
1

Trusted Virtual Infrastructure Bootstrapping for On
Demand Services.

Abstract— As cloud computing continues to gain traction, a
great deal of effort is being expended in researching the most
effective ways to build and manage secure and trustworthy
clouds. Providing consistent security services in on-demand
provisioned Cloud infrastructure services is of primary
importance due to the multi-tenant and potentially multi-
provider nature of Cloud Infrastructure. Cloud security
infrastructure should address two aspects of the IaaS
operation and dynamic security services provisioning: (1)
provide security infrastructure for secure Cloud IaaS
operation; (2) provisioning dynamic security services.
Although the first task is a traditional task in security
engineering, dynamic provisioning of managed security
services in virtualized environment remains a problem and
requires additional research. Entire frameworks have been
proposed and demonstrated but although successful, there is
a tendency to see such solutions as integrated ‘all in one’
infrastructures. This paper describes a light-weight
mechanism and protocol for building trust between two
machines that takes advantage of the Trusted Platform
Module (TPM) to handle a key exchange and remote trusted
deployment of a bootstrapping tool (referred to as the
Bootstrapping Initiator (BI)). Once deployed, the BI can
execute any arbitrary software required which could be (but
is not limited to) solutions for advanced architecture
management such as the Dynamic Access Control
Infrastructure (DACI). The proposed solution provides a
light-weight layer of trust backed by a TPM that additional
systems can build upon as required by the individual use
case without the requirement for a specific management or
security infrastructure to be deployed along with it.

Keywords—Cloud Security, Trusted Computing,
Bootstrapping, Deployment.

I. INTRODUCTION
Cloud computing technologies [1, 2] are emerging as
infrastructure services for provisioning computing and
storage resources on-demand in a simple and uniform
way. However, there is no well-defined architectural
model for the Cloud Infrastructure a Service (IaaS)
provisioning model despite its wide use among big Cloud
providers such as Amazon, RackSpace, Google, and
others. Recent research based on the first wave of Cloud
Computing implementation have revealed a number of
security issues both in actual services organizational,
operational and business models [3, 4, 5]. The current
Cloud’ security model is based on the assumption that the
user/customer should trust the provider. This is governed
by the general Service Level Agreement (SLA) that
defines mutual provider and user expectations and
obligations for the whole provisioned service but doesn’t

allow dynamic Quality of Services (QoS) management for
potentially changing resource availability due to changing
resource demand and utilisation in the typically multi-user
Cloud environment.

Although Cloud providers are investing significant
resources into making their own infrastructure secure and
complying to existing security management standards
(e.g. Amazon Cloud recently achieved PCI compliance
certification [6] and announced providing special services
for governmental organisations [7], Microsoft Azure
claims ISO27001 compliance [8]), still the overall
security of Cloud based infrastructures and services will
depend on two other factors: security services
implementation in user applications and binding between
virtualised services and Cloud based virtualisation
platforms, that should also ensure protection against
malicious users and risks related to possible Denial of
Service (DoS) attacks.

Practical Cloud usage within one provider infrastructure
creates illusion of unlimited availability, “elasticity” and
“perfect” security (as claimed by the providers
themselves), but in practice this is related only to limited
range of services and with limited manageability.
Currently implemented and offered security services are
based on VPNs and provide only simple access control
services based on users access over SSH channel. Recent
improvements in GoogleApps allow SAML based Single
Sign-On (SSO) [9] to connect/integrate Cloud based
services and customer legacy access control
infrastructure. More advanced security services and fine
grained access control cannot be achieved without deeper
integration with the Cloud virtualisation platform and
incumbent security services, what in its own turn can be
achieved with an open and well defined Cloud IaaS
platform architecture to allow transparent interoperability
and integration of heterogeneous multi-provider Cloud
infrastructure services.

