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Abstract—We will present results of the SERSCIS project 

related to risk management and mitigation strategies in 

adaptive multi-stakeholder ICT systems. The SERSCIS 

approach involves using semantic threat models to support 

automated design-time threat identification and mitigation 

analysis. The focus of this paper is the use of these models at 

run-time for automated threat detection and diagnosis. This 

is based on a combination of semantic reasoning and Bayesian 

inference applied to run-time system monitoring data. The 

resulting dynamic risk management approach is compared to 

a conventional ISO 27000 type approach, and validation test 

results presented from an Airport Collaborative Decision 

Making (A-CDM) scenario involving data exchange between 

multiple airport service providers. 
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I.  INTRODUCTION 

Today, critical infrastructures in areas like 
transportation involve multiple stakeholders (e.g. operating 
companies, customers, etc.), who are increasingly seeking 
to optimize their operations by exchanging data over ICT 
networks. A typical example is Airport Collaborative 
Decision Making (A-CDM) [1], in which service companies 
at an airport share information. This allows them to plan 
ahead and turn around aircraft more quickly, and make 
predictions of when each outgoing flight will be ready to 
depart. These are used by air traffic controllers to efficiently 
allocate airspace including take-off and landing slots. This 
has led EUROCONTROL to mandate the introduction of A-
CDM in Europe as part of a wider collaborative decision-
making framework for air traffic control under the Single 
European Skies (SESAR) initiative [2]. Similar data-
sharing methods are increasingly used in transport hubs: 
other examples include Port Area Communities [3]. 

This agile data-sharing approach makes it easier to 
switch service providers to ensure availability at the right 
time if aircraft deviate from the pre-planned schedule. 
However, it also creates new risks from disruption of the 
data exchange. This in turn amplifies old risks as service 
providers become more dependent on each other as they 
eliminate slack resources in pursuit of greater efficiency. It 
is also very difficult for public infrastructure operators to 
analyze these risks as required by regulators [4]. Standard 
methods for analyzing risks in IT systems such as ISO 
27000 [5], [6] require an a priori expert assessment of risks 
and controls based on the known structure of the system as 
a whole. This approach works well if it can be applied at 
design time in a conventional system lifecycle. It is far less 
effective in a dynamically composed system where each 
stakeholder designs only their own portion of the system, 
decides just in time how to deploy their resources and which 
external services to use, and (in extremis) decides how to 
respond to internal or external faults. 

The SERSCIS project [7] aimed to address these 
challenges by developing a methodology and tools to 
manage risks in dynamic multi-stakeholder service oriented 
systems. The SERSCIS approach is based on semantic 
system models and extensive use of machine reasoning to 
analyze risks at design time, and at run time. Interactions 
between stakeholders are described by service level 
agreements (SLAs), making it possible to monitor and 
analyze other stakeholder behavior as well as in-house 
resources. Control strategies can be introduced that exploit 
the possibility of dynamic system reconfiguration, and can 
be activated in response to specific threats. While the focus 
of SERSCIS was on risks associated with interconnected IT 
services, the approach to modeling and managing risks also 
encompasses physical networks and some physical 
processes, driven by the needs of A-CDM validation 
scenarios.  

In the following section we discuss related work to risk 
modeling and management. In section 3, we present the 
SERSCIS approach to threat modeling using semantic 
modeling and reasoning. Section 4 details the threat 
modeling activities and the relation with existing threat 
knowledge bases. Section 5 describes the threat activity 
assessment during system runtime. Section 6 discusses the 
implemented prototype in the context of A-CDM 
installation at Vienna Airport where as section 7 concludes 
with future work. 

II. RELATED WORK 

Conventional risk management methodologies [5], [6] 
are based on an analysis of assets that allow a system to 
achieve its purpose, threats to these assets that may prevent 
the system functioning correctly, and control strategies to 
protect those assets from potential threats. Assets are 
defined as anything that has value to the organization and 
which therefore requires protection. The notion of primary 
and secondary assets can be found in the literature. Primary 
assets like business processes and information are supported 
by secondary assets such as hardware, software, networks, 
personnel, physical spaces and organizational structure. 
These supporting assets are subject to potential threats from 
malicious or accidental disruption. In order to protect the 
primary assets, the threats to the secondary assets should be 
controlled and mitigated. In a mature risk management 
strategy, controls are introduced based on their cost-
effectiveness, leaving some residual risks that are too 
unlikely or have too little impact on system assets to be 
worth controlling. We were particularly interested in the 
variant specified for use in the SESAR project [8] as this is 
directly relevant to the air traffic control sector and A-CDM 
scenarios. However, all these approaches depend on the use 
of security experts to identify potential threats, assess how 
likely it is that they will arise, and advise on how far control 



strategies can reduce the likelihood of them having a 
significant impact on system assets. 

