
Run-Time Risk Management in Adaptive ICT Systems

Mike Surridge, Bassem Nasser, Xiaoyu Chen, Ajay Chakravarthy, Panos Melas
IT Innovation Centre

Gamma House, Enterprise Road,

Southampton, UK

+44 23 8059 8866

{ms,bmn,wxc,ajc,pm}@it-innovation.soton.ac.uk

Abstract—We will present results of the SERSCIS project

related to risk management and mitigation strategies in

adaptive multi-stakeholder ICT systems. The SERSCIS

approach involves using semantic threat models to support

automated design-time threat identification and mitigation

analysis. The focus of this paper is the use of these models at

run-time for automated threat detection and diagnosis. This

is based on a combination of semantic reasoning and Bayesian

inference applied to run-time system monitoring data. The

resulting dynamic risk management approach is compared to

a conventional ISO 27000 type approach, and validation test

results presented from an Airport Collaborative Decision

Making (A-CDM) scenario involving data exchange between

multiple airport service providers.

Keywords-Risk Management; Adaptive Systems; Secure

ICT; Machine Reasoning.

I. INTRODUCTION

Today, critical infrastructures in areas like
transportation involve multiple stakeholders (e.g. operating
companies, customers, etc.), who are increasingly seeking
to optimize their operations by exchanging data over ICT
networks. A typical example is Airport Collaborative
Decision Making (A-CDM) [1], in which service companies
at an airport share information. This allows them to plan
ahead and turn around aircraft more quickly, and make
predictions of when each outgoing flight will be ready to
depart. These are used by air traffic controllers to efficiently
allocate airspace including take-off and landing slots. This
has led EUROCONTROL to mandate the introduction of A-
CDM in Europe as part of a wider collaborative decision-
making framework for air traffic control under the Single
European Skies (SESAR) initiative [2]. Similar data-
sharing methods are increasingly used in transport hubs:
other examples include Port Area Communities [3].

This agile data-sharing approach makes it easier to
switch service providers to ensure availability at the right
time if aircraft deviate from the pre-planned schedule.
However, it also creates new risks from disruption of the
data exchange. This in turn amplifies old risks as service
providers become more dependent on each other as they
eliminate slack resources in pursuit of greater efficiency. It
is also very difficult for public infrastructure operators to
analyze these risks as required by regulators [4]. Standard
methods for analyzing risks in IT systems such as ISO
27000 [5], [6] require an a priori expert assessment of risks
and controls based on the known structure of the system as
a whole. This approach works well if it can be applied at
design time in a conventional system lifecycle. It is far less
effective in a dynamically composed system where each
stakeholder designs only their own portion of the system,
decides just in time how to deploy their resources and which
external services to use, and (in extremis) decides how to
respond to internal or external faults.

The SERSCIS project [7] aimed to address these
challenges by developing a methodology and tools to
manage risks in dynamic multi-stakeholder service oriented
systems. The SERSCIS approach is based on semantic
system models and extensive use of machine reasoning to
analyze risks at design time, and at run time. Interactions
between stakeholders are described by service level
agreements (SLAs), making it possible to monitor and
analyze other stakeholder behavior as well as in-house
resources. Control strategies can be introduced that exploit
the possibility of dynamic system reconfiguration, and can
be activated in response to specific threats. While the focus
of SERSCIS was on risks associated with interconnected IT
services, the approach to modeling and managing risks also
encompasses physical networks and some physical
processes, driven by the needs of A-CDM validation
scenarios.

In the following section we discuss related work to risk
modeling and management. In section 3, we present the
SERSCIS approach to threat modeling using semantic
modeling and reasoning. Section 4 details the threat
modeling activities and the relation with existing threat
knowledge bases. Section 5 describes the threat activity
assessment during system runtime. Section 6 discusses the
implemented prototype in the context of A-CDM
installation at Vienna Airport where as section 7 concludes
with future work.

II. RELATED WORK

Conventional risk management methodologies [5], [6]
are based on an analysis of assets that allow a system to
achieve its purpose, threats to these assets that may prevent
the system functioning correctly, and control strategies to
protect those assets from potential threats. Assets are
defined as anything that has value to the organization and
which therefore requires protection. The notion of primary
and secondary assets can be found in the literature. Primary
assets like business processes and information are supported
by secondary assets such as hardware, software, networks,
personnel, physical spaces and organizational structure.
These supporting assets are subject to potential threats from
malicious or accidental disruption. In order to protect the
primary assets, the threats to the secondary assets should be
controlled and mitigated. In a mature risk management
strategy, controls are introduced based on their cost-
effectiveness, leaving some residual risks that are too
unlikely or have too little impact on system assets to be
worth controlling. We were particularly interested in the
variant specified for use in the SESAR project [8] as this is
directly relevant to the air traffic control sector and A-CDM
scenarios. However, all these approaches depend on the use
of security experts to identify potential threats, assess how
likely it is that they will arise, and advise on how far control

strategies can reduce the likelihood of them having a
significant impact on system assets.

Much research has been conducted to devise methods to
support such analyses. For example, MEHARI [9] and
CRAMM [10] provide a knowledge base of vulnerabilities,
attack and control scenarios, which were found to be very
similar in a recent formal comparison [11]. Other
approaches include OCTAVE [12], which has been refined
[13] to support a more qualitative approach for non-
specialists. Many of these tools and methodologies provide
generic threats (e.g. theft of media, fire, tampering with
software, exceeding limits of operation) while others
provide catalogues of specific threats per asset type (e.g. file
erasure, OS, application software). However, they all
depend on human analysis and interpretation by experts in
IT security and/or the system being analyzed.