Current development of Cloud technologies demonstrate
movement to developing inter-Cloud models,
architectures and integration tools that could allow
integrating Cloud based infrastructure services into
existing enterprise and campus infrastructures, on one
hand, and provide a common/interoperable environment
for moving existing infrastructures and infrastructure
services to a virtualised Cloud environment. More
complex and community oriented use of Cloud

2

infrastructure services will require developing new
service provisioning and security models that could allow
creating complex project and group oriented
infrastructures provisioned on-demand and across
multiple providers.

Building a secure virtual infrastructure in such an
environment is challenging. It is a requirement that not
only can a service be trusted but also that the operating
system and physical machine can also be trusted. When
deploying infrastructure on-demand, the underlying
hardware is generally accepted as trustworthy. However,
if the trustworthiness of the underlying physical machine
could be in question, then the trustworthiness of the entire
infrastructure could be brought into question as well.

Trust is built in layers, with each layer only as trustworthy
as the layer beneath it. Generally when a machine is
provided with an operating system, this is the first layer of
trust. It is assumed that the operating system and the
hardware are not compromised. However while this
assumption could be considered acceptable in a hosting
facility under direct control, it becomes severely stretched
when machines are provided at remote locations by third
parties. The situation is complicated further when
multiple machines are involved. A cluster requiring a
number of machines needs to ensure that each machine is
trustworthy. If such a system needs to span data centers or
even countries, the level of implied trust drops drastically.
In these cases it would be beneficial to ensure that the
remote machine that has been provided is in fact the
machine that it is supposed to be. Specifically it would be
desirable to be able to confirm the machine’s identity and
further to ensure that it is the state that it is supposed to be
in.

Trust has long been associated with authentication [10],
where one is tightly related to the other. Authenticating a
machine and verifying its state can ensure that the
machine has not been tampered with. However
incorporating such a protocol directly into existing
frameworks or software would increase their complexity
and would likely create a number of disparate and
incompatible systems. A generic bootstrapping protocol
that can be adopted by frameworks (such as DACI
proposed by the authors) is required. Such a protocol
would have two key requirements. First it must be able to
authenticate the remote machine and verify its
trustworthiness. Second, it must provide a mechanism for
transferring and executing the initializing the framework.

This paper proposes a new generic bootstrapping protocol
called the Dynamic Infrastructure Trust Bootstrapping
Protocol (DITBP). This includes supporting mechanisms
and infrastructure that takes advantage of the TCG
Reference Architecture (TCGRA) and Trusted Platform

Module (TPM). The TPM is used to provide a root of
trust that extends from the physical hardware itself. The
TPM is used to generate a key pair in hardware where the
private key is never revealed (the key pair is non-
migratable). The key is only available when the machine
is in a known and trusted state. The key pair is used to
authenticate the machine and to decrypt the payload
which is then executed to bootstrap the rest of the virtual
infrastructure.

The paper is organized as follows. Section II analyzes two
typical usecases that require trusted bootstrapping.
Section III refers to the core features provided by the
TGC Reference Architecture and analyzes current
limitations. Section IV provides an overview of a model
for trusted bootstrapping and Section V analyzes the
individual components of such a model. Section VI
analyzes the bootstrapping process and Section VII
provides a suggested implementation. Section VIII
provides a summary and a direction for future work.

II. USE CASE

Collaborative infrastructure where machines are
provided by multiple providers are becoming more
popular. They are especially useful when working in
geographically disparate teams. Often datasets can span
many hundreds of gigabytes and are potentially being
updated in real-time. Social media feeds such as Twitter
where hundreds of updates are received per second,
produce datasets that are large, immobile and constantly
growing. For a remote researcher to work with this data,
they must have a machine in close proximity to that data.
Being able to confirm the identity of the machine and that
it is running in a trusted state allows for a higher level of
confidence when working on sensitive data.

In the financial sector there is often the need to work

with remote machines that are not under the direct control
of the customer. Many financial exchanges offer high
speed price feeds that clients need to respond to within
microseconds in order to be competitive. Most exchanges
are ‘first come first served’ and therefore response time is
vital to a company’s potential success. Even high quality
fiber networks introduce latencies far above this threshold
which makes trading from a remote location impractical.
To counter this problem, many exchanges and brokers
offer some form of hosting or colocation. This allows a
company to have a presence in close proximity to the
market gateway and thus keep latency to a minimum.