Much research has been conducted to devise methods to 
support such analyses. For example, MEHARI [9] and 
CRAMM [10] provide a knowledge base of vulnerabilities, 
attack and control scenarios, which were found to be very 
similar in a recent formal comparison [11]. Other 
approaches include OCTAVE [12], which has been refined 
[13] to support a more qualitative approach for non-
specialists. Many of these tools and methodologies provide 
generic threats (e.g. theft of media, fire, tampering with 
software, exceeding limits of operation) while others 
provide catalogues of specific threats per asset type (e.g. file 
erasure, OS, application software). However, they all 
depend on human analysis and interpretation by experts in 
IT security and/or the system being analyzed. 

This has motivated research into the possibility of 
capturing human expertise in a model which could then be 
applied by non-experts. For example, Secure Tropos [14] 
provides a diagrammatic approach to risk modeling, which 
has been extended [15] to provide a domain model covering 
assets, risks and risk treatment related concepts, and asset 
security criteria for confidentiality, integrity and 
availability. The CORAS project [16], [17] also used a 
graphical approach to identify, explain and document 
security threats and risk scenarios. A graphical notation was 
developed to perform five security analysis tasks: Context 
establishment, Risk identification, Risk estimation, Risk 
evaluation and Treatment identification. Diagrams are 
created during each of these steps (similar to UML models) 
under the guidance of a domain expert. These approaches 
have been used successfully, but they still require human 
interpretation, so they cannot handle situations where assets 
may be rapidly added, removed, reconfigured or 
recomposed at run-time. In [18] a formal approach is 
proposed for reasoning. The relations between the risk 
components are defined focusing on events temporal 
dependencies. However the quantitative analysis of these 
dependencies was not addressed. 

Semantic risk modeling is another approach based on 
machine understandable representations which offers the 
possibility of automated risk analysis. Blanco et al [17] 
provide a useful review of such approaches. For example, 
the NRL Security Ontology [18] provides a way to describe 
the security properties of Web Services, which was later 
used in a Web Service vulnerabilities ontology [19]. The 
most mature example prior to the developments reported 
here is the Security Ontology from Secure Business Austria 
(SBA) [20], which is based on the German IT Grundschutz 
Manual [21]. It provides a way to model systems with 
common threats and control strategies. The SBA approach 
goes a long way towards the goal of capturing security 
expertise in a form that can be reused (with supporting tools) 
by non-experts. However, this ontology describes threats 
and vulnerabilities using OWL instances, which works well 
when modeling a statically deployed system, but not for a 
dynamically composed system whose concrete composition 
is not known at design time. Having said that, it can be used 
to construct Bayesian belief graphs [22] describing the 
probability of threats impacting the system in the presence 
of controls. Poolsappasit et al [31] use such graphs to 
calculate dynamically changing threat levels via backwards 
Bayesian inference, but in their approach the graphs are 

constructed manually and only the probabilistic weights are 
adjusted. Our approach combines the two approaches, 
constructing belief networks automatically for a 
dynamically composed system and using both semantic and 
Bayesian inference to deduce threat activity levels. 

III. SERSCIS APPROACH 

In SERSCIS, our aim was to create a unified approach 
for such systems spanning both design time and run-time 
risk analysis. To do this, we needed four things: 
O1. an ontology capturing security expertise using generic 

classes of assets, threats and controls; 
O2. a way to specialize this to describe system-specific 

classes of assets and threats in a design time abstract 
system model; 

O3. a way to instantiate the resulting classes at run-time to 
create a concrete system model representing the current 
configuration of the running system; 

O4. a way to analyze this model to identify vulnerabilities 
and diagnose threats. 

The starting point was a core model based on the 
approach used by SBA [20]. The SERSCIS variant was 
deliberately made simpler, with a view to reducing the 
number of facts that have to be asserted in Objective 3 
(mentioned as O3 from now on) to support useful inferences 
in O4 above. In SERSCIS, we also made extensive use of 
SWRL rules to model the configuration of controls needed 
to protect assets from each class of threat, and the way some 
threats could be triggered as secondary effects of a primary 
disruption to the system.  