This has motivated research into the possibility of
capturing human expertise in a model which could then be
applied by non-experts. For example, Secure Tropos [14]
provides a diagrammatic approach to risk modeling, which
has been extended [15] to provide a domain model covering
assets, risks and risk treatment related concepts, and asset
security criteria for confidentiality, integrity and
availability. The CORAS project [16], [17] also used a
graphical approach to identify, explain and document
security threats and risk scenarios. A graphical notation was
developed to perform five security analysis tasks: Context
establishment, Risk identification, Risk estimation, Risk
evaluation and Treatment identification. Diagrams are
created during each of these steps (similar to UML models)
under the guidance of a domain expert. These approaches
have been used successfully, but they still require human
interpretation, so they cannot handle situations where assets
may be rapidly added, removed, reconfigured or
recomposed at run-time. In [18] a formal approach is
proposed for reasoning. The relations between the risk
components are defined focusing on events temporal
dependencies. However the quantitative analysis of these
dependencies was not addressed.

Semantic risk modeling is another approach based on
machine understandable representations which offers the
possibility of automated risk analysis. Blanco et al [17]
provide a useful review of such approaches. For example,
the NRL Security Ontology [18] provides a way to describe
the security properties of Web Services, which was later
used in a Web Service vulnerabilities ontology [19]. The
most mature example prior to the developments reported
here is the Security Ontology from Secure Business Austria
(SBA) [20], which is based on the German IT Grundschutz
Manual [21]. It provides a way to model systems with
common threats and control strategies. The SBA approach
goes a long way towards the goal of capturing security
expertise in a form that can be reused (with supporting tools)
by non-experts. However, this ontology describes threats
and vulnerabilities using OWL instances, which works well
when modeling a statically deployed system, but not for a
dynamically composed system whose concrete composition
is not known at design time. Having said that, it can be used
to construct Bayesian belief graphs [22] describing the
probability of threats impacting the system in the presence
of controls. Poolsappasit et al [31] use such graphs to
calculate dynamically changing threat levels via backwards
Bayesian inference, but in their approach the graphs are

constructed manually and only the probabilistic weights are
adjusted. Our approach combines the two approaches,
constructing belief networks automatically for a
dynamically composed system and using both semantic and
Bayesian inference to deduce threat activity levels.

III. SERSCIS APPROACH

In SERSCIS, our aim was to create a unified approach
for such systems spanning both design time and run-time
risk analysis. To do this, we needed four things:
O1. an ontology capturing security expertise using generic

classes of assets, threats and controls;
O2. a way to specialize this to describe system-specific

classes of assets and threats in a design time abstract
system model;

O3. a way to instantiate the resulting classes at run-time to
create a concrete system model representing the current
configuration of the running system;

O4. a way to analyze this model to identify vulnerabilities
and diagnose threats.

The starting point was a core model based on the
approach used by SBA [20]. The SERSCIS variant was
deliberately made simpler, with a view to reducing the
number of facts that have to be asserted in Objective 3
(mentioned as O3 from now on) to support useful inferences
in O4 above. In SERSCIS, we also made extensive use of
SWRL rules to model the configuration of controls needed
to protect assets from each class of threat, and the way some
threats could be triggered as secondary effects of a primary
disruption to the system.

Figure 1. Core model classes and SWRL rules.

The core model classes were then specialized to provide

a dependability model describing (still generic) types of
assets, threats, controls and (mis-)behaviours found in
adaptive ICT systems. This encoded expert knowledge, e.g.
what types of threats are relevant in such a system, how do
they arise in specific combinations of interconnected assets,
and what controls are needed to block or mitigate them. For
example, asset classes were defined for offered services,
their clients (customers who pay for and control access to
the services, and consumers who actually use them), and
resources used to deliver the service. Resources are further
divided into those specified by clients (CSResources), or
selected by the service provider (PSResources). Further
asset classes represent the physical infrastructure, including
hosts (organizations of people, computers and other
equipment in which services, resources and clients operate)
and communication networks to which organizations may
be connected). The resulting dependability model thus

provided O1 above. For full details of this semantic model,
see [24].

For O2, a graphical system editor was developed
allowing users to create system-specific sub-classes of the
generic asset types from O1, and define the relationships
between them. An automated process was then used to find
system-specific asset combinations that may be subject to
generic threat types from O1, and to auto-generate system-
specific threat classes representing the various ways each
generic threat could affect the specific system. These tools
are also described in [24], while an application of the
ontology to model A-CDM systems and scenarios is
described in [24].

Here we are mainly concerned with the construction and
analysis of the concrete run-time system model O3, and the
use of this model to detect and diagnose attacks O4. For this
we must consider the types of threats captured by the model,
and how they are related to system behavior.

IV. THREAT MODELLING

The goal of threat modeling in SERSCIS is to identify
the threats to different asset types from a stakeholder
perspective at design time, and create a model allowing
threats to be automatically assessed at runtime. Our threat
models are semantic descriptions of the relationships
between a class of threat and classes of involved assets.
Rules are then defined describing what controls are needed
protecting those assets to block or mitigate the threat. One
of the main challenges in developing this model is to ensure
that threat classes are defined in a consistent manner, with
no unintended gaps or overlaps between threat classes.

