: Add an artifact

An artifact that is included in the target-state RBAC model

but is absent in the current-state RBAC model must be added

to the current-state model.

Migration Rule 8: Add an assignment relation

An assignment relation that is included in the target-state

RBAC model but is absent in the current-state RBAC model

must be added to the current-state model.

Migration Rule 9: Add a constraint

A (mutual exclusion or binding) constraint that is included in

the target-state RBAC model but is absent in the current-state

RBAC model must be added to the current-state model.

The migration guide recommends an ordered sequence of

migration rules. In general, this ordered sequence results

from the following heuristic: First, constraints and assignment

relations which are not included in the target-state RBAC

model are removed from the current-state RBAC model (see

MR 1 and 2). Afterwards, RBAC artifacts that are not included

in the target-state model are removed from the current-state

model (see MR 3). Second, artifact attributes are changed in

the current-state RBAC model in order to match a comparable

artifact from the target-state RBAC model (see MR 4). Third,

assignment relations are changed (see MR 5). A change of

an assignment relation is a change of its source or target –

for example the source of a role-to-subject assignment is the

corresponding role and the target is the respective subject.

Fourth, the (mutual exclusion or binding) constraints in the

current-state RBAC model are changed (see MR 6). Fifth,

missing RBAC artifacts (see MR 7), assignment relations (see

MR 8), and constraints (see MR 9) are added to the current-

state RBAC model.

VI. TOOL SUPPORT TO VISUALIZE RBAC MODEL

DIFFERENCES

In the following subsections, we present different options

for tool support of comparison techniques for RBAC models.

Because the comparison of arbitrary graphical models is ex-

tremely complex and does provide an additional benefit for our

purposes, we use a special-purpose XML format as a textual

representation of the corresponding RBAC models. The XML

documents describing the respective RBAC models are then

analyzed and compared. The different tool options use edit

scripts or colored diagrams (see Section III) to visualize RBAC

model differences and to enable the migration of current-state

to target-state RBAC models.

A. Line-based Visualization of RBAC Differences

In this type of comparison, each model is considered as

a piece of text (e.g. via XML-based documents) for which

a line-based comparison is conducted. The lines of the text

are compared with each other to reveal added, deleted, and

changed lines of text. However, the textual representation of

the same model may include semantical differences as well as

structural differences that do not change model’s semantics.

current-state RBAC modeltarget-state RBAC model

1
2
3

4
5

6
7
8

Figure 6. Line-based visualization of differences

For example, Figure 6 shows a metamodel independent

comparison performed with Eclipse3 for the models visualized

in Figure 3. Apart from the highlighting of different identifiers

in both models (e.g. in line 3), this type of comparison also

highlights structural changes in the RBAC model, such as the

order of artifacts. Therefore, such a line-based comparison

may suggest changes that are based on structural differences

but are not necessary from a semantic point of view. In

particular, the comparison from Figure 6 suggests to rename

the task “Negotiate contract” to “Approve contract” because

these two tasks are in the same line of the corresponding XML

documents (line 5). Even the introduction of line breaks or tab-

stops are shown as difference between the models (line 3).

B. Tree-based Visualization of RBAC Differences

Each XML document essentially describes a tree struc-

ture. A tree-based comparison of two XML documents is

significantly more powerful than a line-based comparison. In

3http://eclipse.org/

particular, a tree-based comparison is able to find similarities

between differently ordered artifacts. For example, in the

target-state RBAC model “Negotiate contract” is the third

task in the corresponding XML tree (see left-hand side of

Figure 7) which is compared with the first task of the current-

state RBAC model (right-hand side of Figure 7). However,

relations between model artifacts are not represented in a

tree-based comparison. For example, in Figure 7, the subject-

binding (SB) constraint (indicated via the “sb” attributes of the

respective tasks) between the bound tasks “Negotiate contract”

and “Check credit worthiness” is ignored because each of the

two compared RBAC models references the tasks via different

identifiers.

target-state RBAC model current-state RBAC model

Figure 7. Tree-based visualization of differences

A tree-based comparison allows us to define filters which

enable to choose elements and attributes that should be ignored

for comparison. For example, we can exclude element iden-

tifiers in an RBAC comparison. A number of software tools

exist that support a tree-based comparison of XML documents.