 

 

Figure 1. Core model classes and SWRL rules. 

 
The core model classes were then specialized to provide 

a dependability model describing (still generic) types of 
assets, threats, controls and (mis-)behaviours found in 
adaptive ICT systems. This encoded expert knowledge, e.g. 
what types of threats are relevant in such a system, how do 
they arise in specific combinations of interconnected assets, 
and what controls are needed to block or mitigate them. For 
example, asset classes were defined for offered services, 
their clients (customers who pay for and control access to 
the services, and consumers who actually use them), and 
resources used to deliver the service. Resources are further 
divided into those specified by clients (CSResources), or 
selected by the service provider (PSResources). Further 
asset classes represent the physical infrastructure, including 
hosts (organizations of people, computers and other 
equipment in which services, resources and clients operate) 
and communication networks to which organizations may 
be connected). The resulting dependability model thus 



provided O1 above. For full details of this semantic model, 
see [24]. 

For O2, a graphical system editor was developed 
allowing users to create system-specific sub-classes of the 
generic asset types from O1, and define the relationships 
between them. An automated process was then used to find 
system-specific asset combinations that may be subject to 
generic threat types from O1, and to auto-generate system-
specific threat classes representing the various ways each 
generic threat could affect the specific system. These tools 
are also described in [24], while an application of the 
ontology to model A-CDM systems and scenarios is 
described in [24]. 

Here we are mainly concerned with the construction and 
analysis of the concrete run-time system model O3, and the 
use of this model to detect and diagnose attacks O4. For this 
we must consider the types of threats captured by the model, 
and how they are related to system behavior. 

IV. THREAT MODELLING 

The goal of threat modeling in SERSCIS is to identify 
the threats to different asset types from a stakeholder 
perspective at design time, and create a model allowing 
threats to be automatically assessed at runtime. Our threat 
models are semantic descriptions of the relationships 
between a class of threat and classes of involved assets. 
Rules are then defined describing what controls are needed 
protecting those assets to block or mitigate the threat. One 
of the main challenges in developing this model is to ensure 
that threat classes are defined in a consistent manner, with 
no unintended gaps or overlaps between threat classes. 

Examination of ISO 27001 and 27005 showed that they 
only provide guidelines for threat identification, which 
cannot easily be mapped onto an abstract threat model in the 
absence of a concrete system. The next option was to base 
the SERSCIS threat ontology on knowledge bases 
underpinning some of the related tools. The CRAMM threat 
catalogue is not published, so attention focused on the 
MEHARI catalogue of threats per asset type. However, 
MEHARI focuses on low-level information assets such as 
individual data files and software configurations. It would 
be possible to construct a threat model from this, but it 
would be more suited to analyzing a single service rather 
than an ecosystem of data sharing systems like those found 
in airports. 

After conducting the investigation of the above 
standards, the best starting point among established 
standards and tools was found to be IETF RFC 2828 [25]. 
This was well suited to the task because it provides an 
information security vocabulary, so it was designed to 
classify meaning. RFC 2828 defines a threat as a 
combination of a threat action (an event or situation that 
compromises a system) and its threat consequences (the 
nature of the resulting compromise). Factorizing threats 
along these lines reduces the number of distinct cases that 
need to be considered from N.M to N+M, after which a 
systematic approach can be used to find all relevant 
combinations of threat actions and consequences. 

The first step was to decide on the set of consequences 
to be included in the model: 

 
 
 

TABLE I.  THREAT CONSEQUENCES 

No Consequence and meaning 

1 The threat causes data to be passed to or read by the 
wrong party. (An asset will become indiscreet). 

2 The threat causes corruption of data. (An asset will be 
become inaccurate). 

3 The threat causes the system to run too slowly. (An 
asset will begin to underperform). 

4 The threat causes the system to fail in its function. (An 
asset will become unreliable). 

5 The threat steals access to system functionality. (An 
asset will become promiscuous). 

6 The threat causes control of the system to be lost to an 
inappropriate party. (An asset will become untrustworthy) 

7 The threat places more load on the system than it can 
handle. (An asset will become overloaded). 

8 The threat makes it impossible for one or more users 
to interact with some or all of the system functions. (An 
asset will become unavailable). 