Examination of ISO 27001 and 27005 showed that they
only provide guidelines for threat identification, which
cannot easily be mapped onto an abstract threat model in the
absence of a concrete system. The next option was to base
the SERSCIS threat ontology on knowledge bases
underpinning some of the related tools. The CRAMM threat
catalogue is not published, so attention focused on the
MEHARI catalogue of threats per asset type. However,
MEHARI focuses on low-level information assets such as
individual data files and software configurations. It would
be possible to construct a threat model from this, but it
would be more suited to analyzing a single service rather
than an ecosystem of data sharing systems like those found
in airports.

After conducting the investigation of the above
standards, the best starting point among established
standards and tools was found to be IETF RFC 2828 [25].
This was well suited to the task because it provides an
information security vocabulary, so it was designed to
classify meaning. RFC 2828 defines a threat as a
combination of a threat action (an event or situation that
compromises a system) and its threat consequences (the
nature of the resulting compromise). Factorizing threats
along these lines reduces the number of distinct cases that
need to be considered from N.M to N+M, after which a
systematic approach can be used to find all relevant
combinations of threat actions and consequences.

The first step was to decide on the set of consequences
to be included in the model:

TABLE I. THREAT CONSEQUENCES

No Consequence and meaning

1 The threat causes data to be passed to or read by the
wrong party. (An asset will become indiscreet).

2 The threat causes corruption of data. (An asset will be
become inaccurate).

3 The threat causes the system to run too slowly. (An
asset will begin to underperform).

4 The threat causes the system to fail in its function. (An
asset will become unreliable).

5 The threat steals access to system functionality. (An
asset will become promiscuous).

6 The threat causes control of the system to be lost to an
inappropriate party. (An asset will become untrustworthy)

7 The threat places more load on the system than it can
handle. (An asset will become overloaded).

8 The threat makes it impossible for one or more users
to interact with some or all of the system functions. (An
asset will become unavailable).

9 The threat undermines other parties’ trust that the
system will work correctly on their behalf. (They will
become dissatisfied with their interaction with the system).

Table 1 indicates how these consequences are related

some of the classes of asset misbehavior defined in the
SERSCIS asset model. Other types of behavior are related
to possible threat actions, which are listed in Table 2:

TABLE II. THREAT ACTIONS

No Action

1 Destruction of an asset.

2 An asset is accessed without proper restrictions.

3 Removal of an asset by an unauthorized party (theft).

4 Alteration of an asset (corruption).

5 An asset is misused or caused to fail by an authorized
operator (insider attack).

6 Blocking messages to and from an asset.

7 Sending spurious messages to or from an asset
(spoofing).

8 Altering messages to or from an asset.

9 Messages to and from an asset are read by someone
who is not the source or the intended destination
(snooping).

10 There is a bug in the software components of an asset.

11 The asset malfunctions for other internal reasons.

12 An asset malfunction becomes persistent (i.e.
predictable).

13 An imposter pretends to be an asset (impersonation –
the asset becomes unauthentic).

14 An imposter deceives an asset by pretending to be
another asset (the other asset is unauthentic).

15 An asset’s capacity is reduced (under-provisioning).

16 An asset is subjected to more use than expected
(overuse).

17 An asset commits to do more than it can.

18 An asset is hacked over a network using a previously
known security flaw (remote known exploit).

19 An asset is hacked over a network using a previously
unknown security flaw (remote zero-day exploit).

20 Other action, including secondary effects.

To derive a comprehensive set of threats, one must take

all meaningful combinations of action and consequence for
each type of asset. In the SERSCIS threat model, threats are
labeled using the threat action number, the consequence
number, and a descriptive name usually referring to the type
of asset targeted by the threat. In practice, one can ignore
some combinations if they are not important for a particular
class of applications, but the systematic approach ensures
this is never done inadvertently. For A-CDM scenarios we
were mainly interested in inappropriate data access or
alteration, and reduced service performance or availability.

The threat action, consequence paradigm allows a
systematic approach to threat identification; however it
doesn’t solve the issue of detecting threats during runtime.
Detecting threats during runtime in SERSCIS is based on
observations of asset (mis-)behaviors (e.g. Inaccessible,
Inaccurate, Indiscreet, Over-committed, Overloaded, etc.).
The behavior classes are defined as part of the SERSCIS
model, representing the (generic) effects of threat actions
from Table 2 on different asset types (see Table 3). They are
listed in Table 3. Observations of these behaviors must be
generated by analyzing system monitoring events. This is
system dependent, but usually involves setting thresholds
for parameters like throughput, response time or rates for
various types of failures, and using these to decide whether
the behavior is or is not present. Our approach to threat
identification (see Section5) means one need not monitor
for all behaviors.

TABLE III. ASSET BEHAVIOURS

Behavior

Applies to

S
p

a
ce

H
o
st

N
et

w
o

rk

In
te

rf
a

ce

S
er

v
ic

eG
ro

u
p

C
u

st
o
m

er

C
o

n
su

m
er

C
S

R
es

o
u

rc
e

P
S

R
es

o
u

rc
e

T
h

ir
d

-P
a
rt

y

R
es

o
u

rc
eG

ro
u

p

N
et

w
o

rk
G

ro
u

p

Dissatisfied: the asset
isn’t happy with its

interactions with the

system.

 Y Y Y Y Y Y

Inaccessible: the asset

fails to recognise

authorized users

Y Y Y Y Y Y Y

Inaccurate:
information

exchanged with the
asset contains errors.

 Y Y Y Y Y Y Y Y Y

Indiscreet: the asset

allows inappropriate

access to its data.

 Y Y Y Y Y Y Y Y Y

Overcommitted: The

asset is promising

more than it can
deliver.

 Y

Overloaded: the asset

is interacting more

than it should.