The comparison shown in Figure 7 was conducted with Altova

DiffDog4.

C. Graph-based Visualization of RBAC Differences

In addition to the properties of tree-based model com-

parison, graph-based approaches can also consider (indirect)

cross-references between different elements in a graph (e.g.

expressed via attributes). Software tools such as EMF Com-

pare support the comparison and merging of any kind of

metamodel based on similarity techniques [6]. EMF Compare5

is a part of the Eclipse Modeling Framework (EMF) [28] and

can be used to calculate and visualize model differences that

consider (indirect) relations between model elements. For an

EMF comparison we first construct an Ecore metamodel to

describe the syntax and semantics of our RBAC models. Ecore

models are serialized using the XML Metadata Interchange

(XMI) standard [24]. Thus, we are able to load XML-based

files as models in Eclipse. To represent RBAC models in EMF

we defined an Ecore metamodel based on the formal generic

metamodel for process-related RBAC models from [31]. Based

on this metamodel a model comparison reveals structural and

semantic differences between two RBAC models. An example

result of a difference calculation between the current-state

RBAC model and the target-state RBAC model from Figure 3

is shown in Figure 8. This comparison is based on structural

4http://www.altova.com/diffdog
5http://wiki.eclipse.org/EMF Compare

and semantic similarities rather than persistent identifiers (see

Section III).

RemovalAddition

Change

RBAC model differences

target-state RBAC model current-state RBAC model

Figure 8. Graph-based visualization of differences

The difference model depicted in Figure 8 shows how the

current-state RBAC model must be adapted to produce the

target-state RBAC model. The upper compartment of the win-

dow shows the difference/change count. In this example, the

comparison revealed 21 differences between the models. The

lower compartment of the window is divided in two separate

panes. On the left-hand side it shows the artifacts of the target-

state RBAC model and on the right-hand side the artifacts of

the current-state RBAC model. In these panes deleted artifacts

are surrounded by a red frame (e.g., the role Employee),

changed artifacts are surrounded by a blue frame (e.g., the

role Bank Manager) and additional artifacts are surrounded

by a green frame (e.g., the role Clerk). This graph-based

comparison disregards a structural similarity between artifacts

if their names differ. Therefore, instead of simply renaming

the role, this comparison suggests to remove “Employee” and

to add a new role “Clerk” to the current-state RBAC model.

D. Diagram-based Visualization of RBAC Differences

A diagram-based comparison between two models is a

metamodel dependent comparison producing a symmetric

delta. It visualizes differences via coloring of different diagram

elements (see Section III). Figure 9 shows an example for a

diagram-based comparison of the example from Figure 3. The

added elements and relations are colored green, the changed

elements and relations are colored blue, and elements and

relations that have to be removed are colored red. Examples

of similar approaches are presented in [23] and [26].

In particular, Figure 9 shows that the role “Bank Director”

must be removed from the current-state RBAC model. For

this reason, also the senior-role relation to the role “Bank

Manager” has to be removed. Similarly, the role-to-subject

relation from “Alice” to the role “Clerk” has to be removed.

To build the target-state RBAC model, the role “Employee”

of the current-state RBAC model has to be renamed into

“Clerk” (colored in blue). Note that the original/previous

T
a

s
k
s

R
o

le
s

S
u

b
je

c
ts

Approve

contract

Clerk

Alice

Bank

Manager

Negotiate

contractCheck credit

worthiness

Bank

Director

DMESB

junior

senior senior

junior

Figure 9. Diagram-based visualization of differences

names of changed artifacts are not visible in this type of

visualization. Therefore, the person building the target-state

RBAC model has to know which name the artifacts have in

the current-state RBAC model in order to rename them. In

addition, the task “Approve credit” task has to be renamed into

“Approve contract” and the type of the task-based constraint

between the two tasks is changed from a “SME” (static

mutual exclusion) into a “DME” (dynamic mutual exclusion)

constraint. Moreover, a role-to-role assignment relation has to

be added to the current-state RBAC model to conform to the

target-state RBAC model (colored in green).