9 The threat undermines other parties’ trust that the 
system will work correctly on their behalf. (They will 
become dissatisfied with their interaction with the system). 

 
Table 1 indicates how these consequences are related 

some of the classes of asset misbehavior defined in the 
SERSCIS asset model. Other types of behavior are related 
to possible threat actions, which are listed in Table 2: 

TABLE II.  THREAT ACTIONS 

No Action 

1 Destruction of an asset. 

2 An asset is accessed without proper restrictions. 

3 Removal of an asset by an unauthorized party (theft). 

4 Alteration of an asset (corruption). 

5 An asset is misused or caused to fail by an authorized 
operator (insider attack). 

6 Blocking messages to and from an asset. 

7 Sending spurious messages to or from an asset 
(spoofing). 

8 Altering messages to or from an asset. 

9 Messages to and from an asset are read by someone 
who is not the source or the intended destination 
(snooping). 

10 There is a bug in the software components of an asset. 

11 The asset malfunctions for other internal reasons. 

12 An asset malfunction becomes persistent (i.e. 
predictable). 

13 An imposter pretends to be an asset (impersonation – 
the asset becomes unauthentic). 

14 An imposter deceives an asset by pretending to be 
another asset (the other asset is unauthentic). 

15 An asset’s capacity is reduced (under-provisioning). 

16 An asset is subjected to more use than expected 
(overuse). 

17 An asset commits to do more than it can. 

18 An asset is hacked over a network using a previously 
known security flaw (remote known exploit). 

19 An asset is hacked over a network using a previously 
unknown security flaw (remote zero-day exploit). 

20 Other action, including secondary effects. 

 
To derive a comprehensive set of threats, one must take 

all meaningful combinations of action and consequence for 
each type of asset. In the SERSCIS threat model, threats are 
labeled using the threat action number, the consequence 
number, and a descriptive name usually referring to the type 
of asset targeted by the threat. In practice, one can ignore 
some combinations if they are not important for a particular 
class of applications, but the systematic approach ensures 
this is never done inadvertently. For A-CDM scenarios we 
were mainly interested in inappropriate data access or 
alteration, and reduced service performance or availability. 



The threat action, consequence paradigm allows a 
systematic approach to threat identification; however it 
doesn’t solve the issue of detecting threats during runtime. 
Detecting threats during runtime in SERSCIS is based on 
observations of asset (mis-)behaviors (e.g. Inaccessible, 
Inaccurate, Indiscreet, Over-committed, Overloaded, etc.). 
The behavior classes are defined as part of the SERSCIS 
model, representing the (generic) effects of threat actions 
from Table 2 on different asset types (see Table 3). They are 
listed in Table 3. Observations of these behaviors must be 
generated by analyzing system monitoring events. This is 
system dependent, but usually involves setting thresholds 
for parameters like throughput, response time or rates for 
various types of failures, and using these to decide whether 
the behavior is or is not present. Our approach to threat 
identification (see Section5) means one need not monitor 
for all behaviors.  

TABLE III.  ASSET BEHAVIOURS 

Behavior 

Applies to 
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Dissatisfied: the asset 
isn’t happy with its 

interactions with the 

system. 

    Y Y Y Y Y  Y  

Inaccessible: the asset 

fails to recognise 

authorized users 

Y Y Y     Y Y  Y Y 

Inaccurate: 
information 

exchanged with the 
asset contains errors. 

 Y Y  Y Y Y Y Y  Y Y 

Indiscreet: the asset 

allows inappropriate 

access to its data. 

 Y Y  Y Y Y Y Y  Y Y 

Overcommitted: The 

asset is promising 

more than it can 
deliver. 

    Y        

Overloaded: the asset 

is interacting more 

than it should. 

 Y Y Y Y Y Y  Y  Y Y 

Promiscuous: the 

asset does not 

properly restrict 
access. 

Y Y Y  Y   Y Y  Y Y 

Unaccountable: the 

asset denies 

responsibility for its 
actions. 

     Y       

Unauthentic: the asset 

may not represent or 
be what it claims. 

 Y Y  Y Y Y Y Y  Y Y 

Unauthorized: the 

asset doesn’t have the 

rights it needs. 

     Y Y      

Unavailable: the asset 

can’t be contacted. 

 Y Y Y Y Y Y Y Y  Y Y 

Underperforming: 
interaction with the 

asset takes too long. 