 Y Y Y Y Y Y Y Y Y

Promiscuous: the

asset does not

properly restrict
access.

Y Y Y Y Y Y Y Y

Unaccountable: the

asset denies

responsibility for its
actions.

 Y

Unauthentic: the asset

may not represent or
be what it claims.

 Y Y Y Y Y Y Y Y Y

Unauthorized: the

asset doesn’t have the

rights it needs.

 Y Y

Unavailable: the asset

can’t be contacted.

 Y Y Y Y Y Y Y Y Y Y

Underperforming:
interaction with the

asset takes too long.

 Y Y Y Y Y Y Y Y

Unreliable: the asset

fails for internal
causes.

 Y Y Y Y Y Y Y

Threats can obviously cause asset (mis-)behavior

through their threat consequences. Typically one must
analyze the observed behavior to deduce which threat is
responsible as discussed in Section 5. Some types of asset
behavior can also be part of the threat action, i.e. their
detection indicates that a threat action is in progress. The
SERSCIS threat model captures this via secondary effect
rules. For instance a DoS attack on a resource causes it to
become unavailable, which causes a service using the
resource to underperform.

Figure 2. Secondary effect (threat behaviour) chain.

V. THREAT ACTIVITY ASSESMENT

The starting point for threat activity assessment was to
assume we have a set of M observations B={Bi, i=1,…,M}
of potential adverse behaviors in system assets. Each
observation tells us whether a specific behavior is present or
absent in a specific system asset. Note that this set only
covers a subset of possible system behaviors. The rest are
not observed, so we do not know whether they are present.
The set B represents our evidence of threat activity in the
system. At this point threats are considered independent, at
the end of this section we explain how secondary effects
capture chained threats.

We then suppose that the actual threat activity is
represented by a vector of Boolean values T={Tj,
j=1,…,N}, covering all N potential threats in the system.
Thus Tj=True if and only if threat j is active. Our problem
is that we do not know which threat(s) are active, i.e. we do
not know T. However, we do have an idea of how likely it
is that each threat could be active, from our conventional
design-time risk analysis. This is captured as a vector of

prior probabilities P(Tj|∅), giving the expected probability
that threat Tj is active given no evidence either way (i.e. the

set of behavior observations is the empty set ∅). The prior
probabilities reflect our initial ideas about how likely each
threat is, i.e. they reflect our trust in the system’s ability to
counteract potential threats. But since we have some
observations of the system, we can improve on this and find
the current probability that each threat is active. This is
simply P(Tj|B), i.e. the current probability that threat Tj is
active given the evidence of our observations B.

To calculate this, we can use Bayesian inference [26],
which tells us that:

P�T|B� = P�T� P(B|T)
P(B)

Here T is a specific set of true/false threat activity

values. P(T) is the expected probability of that particular set
of values. If threats are considered independent, this is just:

P�T� = � P�T�|∅�
j:Tj=True

�
1 − P�T�|∅�

j:Tj=False

P(B|T) is the probability of getting our evidence (i.e. the
M observations B) if the set of active threats is as specified
by T. Finally, P(B) is the expected probability of getting
those observations given no assumptions about which
threats are active. If we sum over all 2N possible values of
T, the law of total probability gives this as:

P(B) = � ���� ∙ ���|��
T

If we want to know P(Tj|B), we have to sum P(T|B) over

all combinations of active threats T in which Tj is active:

P(T�|B) = � P��|��
T: ��=True

P(T�|B) = � P(T)∙P(B|T)

T:Tj=True

� P(T)∙P(B|T)

T

�

Everything here is easily calculated except for P(B|T)

and the fact that we have to sum over all possible
combinations of threat activity values T, i.e. we need to
calculate 2N terms, which rapidly becomes intractable. The
usual way to deal with the exponential number of terms is
to sample the possible threat activity configurations T. We
will return to this shortly.

To calculate P(B|T), we assumed that each potentially
observable behavior could be caused in one of two ways:
i) behavior i could be triggered by threat j, with

probability P(Tj→Bi); or
ii) behavior i could arise spontaneously in the absence of

any threat with probability P(Bi|T0).
where T0 represents the case of no active threats (i.e. all

Tj are False). Spontaneous behavior was included in the
model to allow for the possibility of false alarms, in which
a behavior is detected due to monitoring errors or random
variations in asset behavior that may look like misbehavior.

The contributions to adverse behavior causation

P(Tj→Bi) and P(Bi|T0) were added to the core ontology
from Fig. 1 by including further relationships, as shown in
Fig. 3.

Figure 3. Core model behaviour causation extensions.

The results were relatively insensitive to the rates of

threat triggering of behavior, provided the rates are close to
1.00 or 0.00 when they should be and not otherwise.
However, this varies from system to system, so some tuning

of P(Tj→Bi) is needed. For example, whether a threat causes

underperformance depends on whether the compromised
process is on the critical path, so this has to be set for
system-specific threat classes. Some tuning of P(Bi|T0) was
also needed to match the sensitivity and false alarm rates of
the system-specific monitoring probes used. For this reason,
the rates were not added directly to the semantic model, but
stored in a separate human-readable spread sheet while this
tuning process was carried out. We did not try to automate
the tuning process using machine learning techniques
similar to those used for Internet traffic [27], although this
may be possible in future.