E. Migration Guide as Visualization of RBAC Differences

Based on the experiences we gained from comparing the

different visualization options and the different options for

tool support (see Sections VI-A to VI-D), we implemented

a customized tool for the derivation of migration guides.

Our implementation is based on EMF Compare (see Section

VI-C). We customized the implementation of the matching

and differencing algorithms in EMF Compare that enable us

to apply a more specific similarity-based matching for RBAC

models. For this reason, we extended the generic matching and

difference engine (see [6]). In particular, we adapted different

operations and procedures for the processing of RBAC-specific

syntax and semantics. For example, a customization of the

differencing algorithm enables us to ignore artifact identifiers

in a comparison. The identifier is important to reference an

artifact in a model. However, it is irrelevant if we compare

two RBAC models. Therefore, we specify that this attribute

is ignored for computing the difference between two RBAC

models.

To identify renamed artifacts, we consider the context of an

artifact rather than the artifact’s name (see Section IV-B). For

example, our matching algorithm suggests that the role “Em-

ployee” in the current-state RBAC model is similar to the role

“Clerk” in the target-state RBAC model. The resulting change

of this matching is the renaming of the role “Employee” into

“Clerk”. In contrast to the graph-based comparison described

in Section VI-C, we obtain a more precise difference model.

In the example, only 12 instead of 21 differences are identified

(see Figure 8)6.

With EMF Compare the difference model can be exported

as XML document. Subsequently, we can automatically derive

the migration guide from this XML document. To actually

build a migration guide, we derive the sequence of actions

from the XML-based difference model calculated with our

customized comparison.

MR 2 Remove role-to-subject assignment relation between role Em-
ployee and subject Alice.

MR 2 Remove role-to-role assignment relation between senior-role
Bank Director and junior-role Bank Manager.

MR 3 Remove role Bank Director.

MR 4 Rename role Employee to Clerk.

MR 4 Rename task Approve credit to Approve contract.

MR 6 Change the type of the mutual exclusion constraint between
the tasks Negotiate contract and Approve contract from a
SME into a DME constraint.

MR 8 Add a role-to-role assignment relation from senior-role Bank
Manager to junior-role Clerk.

Table II
MIGRATION GUIDE AS A SEQUENCE OF MIGRATION RULES

Table II shows a human-readable version of the migration

guide derived from the XML-based difference model of the

RBAC models from Figure 3. The left column references the

corresponding generic migration rule (see Section V) while

the right column describes which artifacts need to be adapted

to produce this very target-state RBAC model.

VII. DISCUSSION

Different comparison techniques can be used to visual-

ize differences between RBAC models. In Section VI, we

discussed a line-based, a tree-based, a graph-based, and a

diagram-based visualization of differences as well as the

migration guide. Each of the techniques was applied to the

two models from Figure 3.

In this section, we discuss the visualization options with

respect to their suitability for a migration from current-state

to target-state RBAC models. For this purpose, we identified

criteria to compare the visualization techniques (see Table III).

In particular, the discussion in this section results from the

practical application of the above mentioned model compari-

son techniques.

Clarity Extent to which the differences between RBAC
models derived via a certain technique are under-
standable.

Conciseness Extent to which a technique produces precise de-
scriptions of the differences between RBAC models.

Expressiveness Extent to which a technique considers the syntax
and semantics of RBAC models.

Extensibilitxy Extent to which a technique and its parameters can
be customized for an RBAC comparison.

Table III
SUMMARY OF CRITERIA FOR VISUALIZATION OPTIONS

6Note that this reduction in the number of differences means that we have
more precise descriptions of the differences.