 Y Y  Y Y  Y Y  Y Y 

Unreliable: the asset 

fails for internal 
causes. 

 Y   Y Y Y Y Y  Y  

 
Threats can obviously cause asset (mis-)behavior 

through their threat consequences. Typically one must 
analyze the observed behavior to deduce which threat is 
responsible as discussed in Section 5. Some types of asset 
behavior can also be part of the threat action, i.e. their 
detection indicates that a threat action is in progress. The 
SERSCIS threat model captures this via secondary effect 
rules. For instance a DoS attack on a resource causes it to 
become unavailable, which causes a service using the 
resource to underperform. 

 

 
 

Figure 2. Secondary effect (threat behaviour) chain. 

V. THREAT ACTIVITY ASSESMENT 

The starting point for threat activity assessment was to 
assume we have a set of M observations B={Bi, i=1,…,M} 
of potential adverse behaviors in system assets. Each 
observation tells us whether a specific behavior is present or 
absent in a specific system asset. Note that this set only 
covers a subset of possible system behaviors. The rest are 
not observed, so we do not know whether they are present. 
The set B represents our evidence of threat activity in the 
system. At this point threats are considered independent, at 
the end of this section we explain how secondary effects 
capture chained threats. 

We then suppose that the actual threat activity is 
represented by a vector of Boolean values T={Tj, 
j=1,…,N}, covering all N potential threats in the system. 
Thus Tj=True if and only if threat j is active. Our problem 
is that we do not know which threat(s) are active, i.e. we do 
not know T. However, we do have an idea of how likely it 
is that each threat could be active, from our conventional 
design-time risk analysis. This is captured as a vector of 

prior probabilities P(Tj|∅), giving the expected probability 
that threat Tj is active given no evidence either way (i.e. the 

set of behavior observations is the empty set ∅). The prior 
probabilities reflect our initial ideas about how likely each 
threat is, i.e. they reflect our trust in the system’s ability to 
counteract potential threats. But since we have some 
observations of the system, we can improve on this and find 
the current probability that each threat is active. This is 
simply P(Tj|B), i.e. the current probability that threat Tj is 
active given the evidence of our observations B. 

To calculate this, we can use Bayesian inference [26], 
which tells us that: 

P�T|B� = P�T� P(B|T)
P(B)

 

 
Here T is a specific set of true/false threat activity 

values. P(T) is the expected probability of that particular set 
of values. If threats are considered independent, this is just: 

 

P�T� = � P�T�|∅�
j:Tj=True

� 
1 − P�T�|∅�

j:Tj=False

 

 



P(B|T) is the probability of getting our evidence (i.e. the 
M observations B) if the set of active threats is as specified 
by T. Finally, P(B) is the expected probability of getting 
those observations given no assumptions about which 
threats are active. If we sum over all 2N possible values of 
T, the law of total probability gives this as: 

 

P(B) = � ���� ∙ ���|��
T

 

 
If we want to know P(Tj|B), we have to sum P(T|B) over 

all combinations of active threats T in which Tj is active: 
 

P(T�|B) = � P��|��
T: ��=True

 

 

P(T�|B) = � P(T)∙P(B|T)

T:Tj=True

� P(T)∙P(B|T)

T

�  

 
Everything here is easily calculated except for P(B|T) 

and the fact that we have to sum over all possible 
combinations of threat activity values T, i.e. we need to 
calculate 2N terms, which rapidly becomes intractable. The 
usual way to deal with the exponential number of terms is 
to sample the possible threat activity configurations T. We 
will return to this shortly. 

To calculate P(B|T), we assumed that each potentially 
observable behavior could be caused in one of two ways: 
i) behavior i could be triggered by threat j, with 

probability P(Tj→Bi); or 
ii) behavior i could arise spontaneously in the absence of 

any threat with probability P(Bi|T0). 
where T0 represents the case of no active threats (i.e. all 

Tj are False). Spontaneous behavior was included in the 
model to allow for the possibility of false alarms, in which 
a behavior is detected due to monitoring errors or random 
variations in asset behavior that may look like misbehavior. 

The contributions to adverse behavior causation 

P(Tj→Bi) and P(Bi|T0) were added to the core ontology 
from Fig. 1 by including further relationships, as shown in 
Fig. 3. 

 

 

Figure 3. Core model behaviour causation extensions. 