Now, if we make an observation to detect a given
behavior, it should be present unless none of the possible
causes triggered it. It is convenient to define the probability

P(¬Bi) of not finding behavior i, which is given by:

P�¬Bi� = �1 − P�Bi|TTTT0000�� �
1 − P�T�→Bi�

j:Tj=True

We can then calculate P(B|T) from:

P�BBBB|TTTT� = � �1 − P�¬Bi�� � P�¬Bi�
j:Tj=Falsej:Tj=True

These equations represent the Bayesian belief graph

used in the Bayesian inference procedure. The software
used the semantic model to determine which threat
instances are related to which asset behaviors (i.e. to create
the belief graph), and then looked up the corresponding
probabilities taken from the associated spread sheet. Note
that in [22], an ontology is used to compute a Bayesian
belief graph which is then used in the forward direction to
compute how likely it is that threats will be active and have
consequences (including triggering secondary threats)
given the available controls. We use the belief graph in the
reverse direction, to deduce from the consequences which
threats are active.

Finally, we come to the sampling strategy used to
estimate the sum of terms in the numerator and denominator
used to compute the posterior estimates of threat activity
P(Tj|B). It is computationally infeasible to compute all 2N
terms given that a typical concrete system model may have
thousands of threat instances (our A-CDM model peaked at
2,647 threat instances). One might use an Approximate
Bayesian Computation (ABC) sampling strategy [28] in
which terms are sampled based on an estimate of their
contribution derived from previous samples. In our case it
was clear that the chances of threats being active (i.e.
causing adverse behavior) is low given that the systems of
interest (such as airports) do employ extensive
countermeasures. We therefore initially considered terms in
which only zero, one or two threats were active at any time,
and obtained reasonably good results with a simplified
ontology [29], [30]. However, this approach wasn’t
effective if one threat was likely to cause another. This
would make it likely that more than one threat will be active
(a situation we did not sample), and undermine the
assumption of independence used to calculate P(T).

In the final version, any threats classified by semantic
reasoning as secondary (i.e. triggered by observed asset
misbehavior, as a knock-on consequence of some other
primary threat) are considered to be active by definition. We
then sample the subspace of T by varying the status of all

remaining non-secondary (i.e. potential primary) threats. In
effect, each sample then represents a set of correlated active
threats, but different samples are independent of each other,
since the differences between them come only from the
independent primary threats. In effect, this means we use
Bayesian inference only to find primary threats, as the
secondary threats have already been identified by semantic
reasoning and excluded from the Bayesian search:

Figure 4. Sampling stragegy.

This approach was well suited to our purpose because:

• while the estimates for P(Tj|B) are quite rough,

comparison with prior probabilities P(Tj|∅) gives a
clear signal whether observed behaviour supports the
hypothesis that threat j is active;

• the secondary effect chain extends only as far as can be
explained by observed behavior, so we do not need ex-
tra parameters modeling threat propagation probability;

• the run-time is kept to a minimum, which is a
significant benefit given that Bayesian estimation is
being used ‘in the loop’.

The restriction to sampling at most one primary plus all
secondary threats allowed the total run-time to be kept
within 1 minute, while the number of threats increased from
under 100 to well over 2000.

VI. EVALUATION

A. Evaluation Scenarios

The evaluation was carried out using a simulation of a
typical A-CDM installation based on a subset of the Vienna
Airport system. It was necessary to simulate the test system
because A-CDM was not deployed at Vienna until near the
end of the SERSCIS project, and also because it was not
acceptable to inject faults into the real airport in order to test
our threat detection and diagnosis approach. Details of the
simulated airport are described in [24]. Here we focus on
the attack scenarios simulated, and the results obtained from
the semantically-driven Bayesian inference procedure.

The basic structure of the simulated airport is illustrated
by the logical assets and relationships from Fig. 5.

Figure 5. Logical assets in the airport system model.

For the sake of simplicity, Fig. 5 shows only logical
services, without any of the physical assets involved (airport
communication networks and service providers). The model
represents the A-CDM network from the point of view of a
ground handling service provider. The ground handler is
responsible for coordinating services such as refueling,
catering and baggage handling provided to the aircraft
during its stopover, and updating the A-CDM data exchange
service provided by the airport’s ACISP. This service is also
used by local air traffic control services, and by the Central
Flow Management Unit (CFMU) operated by
EUROCONTROL.

This set up was used to simulate six scenarios:

• unauthorized rescheduling of the refuelling service by
a malicious activist impersonating a ground handler;

• jamming of radio communications between the ground
handling service operator and the aircraft stand;

• a remote denial of service attack on a fuelling service
over a connecting network;

• a worker strike at an airport service provider causing a
slow-down in aircraft refuelling services;

• a malfunction in the ground handler’s software for
predicting aircraft turn-around schedules.

• a ‘sunny day’ in which there are no active threats and
the airport operates normally with only random
variations in turn around service provision;

All but the last scenario represents a different active
threat, most of which also involve knock-on consequences.
The aircraft arrival and target take-off times were taken
from 124 flights passing through the real Vienna Airport on
a day in July 2010.

B. Key Performance Indicators

To assess the impact of the threats on the simulated
airport operations, we considered how they affect key
performance indicators (KPI) defined by Austrocontrol (the
national air traffic control service provider). These KPI
included the number of aircraft taking off outside the slot
tolerance windows, and the average error in predicted
aircraft ready times, known as target off-block times
(TOBT) issued when the aircraft is about to land.