Line-based model comparison techniques are hardly human-

readable for large and complex real-world models (see, e.g.,

[1], [33]). Furthermore, this technique does not consider

structural or semantic similarities in the comparison of RBAC

models. Tree-based approaches are also limited since relations

between the model artifacts are ignored. Thus, tree-based

comparison techniques also do not consider all structural or

semantic similarities that are required for the comparison of

RBAC models.

The ability to consider certain language-specific matchings

and difference calculations makes the graph-based approach

more appropriate than a line- or tree-based comparison. How-

ever, the user comparing the models needs specific knowledge

about the respective tool (here EMF Compare) to interpret

the results. Furthermore, specific knowledge on the underlying

metamodel is required.

In principle, the diagram-based comparison can be used

to visualize the differences and respective modifications of

the current-state RBAC model. However, considering the size

and complexity of real-world models, showing all changes in

a single diagram (including unchanged artifacts) makes this

type of visualization complex and cluttered. In addition, the

security expert responsible for conducting the migration must

be familiar with the modeling language that is used to visualize

the RBAC models, and he has to be familiar with the current-

state RBAC model, e.g. to identify artifacts that are renamed.

Furthermore, from the diagram-based visualization it is not

obvious in which order the changes have to be applied.

A migration guide documents an ordered sequence of steps

that can be applied to migrate the current-state to the target-

state RBAC model. It can be represented in natural language,

hence, no knowledge of a specific modeling language is

required for its understanding. In comparison with coloring ap-

proaches, the migration guide does not contain any unchanged

elements or relations of the compared models. With regard

to the compactness, the migration guide produces a human-

readable difference model including only the artifacts involved

in the changes. In other words, we automate the complex task

to interpret the difference model and provide the respective

security engineer with a structured sequence of migration rules

that is easy to understand.

From our experiences, Figure 10 summarizes our results and

shows the extent to which the visualization techniques from

Section VI can fulfill the criteria from Table III.

Line Tree Graph Diagram
Migration

Guide

1 2 2 2 3

1 2 3 3 3

1 2 3 3 3

1 2 3 3 3

Scale: 1 = to a small extent 2 = to a moderate extent 3 = to a great extent

Clarity

Conciseness

Expressiveness

Extensibility

Figure 10. Suitability of visualization techniques

In summary, the migration guide is customized to consider

the language-specific syntax and semantics of RBAC models.

In contrast to line-, tree-, graph, and diagram-based visualiza-

tions, a migration guide documents a concise sequence of steps

which is human-readable and does not require knowledge of

a specific modeling language for its understanding.

VIII. RELATED WORK

A number of approaches for policy analysis exist that

focus on policy verification, conflict detection, and similar-

ity detection. In [11], a research prototype called Margrave

is presented to verify, analyze, and compare access-control

policies defined via the eXtensible Access Control Markup

Language (XACML). The change impact analysis of Margrave

enables a comparison to reveal changes between two XACML

policies. A semantic differencing between versions of policies

is provided. However, the comparison focuses on policies

defined in XACML. In a similar approach, Kolovski et al.

[17] provide a formalization of XACML for a verification and

a change impact analysis.

The RoleUpdater [14] is a tool that uses model checking

techniques to provide suggestions how to update an access

control system. In particular, one has to formulate update

requests that are fed into the RoleUpdater. The RoleUpdater

then checks if a security definition is already supported or

it gives an example how the definition can be added to the

system.

Evaluating the similarity of access control policies can be

seen as preliminary step for policy analysis and comparison.

In [20], Lin et al. present a policy similarity measure for

XACML-based policies. The approach can detect the most

similar policies from a given policy-set and then use the result

of the similarity check as a starting point for policy merging.

In [2], Backes et al. present an approach for the comparison

of privacy policies.

Furthermore, the huge body of work on model comparison

is directly related to the approach presented in this paper. EMF

Compare [6] provides an approach for a differences calculation

and representation of a model comparison. It supports different

kinds of granularity and allows to customize the matching

and difference calculation. Moreover, the Epsilon Comparison

Language (ECL) (see [15]) and the ATL Transformation

Language (ATL) (see, e.g., [8]) can be configured to compare

models based on the same metamodel and provide difference

models as a result. In this context, the representation and

visualization of difference models is of high importance. A

number of existing approaches aims to improve the readability

and interpretation of difference models that are defined via edit

scripts, via coloring, or through a combination of both (see,

e.g., [23], [26], [33]). The approach presented in this paper,

complements existing approaches. It enables the comparison

of RBAC models and produces a migration guide that allows

for a systematic migration between a current-state and a target-

state RBAC model.