 
The results were relatively insensitive to the rates of 

threat triggering of behavior, provided the rates are close to 
1.00 or 0.00 when they should be and not otherwise. 
However, this varies from system to system, so some tuning 

of P(Tj→Bi) is needed. For example, whether a threat causes 

underperformance depends on whether the compromised 
process is on the critical path, so this has to be set for 
system-specific threat classes. Some tuning of P(Bi|T0) was 
also needed to match the sensitivity and false alarm rates of 
the system-specific monitoring probes used. For this reason, 
the rates were not added directly to the semantic model, but 
stored in a separate human-readable spread sheet while this 
tuning process was carried out. We did not try to automate 
the tuning process using machine learning techniques 
similar to those used for Internet traffic [27], although this 
may be possible in future. 

Now, if we make an observation to detect a given 
behavior, it should be present unless none of the possible 
causes triggered it. It is convenient to define the probability 

P(¬Bi) of not finding behavior i, which is given by: 

P�¬Bi� = �1 − P�Bi|TTTT0000�� � 
1 − P�T�→Bi�

j:Tj=True

 

 
We can then calculate P(B|T) from: 
 

P�BBBB|TTTT� = � �1 − P�¬Bi�� � P�¬Bi�
j:Tj=Falsej:Tj=True

 

 
These equations represent the Bayesian belief graph 

used in the Bayesian inference procedure. The software 
used the semantic model to determine which threat 
instances are related to which asset behaviors (i.e. to create 
the belief graph), and then looked up the corresponding 
probabilities taken from the associated spread sheet. Note 
that in [22], an ontology is used to compute a Bayesian 
belief graph which is then used in the forward direction to 
compute how likely it is that threats will be active and have 
consequences (including triggering secondary threats) 
given the available controls. We use the belief graph in the 
reverse direction, to deduce from the consequences which 
threats are active. 

Finally, we come to the sampling strategy used to 
estimate the sum of terms in the numerator and denominator 
used to compute the posterior estimates of threat activity 
P(Tj|B). It is computationally infeasible to compute all 2N 
terms given that a typical concrete system model may have 
thousands of threat instances (our A-CDM model peaked at 
2,647 threat instances). One might use an Approximate 
Bayesian Computation (ABC) sampling strategy [28] in 
which terms are sampled based on an estimate of their 
contribution derived from previous samples. In our case it 
was clear that the chances of threats being active (i.e. 
causing adverse behavior) is low given that the systems of 
interest (such as airports) do employ extensive 
countermeasures. We therefore initially considered terms in 
which only zero, one or two threats were active at any time, 
and obtained reasonably good results with a simplified 
ontology [29], [30]. However, this approach wasn’t 
effective if one threat was likely to cause another. This 
would make it likely that more than one threat will be active 
(a situation we did not sample), and undermine the 
assumption of independence used to calculate P(T). 

In the final version, any threats classified by semantic 
reasoning as secondary (i.e. triggered by observed asset 
misbehavior, as a knock-on consequence of some other 
primary threat) are considered to be active by definition. We 
then sample the subspace of T by varying the status of all 



remaining non-secondary (i.e. potential primary) threats. In 
effect, each sample then represents a set of correlated active 
threats, but different samples are independent of each other, 
since the differences between them come only from the 
independent primary threats. In effect, this means we use 
Bayesian inference only to find primary threats, as the 
secondary threats have already been identified by semantic 
reasoning and excluded from the Bayesian search: 

 

 

Figure 4. Sampling stragegy. 

This approach was well suited to our purpose because: 

• while the estimates for P(Tj|B) are quite rough, 

comparison with prior probabilities P(Tj|∅) gives a 
clear signal whether observed behaviour supports the 
hypothesis that threat j is active; 

• the secondary effect chain extends only as far as can be 
explained by observed behavior, so we do not need ex-
tra parameters modeling threat propagation probability; 

• the run-time is kept to a minimum, which is a 
significant benefit given that Bayesian estimation is 
being used ‘in the loop’. 

The restriction to sampling at most one primary plus all 
secondary threats allowed the total run-time to be kept 
within 1 minute, while the number of threats increased from 
under 100 to well over 2000. 

VI. EVALUATION 

A. Evaluation Scenarios 

The evaluation was carried out using a simulation of a 
typical A-CDM installation based on a subset of the Vienna 
Airport system. It was necessary to simulate the test system 
because A-CDM was not deployed at Vienna until near the 
end of the SERSCIS project, and also because it was not 
acceptable to inject faults into the real airport in order to test 
our threat detection and diagnosis approach. Details of the 
simulated airport are described in [24]. Here we focus on 
the attack scenarios simulated, and the results obtained from 
the semantically-driven Bayesian inference procedure. 