TABLE IV. SIMULATED KPI

KPI Scenario
1 2 3 4 5 6

Take-off

outside slot

0% 0% 31% 0% 99% 0%

Average TOBT

error

1m 57m 94m 11m 19m 0m

It is clear that all the simulated attacks had some impact

on these KPI. Scenario 1 has the least effect, simply because
rescheduling the fuelling service can usually send a spare
crew when the ground handler complains that they are
overdue. Only at peak times were there no spare crews
available in the simulation, so only a few flights suffered
any serious delays. In scenarios 1, 2 and 4 the ground
handler was able to predict the consequences of the attack
well enough to avoid aircraft taking off at the wrong time.
In the remote denial of service and software malfunction
scenarios this was not possible, so aircraft left the stand at
the wrong time. (Normally air traffic control would prevent
them taking off, but our simulation did not cover what

happened after the ground handler finished delivering the
turn-around service).

While each attack produced a different effect on the
KPI, apart from Scenario 1 this depended on when
mitigating action was taken, so it isn’t in general possible to
deduce the cause of the problem from the KPI. However,
using the semantically-driven Bayesian inference approach,
it was possible to diagnose the root causes.

C. Threat Detection

In Scenario 1, the first adverse behavior detected is the
fact that the fuelling service disagrees with the ground
handler as to how often it is being updated. At this point, the
SERSCIS tools reported four threats with higher than

expected likelihood, i.e. P(Tj|B) > P(Tj|∅) where P(Tj|∅) is
typically around 1%:

• unauthorized access to data by impersonation of the
ground handler (28.5%)

• unauthorized access to data due to faulty access control
at the fuelling service (28.5%)

• unauthorized update to data due to faulty access control
at the fuelling service (28.5%)

• unauthorized update of data by impersonation of the
ground handler (14.1%)

Initially the fuelling service copes with the unauthorized
rescheduling by substituting spare crews, leading the
ground hander to assume the schedules are still accurate.
The last two threats then drop off the list returned by the
Bayesian estimator, leaving just the two possible reasons
why the fuelling service is being indiscreet (which is still
detectable). When the airport gets busy, the fuelling service
can no longer honor the original schedule, and the ground
handler detects that there must be a data corruption. At this
point, the Bayesian activity estimator reports only two
threats as possible causes:

• unauthorized update to data due to faulty access control
at the fuelling service (65.5%)

• unauthorized update of data by impersonation of the
ground handler (32.8%)

At this point a third threat is also identified as being
active, but this is because it has been classified as a
secondary effect: persistent inaccuracy in one of the
available fuelling services. It is useful to note that at this
point, if secondary effect classification were not used, we
would have seen a much lower P(Tj|B) for the above pair of
possible root causes, and non-negligible increases in P(Tj|B)

relative to P(Tj|∅) for several other threats based on adverse
behavior in the ground handler and in the data passed to the
A-CDM service provider, etc. However, because these can
all be caused by persistent inaccuracy in a fuelling service,
they are automatically accounted for, and the Bayesian
inference procedure does not get distracted from possible
root causes. As far as the authors know, semantic and
Bayesian inference have never before been combined in this
way to enable root cause analysis using monitoring data
from a set of interdependent system components.

Throughout this scenario, the machine reasoning tools
were able to produce results within 1-2 minutes of the
behavior changes being detected, despite the fact that the
airport simulation and the simulated monitoring system plus
semantic and Bayesian inference tools were all running in
the same virtual machine on a single CPU.

Clearly, as with any data-driven methodology, the
SERSCIS tools cannot diagnose a threat correctly until they
have enough observations of asset misbehavior. In this case
that was not until the effect of the attack on the fuelling
service provider had become significant. However, even
when only some misbehavior was evident, the inference
method produced a shortlist that included the actual cause,
plus with other causes whose investigation would have led
the operator in the right direction (in this case, the obvious
first step would be to call the fuelling service provider to
find out what is happening). We did not simulate the effect
of operator action to mitigate the threat, but in this case it
may have been possible to fix the errant access control
policy before the airport became busy. In the worst case
some of the load could have been diverted to an alternate
fuelling service provider.

The other scenarios show a similar pattern to Scenario
1. In Scenario 2, the SERSCIS tools identified the jamming
attack on the ground handler’s internal radio network as the
primary active threat as soon as the first misbehavior was
detected (the network became unavailable). In this case, a
secondary effect is also identified, which accounts for the
knock-on consequence that the ground handling service
becomes unavailable. This ensures other possible causes of
the service being unavailable (e.g. lack of available fuelling
services) are not highlighted as possible active threats. In
Scenario 2, the posterior probability of the jamming attack
is only 15.7% due to the poor sampling strategy, but because
it is the only threat for which P(Tj|B) is boosted above

P(Tj|∅), the signal is clear enough to an operator.
In Scenario 3, we get a similar effect: the correct attacks

are identified as root causes even though P(Tj|B) remains
well below 50%. Two different variations were used for this
scenario, one in which the remote attacker exploited a
software bug to tie up the service itself, and one where the
attacker used a packet flooding attack to deny service. Both
cases produce the same set of secondary effects accounting
for various knock-on effects (starting with the fuelling
service being unavailable). Including these in all Bayesian
samples allows correct identification of the primary cause
in each case.

In Scenario 4, the fuelling service retains some
availability but the loss of most of its workers to a wildcat
strike makes it underperform. From the ground handler’s
point of view the cause of this is internal to the fuelling
service provider, and the Bayesian inference simply
highlights an underperforming fuelling service threat. After
some time the effects lead the ground handler to
underperform, and this is tracked by the SERSCIS tools by
an increase in the chain of misbehavior and threats classified
as secondary effects.

Finally in Scenario 5, the software malfunction leads the
ground handling service to produce inaccurate TOBT
predictions. The Bayesian inference procedure highlights
four possible causes:

• ground handing service software malfunction (18.3%);

• impersonation of a back-up fuelling service to the
ground handler (13.7%)

• inaccuracy in the back-up fuelling service (10.1%); and

• unauthorized update of ground handing service data
(9%).