IX. CONCLUSION

In this paper, we presented a systematic approach, including

tool support, to migrate current-state RBAC models to target-

state RBAC models. First, we use customized model compar-

ison techniques to compare two RBAC models. Based on this

comparison, we calculate the differences between these RBAC

models and automatically derive corresponding migration

rules. These rules are aggregated in a migration guide. This

migration guide recommends a sequence of edit operations

for a stepwise migration of the respective current-state model

to the target-state RBAC model. Note that, although it would

be possible, we do not automate the migration/transformation

between a current-state and a target-state RBAC model. This is

because we think that the security configuration of a software

system is too sensitive for such an automation step and should

always be approved by a security engineer. We do, however,

provide tool support to produce the migration guide and to

enable a semi-automated stepwise migration that is conducted

by a security engineer.

With our approach, we try to help bridge the gap between

role mining techniques and role engineering. Role mining tech-

niques are well-suited to reveal the current configuration of an

access control system (current-state RBAC model), while role

engineering is focused on defining a tailored (desired) access

control configuration (target-state RBAC model). However, the

migration from a current-state to a target-state RBAC model

is a very complex task, and neither role mining nor role

engineering support such a migration. Our migration guides

support this type of migration in a systematic way.

REFERENCES

[1] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model ver-
sioning approaches. International Journal of Web Information Systems,
5(3), 2009.

[2] M. Backes, G. Karjoth, W. Bagga, and M. Schunter. Efficient Compari-
son of Enterprise Privacy Policies. In Proc. of the 2004 ACM Symposium

on Applied Computing (SAC). ACM, 2004.

[3] A. Baumgrass. Deriving Current-State RBAC Models from Event
Logs. In International Workshop on Security Aspects of Process-aware

Information Systems (SAPAIS), Proc. of the 6th International Conference
on Availability, Reliability and Security (ARES). IEEE Computer Society,
2011.

[4] A. Baumgrass, S. Schefer-Wenzl, and M. Strembeck. Deriving Process-
Related RBAC Models from Process Execution Histories. In IEEE In-

ternational Workshop on Security Aspects of Process and Services Engi-

neering (SAPSE), Proc. of the 2012 IEEE 36th International Conference
on Computer Software and Applications Workshops (COMPSACW), July
2012.

[5] A. Baumgrass, M. Strembeck, and S. Rinderle-Ma. Deriving Role
Engineering Artifacts from Business Processes and Scenario Models.
In Proc. of the 16th ACM Symposium on Access Control Models and

Technologies (SACMAT). ACM, 2011.

[6] C. Brun and A. Pierantonio. Model Differences in the Eclipse Modelling
Framework. UPGRADE, The European Journal for the Informatics
Professional, IX(2), April 2008.

[7] Y. Chen, F. Douglis, H. Huang, and K. Vo. TopBlend: An efficient
implementation of HtmlDiff in Java. In Proc. of the World Conference

on the WWW and Internet (Web-Net), 2000.

[8] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel In-
dependent Approach to Difference Representation. Journal of Object

Technology, 6(9), 2007.

[9] E. Coyne and J. Davis. Role Engineering for Enterprise Security

Management. Artech House, 2008.

[10] D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role-Based Access

Control, Second Edition. Artech House, 2007.