However, not all facilities offer colocation and in many
cases, a prebuilt machine may be provided. Where
colocation is allowed and the business provides their own
machines, there is no guarantee that those machines have
not been tampered with. Due to the nature of the business,
these ‘front end’ machines are required to contain sensitive
business information such as strategies in order to carry
out their function. This in turn means that the value of the

3

data being placed at risk is quite considerable. While
companies do this, it is because there is no alternative
rather than being willing to trust the remote machines.

These machines tend to exist in a tightly controlled

networks. It is likely that the machines would not have
Internet access and will be severely segregated (such as
with firewalls). This limits the applicability of many
existing technologies and would effectively block the use
of Direct Anonymous Attestation (DAA) [11] (although
infrastructure to support this does not currently exist in any
case). In addition, these machines should be as bare metal
as possible. Financial applications are latency sensitive
and require as little support software running as possible.
As a consequence it is not uncommon for multiple
machines to work together, often deployed at different
times. When new machines are added, it is critical that
their identity be verified before the customer transfers
proprietary content to it.

This use case can be extended to any scenario where it

is required that a remote machine be trusted but where it is
also required that the infrastructure to allow this is as light
weight and unobtrusive as possible. Thus an architecture
that allows machines to develop a level of trust between
them (which allows for trusted bootstrapping) but does not
provide any additional layers (i.e. allowing the business to
choose which additional infrastructure or software to run)
is required. Such a solution would not replace any of the
existing models, rather it would provide a low-level layer
that other infrastructure solutions can build upon and
extend. Such solutions can use this platform to provide
their own services; for example Dynamic Access Control
Infrastructure (DACI) [12].

III. TCG REFERENCE ARCHITECTURE (TCGRA)
One of the key components in the Trusted Computing
Group Reference Architecture (TCGRA) is the Trusted
Platform Module (TPM). The TPM is a physical device
that provides cryptographic functionality in hardware.
Two of the key features provided by the TPM are the
generation of encryption keys and the ability to measure
the current state of a given system.

One of the critical features provided by a TPM is the
ability to create encryption key pairs in hardware. A TPM
can create both migratable and non-migratable key pairs.
If a non-migratable key pair is generated, the private key
may never leave the TPM. Therefore only the one
machine (or more specifically the particular TPM) is able
to use the key pair for encryption and decryption
operations. The TPM does not provide acceleration
facilities and has limited processing power. It is generally
only used for key pair creation and storage.

The Platform Configuration Registers (PCRs) are a set of
registers inside the TPM that store SHA1 hashes. The

TPM measures data such as the Master Boot Record
(MBR), boot loader and kernel. The PCRs use a
ratcheting mechanism. When a file is measured, the
SHA1 hash is computed. This is concatenated with the
existing value in the PCR. The TPM calculates the SHA1
of the combined value and stores the result in the PCR.
The effect of this mechanism is that each new state
depends on the previous state. If any of the previous states
are different, all of the hashes generated from that point
on will be different as well. This allows a root of trust to
be created from system boot to the operating system itself.

When a non-migratable key pair is created, it can be
bound to the values stored in the PCRs. Which PCRs a
key is bound to can be configured when the key itself is
generated. A bound key can only be accessed when the
PCRs are in the state that they were in when the key was
created. This in effect allows a key pair to be only
available to the system if that system is in a known and
trusted state. For example, a machine that has been
tampered with during the boot process would generate
different PCR hash values. As the PCR values are
different, the TPM will not be able to access the private
key and so will not be able to conduct encryption /
decryption operations and hence will not be able to
authenticate using the key pair. Binding a non-migratable
key pair to a known system state provides a method for
authenticating a particular machine and ensuring it is in a
trusted state.