The first threat is the correct root cause diagnosis, and it
is also the one found to be the most likely. The other three

appear because they too could account for the inaccurate
predictions, and in this case we have no evidence ruling
them out. The two threats involving a back-up fuelling
service appear because in this scenario, there is no problem
with the first-choice fuelling service and the back-up is
never used. As a result, even though monitoring probes are
in place to detect authentication failures and inaccuracy,
they are never triggered so no observations can be included
in the set B used by the Bayesian inference system. The last
threat highlighted represents the possibility that input data
is being corrupted by an unauthorized party, and this arises
because our simulation did not include any reporting from
customers (i.e. airlines) on the number of updates they had
made. Consequently it was not possible to monitor whether
any excess update requests were received and processed by
the ground handling service.

This last scenario shows that in some situations one
should make assumptions about at least some types of
adverse behavior when no observations are available. Our
approach has been to assume an observation remains valid
until we get a new observation (i.e. we take the last received
system monitoring event). This fails when a new component
is introduced for which there are no prior events, or where
the system cannot provide the necessary monitoring data.
This is one area we plan to investigate in future.

Finally, Scenario 6 was tested just to check whether our
system was likely to cause false alarms. In fact, no threats
were ever highlighted in any test using the sunny day
scenario, even though some flight delays were seen. This is
due to the fact that some level of random misbehavior

detection is built into the model through P(Bi|∅).

D. Comparision with SESAR

It is worth considering how the overall SERSCIS
procedure differs from a conventional ISO 27000 compliant
methodology. The comparison was made between our
approach and SESAR for two reasons: SESAR is ISO
27001/27005 compliant and it is applied in the same context
as ours i.e. Air Traffic research and development [8]. The
comparison includes the design-time modeling processes
summarized in Section 3 as well as the run-time elements
described in Sections 4 and 5. The results are summarized
in Table 5

TABLE V. COMPARISION WITH SESAR METHODOLOGY

Step Original SESAR

procedure
SERSCIS

variation

Threat
identification

Design-time
analysis by a security
expert.

Design-time auto-
mated threat class
generation based on
expertise encoded in a
generic threat model.

Threat
impact severity
assessment

Original SESAR procedure adopted in
SERSCIS. Design-time analysis based on a
consideration of impact on primary and secondary
assets.

Threat prior
likelihood

Design-time
expert analysis of
attacker
motives/abilities in the
presence of security
controls.

Rough estimates
are sufficient, may be
based on historic attack
frequency data if
available.

Threat
current
likelihood

Not available:
static design-time
analysis only.

Dynamically
inferred at run-time
based on observed
system behaviour.

Step Original SESAR
procedure

SERSCIS
variation

System
vulnerability
detection.

Design-time
expert analysis based
on the planned security
controls.

Run-time analysis
based on actual security
controls used by
dynamically composed
system assets.

The key differences are in threat identification stage and

the current threat activity likelihood. In the conventional
methodology, a security expert is involved in analyzing the
specific system under consideration. In the SERSCIS
approach, this is not necessary. Instead, the security expert
creates a generic model that can be used by a system
designer in an automated threat identification process. The
conventional methodology then uses the design-time expert
analysis as a basis for assessing run-time threat activity and
system vulnerabilities. In SERSCIS these are updated at
run-time using information from run-time monitoring of the
system configuration and behavior. Dynamic changes can
only be addressed in the conventional methodology by
updating the original design-time analysis for each change.
Since this involves humans it cannot be done ‘in the loop’
which is why SERSCIS makes such extensive use of
machine reasoning so the process can be fully automated.
The results of this run-time analysis are then presented to
the user via a decision support GUI described in [30].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a run-time dynamic
approach to risk management for use in dynamic, multi-
stakeholder ICT systems as part of the SERSCIS project. A
semantic threat modelling approach was used to support
design time threat identification and mitigation strategies.
Semantically driven Bayesian inference enables the run-
time analysis of threats and allows us to perform root cause
analysis for threats. We have provided the results of our
approach when applied to various scenarios simulating
threats within an airport ICT system. We have also
compared and contrasted the improvements of our approach
over existing risk management procedures like SERSAR. In
the future, we plan to extend the modelling work as a basis
for relating socioeconomic trust in ICT systems as part of
the OPTET project.

ACKNOWLEDGMENT

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme under grant agreement no. 225336,
SERSCIS and the EU funded OPTET project.

REFERENCES

[1] EUROCONTROL, “Airport CDM Implementation Manual,

Version 3,” 12 2008. [Online]. Available: www.euro-
cdm.org/library/cdm_implementation_manual.pdf. [Accessed 10
2009].

[2] J“The Single European Sky ATM Research Programme (SESAR),”
[Online]. Available: http://publish.eurocontrol.int/content/sesar-
and-research. [Accessed October 2011].

[3] H. Moyano, “EU R&D Into Port Technologies,” Port Technology
International, vol. 42, pp. 20-22, 2009.

[4] European Commission, Council Directive 2008/114/EC on the
identification and designation of European critical infrastructures
and the assessment of the need to improve their protection., 2008.

[5] ISO/IEC 27001:2005. Information technology – Security
Techniques – Information security management systems –
Requirements, International Organization for Standardization, 2005.

[6] ISO/IEC 27005:2011. Information technology -- Security techniques
-- Information security risk management, International Organization
for Standardization, 2011.