[11] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz.
Verification and Change-Impact Analysis of Access-Control Policies.
In Proc. of the 27th International Conference on Software Engineering

(ICSE). ACM, 2005.
[12] M. Frank, J. M. Buhmann, and D. Basin. On the definition of role

mining. In Proc. of the 15th ACM Symposium on Access Control Models

and Technologies (SACMAT). ACM, 2010.
[13] L. Fuchs and S. Meier. The Role Mining Process Model. In Proc. of

the 6th International Conference on Availability, Reliability and Security

(ARES). IEEE Computer Security, 2011.
[14] J. Hu, Y. Zhang, and R. Li. Towards Automatic Update of Access

Control Policy. In Proc. of the 24th International Conference on Large
Installation System Administration (LISA). USENIX Association, 2010.

[15] D. Kolovos. Establishing Correspondences between Models with the
Epsilon Comparison Language. In Model Driven Architecture - Foun-
dations and Applications (ECMDA-FA), Lecture Notes in Computer

Science (LNCS), Vol. 5562, Springer Verlag, 2009.
[16] D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F. Paige. Different

models for model matching: An analysis of approaches to support model
differencing. In ICSE Workshop on Comparison and Versioning of

Software Models. IEEE Computer Society, 2009.
[17] V. Kolovski, J. Hendler, and B. Parsia. Analyzing Web Access Control

Policies. In Proc. of the 16th International Conference on World Wide

Web (WWW). ACM, 2007.
[18] M. Kuhlmann, D. Shohat, and G. Schimpf. Role Mining - Revealing

Business Roles for Security Administration using Data Mining Technol-
ogy. In Proc. of the 7th ACM Symposium on Access Control Models

and Technologies (SACMAT), 2003.
[19] S. Kunz, S. Evdokimov, B. Fabian, B. Stieger, and M. Strembeck.

Role-Based Access Control for Information Federations in the Industrial
Service Sector. In Proc. of the 18th European Conference on Information

Systems (ECIS), June 2010.
[20] D. Lin, P. Rao, E. Bertino, and J. Lobo. An Approach to Evaluate

Policy Similarity. In Proc. of the 12th ACM Symposium on Access

Control Models and Technologies (SACMAT). ACM, 2007.
[21] J. Mendling, M. Strembeck, G. Stermsek, and G. Neumann. An

Approach to Extract RBAC Models from BPEL4WS Processes. In Proc.
of the 13th IEEE International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises (WETICE), June 2004.
[22] T. Mens. A State-of-the-Art Survey on Software Merging. IEEE

Transactions on Software Engineering, 28, 2002.
[23] D. Ohst, M. Welle, and U. Kelter. Differences between versions of

UML diagrams. In Proc. of the 9th European Software Engineering

and the 11th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE). ACM, 2003.

[24] MOF 2.0 / XMI Mapping Specification. available at:
http://www.omg.org/technology/documents/formal/xmi.htm, December
2007. Version 2.1.1, formal/2007-12-01, The Object Management
Group.

[25] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10, December 2001.

[26] A. Schipper, H. Fuhrmann, and R. v. Hanxleden. Visual Comparison
of Graphical Models. In Proc. of the 14th IEEE International Confer-

ence on Engineering of Complex Computer Systems (ICECCS). IEEE
Computer Society, 2009.

[27] M. Song and W. van der Aalst. Towards comprehensive support for
organizational mining. Decision Support Systems, 46(1), 2008.

[28] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2nd edition, 2008.

[29] M. Strembeck. A Role Engineering Tool for Role-Based Access
Control. In Proc. of the 3rd Symposium on Requirements Engineering

for Information Security (SREIS), August 2005.
[30] M. Strembeck. Scenario-Driven Role Engineering. IEEE Security &

Privacy, 8(1), January/February 2010.
[31] M. Strembeck and J. Mendling. Modeling process-related RBAC

models with extended UML activity models. Information and Software

Technology, 53(5), 2011.
[32] M. van den Brand, Z. Protić, and T. Verhoeff. Fine-Grained Metamodel-

Assisted Model Comparison. In Proc. of the 1st International Workshop
on Model Comparison in Practice (IWMCP). ACM, 2010.

[33] S. Wenzel. Scalable Visualization of Model Differences. In Proc. of the

2008 International Workshop on Comparison and Versioning of Software
Models (CVSM). ACM, 2008.