Direct Anonymous Attestation (DAA) was added in the
TPM 1.2 specification. It provides a mechanism where a
TPM can verify its authenticity without giving away its
identity. However at present, the infrastructure to actually
support DAA does not exist and the most popular Open
Source implementation of the TCS stack (TrouSers)
doesn’t support it either. DAA is also a fairly complicated
protocol involving numerous different entities. It would
theoretically require an Internet connection which in some
restricted networks might not be available. The key
benefit of DAA is that a TPM can prove that it is real
without disclosing its identity but in a cloud environment,
the main purpose of using a TPM is to identify a
particular machine. As the infrastructure is not currently
readily available and the main benefit is not useful in this
context, a simpler system that does not depend on the
Internet or external entities, would be more appropriate.

IV. GENERAL SECURITY SCENARIO
It is generally accepted that a trusted root is required in
order for any trust relationships to be built. That is, for a
client to authenticate a server, the client must already trust
something (such as a Certificate Authority) in order for it
to determine whether a server can be trusted (when it
presents a signed certificate). When the provisioned

4

machine is provided by the end user, they are in a position
to verify the identity of the machine directly. However as
provisioned machines both virtual and physical are most
likely provided by a third party who controls and is
ultimately responsible for the service, they are an ideal
candidate to provide the authentication service.

The Domain Authentication Server (DAS) manages two
distinct services. First, the service needs to handle the
registration and initial authentication of newly
provisioned machines. Second, it needs to handle
authentication requests from client machines that wish to
to authenticate and then bootstrap a given machine. Two
key pieces of information need to be held by the
authentication service for each machine that it provides
authentication for. The DAS requires two key pieces of
information. First, it stores the public SSL certificate used
for authenticating the machine during the initial
handshake and the machine's public key which is used to
encrypt the payload. Second, the DAS holds configuration
data that describes the state of the machine such as the
state of the Platform Configuration Registers (PCRs)
which describe the machine's trusted state.

The provisioned machine on initial boot generates an SSL
certificate and a TPM backed non-migratable key pair. As
the private key can never leave the TPM, data encrypted
using this public key can only be decrypted on this
specific machine. Another machine could potentially use
the SSL certificate, but without the TPM, it would not be
able to decrypt the payload and authenticate itself
successfully. As part of the registration process, the
machine will transfer the SSL certificate and the public
key to the DAS. The machine then waits for a
bootstrapping request from the DAS.

The client machine initiates the bootstrapping procedure
by making an authentication request to the DAS. It must
provide a unique identifier such as an IP address,
hostname or service identifier (this is liable to be
implementation and or context specific). The DAS will
then send information on that machine to the client. This
is the same information provided to the DAS when the
provisioned machine initially registered. The client
performs a similar key generation process to that of the
provisioned machine. The client encrypts its public key,
certificate and a nonce value using the target machine’s
public key and submits them to the DAS. The DAS then
sends a bootstrapping request to the provisioned machine
which decrypts and verifies the request. The certificate
will be used to verify the client's identity during the initial
handshake and the key will be used to authenticate the
payload's signature. Once configured, the provisioned
machine informs the DAS that it is ready for the
bootstrapping process to commence. The DAS then
informs the client, that it may proceed.

At this stage in the process, the client machine will only
connect to a machine that has the certificate provided by
the DAS. The provisioned machine will only accept a
connection from a machine that identifies itself using the
client certificate it received from the DAS. Once the
machines have established an authenticated
communication channel, the payload can be encrypted
with the remote machine’s public key and sent to the
remote machine for execution.

As a trust anchor, the DAS is attesting that the public key
provided to the client is a non-migratable, bound key pair.
Therefore as only the machine with the correct TPM can
decrypt the payload, the client can be assured that the
target machine is in a known and trusted state.

V. BOOTSTRAPPING INFRASTRUCTURE COMPONENTS

DITBP uses TCP to communicate between nodes and
TLS to provide end point security. Where a client
connects to the target machine (the one to be
bootstrapped), both client and server mutually
authenticate each other based on the public keys provided
to them via the DAS. Communication with the DAS also
occurs over TLS, where the cloud vendor has either
provided the certificate to the cloud customer or a third
party trusted Certificate Authority is used. The DAS may
or may not require mutual authentication via TLS.