[7] “SERSCIS: Semantically Enhanced Resilient and Secure Critical
Infrastructure Services,” [Online]. Available: http://www.serscis.eu.

[8] J. Touzeau, E. Hamon, M. Krempel, B. Gölz, R. Madarasz and J.
Alemany, “SESAR DEL16.02.01-D03: SESAR ATM Preliminary
Security Risk Assessment Method.,” 2011.

[9] Club de la Securite de l'Information Francais (CLUSIF), “MEHARI
2010 Risk Analysis and Treatment Guide,” 08 2010. [Online].
Available:
http://www.clusif.asso.fr/fr/production/ouvrages/pdf/MEHARI-
2010-Risk-Analysis-and-Treatment-Guide.pdf. [Accessed 02 2013].

[10] Siemens Enterprise, “CRAMM v5.1 Information Security Toolkit,”
[Online].Available:
http://www.cramm.com/files/datasheets/CRAMM%20%28Datashe
et%29.pdf. [Accessed 02 2013].

[11] I. El Fray, “A Comparative Study of Risk Assessment Methods,
MEHARI \& CRAMM with a New Formal Model of Risk
Assessment (FoMRA) in Information Systems,” Computer
Information Systems and Industrial Management, pp. 428-442,
2012.

[12] C. J. Alberts and A. J. Dorofee, Managing information security risks:
the OCTAVE approach, Addison-Wesley Professional, 2003.

[13] R. A. Caralli, J. F. Stevens, L. R. Young and W. R. Wilson,
“Introducing octave allegro: Improving the information security risk
assessment process,” Carnegie-Mellon University, 2007.

[14] Tropos project, [Online]. Available: http://www.troposproject.org.
[Accessed 2012].

[15] R. Matulevius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans and
N. Genon, “Adapting secure tropos for security risk management in
the early phases of information systems development,” in
Proceedings of the 20th international conference on Advanced
Information Systems Engineering (CAiSE '08), Montpellier, France,
2008.

[16] I. Hogganvik and K. Stølen, “A graphical approach to risk
identification, motivated by empirical investigations.,” in
Proceedings of the 9th international conference on Model Driven
Engineering Languages and Systems (MoDELS'06), Genova, Italy,
2006.

[17] C. Blanco, J. Lasheras, E. Fernandez-Medina, R. Valencia-Garcia
and A. Toval, “Basis for an integrated security ontology according
to a systematic review of existing proposals,” Comput. Standards &
Interfaces, vol. 33, no. 4, pp. 372-388, 2011.

[18] A. Kim, J. Luo and K. M. , “Security ontology to facilitate web
services description and discovery,” Journal on Data Semantics,
vol. 9, pp. 167-195, 2007.

[19] A. Vorobiev and N. Bekmamedova, “An ontology-driven approach
applied to information security,” Journal of Research and Practice
in Information Technology, vol. 42, no. 1, pp. 61-76, 2010.

[20] S. Fenz and A. Ekelhart, “Formalizing information security
knowledge,” in Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security
(ASIACCS'09), Sydney, Australia, 2009.

[21] German Federal Office for Security in Information Technology
(BSI), “IT Grundschutz Manual,” 2005.

[22] S. Fenz, “An ontology- and Bayesian-based approach for
determining threat probabilities,” in Proceedings of the 6th ACM
Symposium on Information, Computer and Communications
Security (ASIACCS '11), New York, USA, 2011.

[23] A. Chakravarthy, M. Surridge, X. Chen, M. Hall-May, B. Nasser and
T. Leonard, “SERSCIS Deliverable D2.2: System Modelling
Ontology and Tools: Final Implementation v1.5,” 01 2013. [Online].
Available: http://www.serscis.eu/wp-
content/uploads/2013/02/SERSCIS_D2.2-v1.5.pdf. [Accessed 01
2013].

[24] M. Surridge, A.Chakravarthy, M. Hall-May, B. Nasser and R.
Nossal, “SERSCIS: Semantic Modelling of Dynamic, Multi-
Stakeholder Systems,” in Proceedings of the SESAR Innovation
Days (2012), Braunschweig, Germany, 2012.

[25] R. Shirey, “RFC 2828: Internet Security Glossary,” May 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2828.txt. [Accessed
August 2012].

[26] A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Bayesian Data
Analysis, Second Edition, Boca Raton, FL, USA: Chapman and
Hall/CRC, 2003.

[27] T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE
Communications Surveys and Tutorials, vol. 10, no. 4, pp. 56-76,
2008.

[28] T. Toni, D. Welch, N. Strelkowa, A. Ipsen and P. H. M. Stumpf,
“Approximate Bayesian computation scheme for parameter
inference and model selection in dynamical systems,” Journal of the
Royal Society Interface, vol. 6, pp. 187-202, 2009.

[29] M. Surridge, “Semantic Security Modeling for Run-Time Threat
Analysis,” in The Cyber Security & Privacy EU Forum, 2012,
Berlin, Germany, 2012.

[30] D. Kostopoulos, G. Leventakis, V. Tsoulkas and N. Nikitakos, “An
Intelligent Fault Monitoring and Risk Management Tool for
Complex Critical Infrastructures: The SERSCIS Approach in Air-
traffic Surface Control.,” in 14th International Conference on
Computer Modelling and Simulation (UKSim), Cambridge, UK,
2012.

[31] N. Poolsappasit, R. Dewri and I. Ray, “Dynamic Security Risk
Management Using Bayesian Attack Graphs,” IEEE Transactions
on Dependable and Secure Computing, vol. 9, no. 1, pp. 61-74,
2012.