Message exchange is event driven. Each message or
payload is tied to a particular event. A node may send or
receive events in a request / response design pattern.
When a client sends a bootstrapping request to the DAS,
it should wait for a response from the DAS before sending
any further messages to it. Communicating between nodes
follows the same pattern, however a client can
communicate with any number of nodes simultaneously.
Messages are sent `point to point', that is the architecture
does not route messages across multiple nodes. The actual
message format depends on the specific implementation.
A WebSockets based architecture for example, provides
authenticated message channels. This would allow the
nodes to communicate with the DAS or each other in a
secure, event-driven, message based architecture. Such a
solution scales well, is able to function via HTTP proxies
and is generally firewall friendly.

There are four key components to the bootstrapping
process. The process enables a client machine to
authenticate a remote machine, determine that the
machine is in a trusted state and begin the bootstrapping
process.

5

The Domain Authentication Server (DAS) provides a
trusted root for the third party’s domain. It contains
relevant information such as the public key for that
machine’s non-migratable key pair. The tickets issued by
the DAS allow the client to encrypt data specifically for a
particular machine in a specified state. A new non-
migratable key pair should be created each time the
machine is redeployed and therefore it is not possible to
create a ‘one off’ list containing the key information.
Further, by requiring the client to request the ticket
directly from the DAS, the freshness and validity of the
key data is increased.

The Bootstrap Initiator (BI) is the application that is
transferred to the remote machine in order to confirm the
machine’s status before any infrastructure or software is
deployed. The BI is responsible for Stage 2 of the
bootstrapping process and begins the actual deployment
of the core virtual infrastructure.

The Bootstrap Requester (BREQ) is a client application
that runs on the machine responsible for provisioning
remote infrastructure. It communicates with its
counterpart on the remote machine and handles Stage 1 of
the boot strapping process. This involves four key parts.
First, the BREQ authenticates the remote end-point and
authenticates itself. Second, the BREQ creates the BI
payload (a combination of the BI application, key pairs
and other necessary files) by compressing the bundle and
encrypting it with the remote machine’s public key. Third,
the BREQ manages the transfer of the payload to the
remote machine for execution. Lastly, it maintains an
initial communication channel used by the BI to send any
necessary deployment information back to the client.

The Bootstrap Responder (BRES) is the counterpart
server application. It is responsible for authenticating the
machine to a remote client and verifying that the client is
authorized to bootstrap the machine. Once each end point
has been authenticated, the BRES will receive, decrypt
and decompress the payload sent by the client. Once
done, the BI application is executed.

VI. BOOTSTRAPPING PROCESS

The BREQ application will connect to the DAS and
request authentication data for the remote machine that
the infrastructure is to be deployed on. This contains the
public key and certificate for the machine as well as other
relevant data such as expected PCR configuration. BREQ
will then create its own set of keys and certificates, and
initiates a bootstrap request to the DAS. The DAS
initiates a bootstrap request to the BRES on the target
machine which contains the key pairs generated by the
BREQ. BRES uses the keys to configure itself for the

bootstrapping process. BRES signals the DAS that it is
ready and the DAS then signals the BREQ.

The BREQ will then connect to the remote server and
both BREQ and BRES will mutually authenticate each
other. BREQ then prepares the BI payload. This consists
of at least the BI application and some form of unique
identifier such as a key or nonce. The payload is then
archived, compressed and encrypted using the BRES’s
public key. Once the payload has been generated, BREQ
will transfer the file to the remote server for deployment.

After receiving the payload, BRES will decrypt the file
with using the TPM non-migratable private key. This will
allow the BI application and its support files to be
decompressed and extracted. BRES will report a success
message to BREQ and will execute the BI application.

After executing the BI can set up the machine and run any
additional tests that it requires. At this stage the trusted
nature of the machine has already been established by the
fact that the remote machine could decrypt the payload.
However once running the BI can execute additional tests
such as measuring other deployment files, verifying the
network environment and so forth.

Once the BI application is satisfied with the state of the
machine, it can communicate with the client to report that
the system is ready. The BI application then downloads
the infrastructure payload (the BI is a required component
of DITBP but its implementation is infrastructure
specific). It then determines the authenticity of the
infrastructure received before the infrastructure is
configured and deployed.

After all the deployment files have been transferred to the
remote machine and have been verified and authenticated,
the BI will execute the infrastructure framework and
control will then pass to the framework. At this stage, the
client’s infrastructure management system should be able
to communicate directly with the infrastructure now
running on the remote server. The infrastructure can then
shutdown the BI and BRES instances as required.

VII. IMPLEMENTATION SUGGESTIONS

The NodeJS and SocketIO frameworks provide a secure,
event driven message passing architecture. Predominantly
used in web browsers to allow real-time 'push' updates,
SocketIO can operate as both a client and a server when
running on NodeJS. As SSL/TLS encryption can be easily
used, (HTTPS is the most common method for
communicating via SocketIO), channel authentication and
data security are available as standard. By building the
prototype implementation on top of these mature libraries,

6

the prototype can focus on the messages being passed and
the general bootstrapping protocol without needing to
concern itself with low-level message handling
infrastructure.

NodeJS has bindings for NaCL (pronounced salt) which
provides a wide range of cryptographic functions.
However at present there is no native binding for TPM
functionality. For research and testing purposes, NodeJS
can create the equivalent using traditional software based
methods.

While NodeJS makes an ideal candidate for prototyping
the implementation, it would likely have too many
dependencies to be deployed in production for either the
BREQ or the BRES. It is anticipated that the DITBP will
be integrated into the GAAA framework and as such a
simpler implementation in a system programming
language such as C or C++ might be more appropriate.

A. Yin (BREQ) and Yang (BRES)

Yin and Yang are discussed together as their
implementations are similar. It is anticipated that rather
than two separate applications both Yin and Yang will be
implemented as a single application that runs in either
BREQ or BRES mode. The key generation and
authentication is very similar regardless of whether the
application is functioning as a client or a server.

Using the framework discussed previously, Yin and Yang
can be built by focusing on message-based events and
their payload. The exchange of data and the protocol are
straight forward and synchronous at this stage. However
in future, the protocol might add additional features that
require more flexibility from the protocol. Following a
message driven format allows for easy extension and
rapid prototyping.

B. Vanguard - Bootstrap Initiator

The BI can be implemented in numerous ways. Vanguard
was prototyped in Python. As long as the target machine
can execute the application, there is considerable
flexibility in the form that the application can take.
Vanguard is a military term denoting a unit that travels
ahead of the main force in order to determine whether or
not the way ahead is safe for passage. In this case the
application is executed on the remote machine, downloads
a sample payload from a secure site and executes it. The
functionality of the BI is inherently application and
context specific, although it is likely that a particular
framework will use only one BI application.

C. KeyStone - DAS Server

The DAS server can also be implemented using NodeJS.
As it will run on an independent machine and does not
need to be integrated into a framework, the design
requirements for this component allow for some
flexibility. Using SocketIO for the prototype allows
KeyStone to easily interact with both Yin and Yang over
the same transport mechanism. Storing and managing the
key and configuration data are implementation specific
and depends on the goals of the infrastructure vendor.

D. Integrating with the Common Security Services
Interfaces (CSSI) framework

For trusted bootstrapping to prove valuable, it is vital that
the security context is kept consistent between the
physical and virtual infrastructures. In order to do this,
DITBP needs to be integrated with the bootstrapped
framework (such as DACI). However this will require
special mechanisms to be developed to provide an
interface between these two layers.

The GAAA-TK (developed by the authors) has a rich set
of functionality that could be extended to support the use
of Dynamic Infrastructure Bootstrapping (DIBP). CSSI
(also proposed by the authors) currently includes
authentication, authorization, session and security data as
part of the Security Context (SC). This would need to be
extended to include the additional trusted bootstrapping
information.

VIII. SUMMARY AND FUTURE WORK

This paper presents the ongoing research on developing a
trusted bootstrapping protocol for dynamically
provisioned infrastructure to support high confidence
computing in modern distributed computing
environments.

The paper analyzes the use case of sensitive computing
requirements on disparate infrastructure and identifies
required protocols and mechanisms to allow greater
confidence using remote machines. This includes both
bootstrapping and preparing a remote system for use and
generic processing on such a system where sensitive data
or intellectual property might be exposed.

The paper proposes the Dynamic Infrastructure Trusted
Bootstrapping Protocol (DITBP) and suggests a generic
implementation that will provide a trusted bootstrapping
layer for other frameworks (such as DACI) to leverage as
a trust anchor.

7

The paper refers to the DACI framework which provides
a general implementation for dynamically provisioned
access control infrastructure as well as the GAAA Toolkit
library that provides security context management.

The authors believe that concepts proposed in this paper
will provide a good basis for further discussion among
researchers about defining architectural models for
dynamically provisioned virtualized security services as
part of the general on-demand infrastructure services
provisioning.

References

[1] NIST SP 800-145, “A NIST definition of cloud
computing”,[online] Available:
http://csrc.nist.gov/publications/drafts/ 800-145/Draft-SP-
800-145_cloud-definition.pdf

[2] GFD.150 Using Clouds to Provide Grids Higher-
Levels of Abstraction and Explicit Support for Usage
Modes. [Online].
http://www.ogf.org/documents/GFD.150.pdf

[3] Security Guidance for Critical Areas of Focus in
Cloud Computing
V2.1. Cloud Security Alliance, December 2009.
http://www.cloudsecurityalliance.org/csaguide.pdf

[4] Cloud Computing: Benefits, risks and
recommendations for information security, Editors
Daniele Catteddu, Giles Hogben, November 2009.
http://www.enisa.europa.eu/
act/rm/files/deliverables/cloud-computing-risk-assessment

[5] Securing the Cloud: Designing Security for a New
Age, Dec. 10,
2009. [Online] http://i.zdnet.com/whitepapers/ eflorida_
Securing_Cloud_Designing_Security_New_ Age.pdf

[6] Amazon AWS Security Center. Certification and
Accreditation. [Online]
http://aws.amazon.com/security/#certifications

[7] Amazon Boosts Web Services Security for
Government Agencies.
PCWorld Business Center. April 17, 2011. [Online]
http://www.pcworld.com/businesscenter/article/238276/a
mazon_boos
ts_web_services_security_for_government_agencies.html

[8] 8. Kaufman, C., R. Venkatapathy. Windows Azure
Security Overview. [Online]
http://download.microsoft.com/download/6/0/2/6028B1A
E-4AEE- 46CE-9187-
641DA97FC1EE/Windows%20Azure%20 Security%20
Overview%20v1.01.pdf

[9] SAML Single Sign-On (SSO) Service for Google
Apps. [Online]
http://code.google.com/googleapps/domain/sso/saml_refe
rence_imple mentation.html

[10] R. Yahalom, B. Klein, and T. Beth, “Trust
relationships in secure systems-a dis- tributed
authentication perspective,” in Research in Security and
Privacy, 1993. Proceedings., 1993 IEEE Computer
Society Symposium on. IEEE, 1993, pp. 150–164.

[11] E. Brickell, J. Camenisch, and L. Chen, “Direct
anonymous attestation,”
. . . of the 11th ACM conference on . . . , 2004. [Online].
Available:
http://portal.acm.org/citation.cfm?id=1030083.1030103

[12] Y. Demchenko, C. Ngo, and C. de Laat, “Access
control infrastructure for on- demand provisioned
virtualised infrastructure services,” in Collaboration Tech-
nologies and Systems (CTS), 2011 International
Conference on. IEEE, 2011, pp. 466–475.