The basic structure of the simulated airport is illustrated 
by the logical assets and relationships from Fig. 5. 

 

Figure 5. Logical assets in the airport system model. 

For the sake of simplicity, Fig. 5 shows only logical 
services, without any of the physical assets involved (airport 
communication networks and service providers). The model 
represents the A-CDM network from the point of view of a 
ground handling service provider. The ground handler is 
responsible for coordinating services such as refueling, 
catering and baggage handling provided to the aircraft 
during its stopover, and updating the A-CDM data exchange 
service provided by the airport’s ACISP. This service is also 
used by local air traffic control services, and by the Central 
Flow Management Unit (CFMU) operated by 
EUROCONTROL. 

This set up was used to simulate six scenarios: 

• unauthorized rescheduling of the refuelling service by 
a malicious activist impersonating a ground handler; 

• jamming of radio communications between the ground 
handling service operator and the aircraft stand; 

• a remote denial of service attack on a fuelling service 
over a connecting network; 

• a worker strike at an airport service provider causing a 
slow-down in aircraft refuelling services; 

• a malfunction in the ground handler’s software for 
predicting aircraft turn-around schedules. 

• a ‘sunny day’ in which there are no active threats and 
the airport operates normally with only random 
variations in turn around service provision; 

All but the last scenario represents a different active 
threat, most of which also involve knock-on consequences. 
The aircraft arrival and target take-off times were taken 
from 124 flights passing through the real Vienna Airport on 
a day in July 2010. 

 

B. Key Performance Indicators 

To assess the impact of the threats on the simulated 
airport operations, we considered how they affect key 
performance indicators (KPI) defined by Austrocontrol (the 
national air traffic control service provider). These KPI 
included the number of aircraft taking off outside the slot 
tolerance windows, and the average error in predicted 
aircraft ready times, known as target off-block times 
(TOBT) issued when the aircraft is about to land. 

TABLE IV.  SIMULATED KPI 

KPI Scenario 
1 2 3 4 5 6 

Take-off 

outside slot 

0% 0% 31% 0% 99% 0% 

Average TOBT 

error 

1m 57m 94m 11m 19m 0m 

 
It is clear that all the simulated attacks had some impact 

on these KPI. Scenario 1 has the least effect, simply because 
rescheduling the fuelling service can usually send a spare 
crew when the ground handler complains that they are 
overdue. Only at peak times were there no spare crews 
available in the simulation, so only a few flights suffered 
any serious delays. In scenarios 1, 2 and 4 the ground 
handler was able to predict the consequences of the attack 
well enough to avoid aircraft taking off at the wrong time. 
In the remote denial of service and software malfunction 
scenarios this was not possible, so aircraft left the stand at 
the wrong time. (Normally air traffic control would prevent 
them taking off, but our simulation did not cover what 



happened after the ground handler finished delivering the 
turn-around service). 

While each attack produced a different effect on the 
KPI, apart from Scenario 1 this depended on when 
mitigating action was taken, so it isn’t in general possible to 
deduce the cause of the problem from the KPI. However, 
using the semantically-driven Bayesian inference approach, 
it was possible to diagnose the root causes. 

C. Threat Detection 

In Scenario 1, the first adverse behavior detected is the 
fact that the fuelling service disagrees with the ground 
handler as to how often it is being updated. At this point, the 
SERSCIS tools reported four threats with higher than 

expected likelihood, i.e. P(Tj|B) > P(Tj|∅) where P(Tj|∅) is 
typically around 1%: 

• unauthorized access to data by impersonation of the 
ground handler (28.5%) 

• unauthorized access to data due to faulty access control 
at the fuelling service (28.5%) 

• unauthorized update to data due to faulty access control 
at the fuelling service (28.5%) 

• unauthorized update of data by impersonation of the 
ground handler (14.1%) 

Initially the fuelling service copes with the unauthorized 
rescheduling by substituting spare crews, leading the 
ground hander to assume the schedules are still accurate. 
The last two threats then drop off the list returned by the 
Bayesian estimator, leaving just the two possible reasons 
why the fuelling service is being indiscreet (which is still 
detectable). When the airport gets busy, the fuelling service 
can no longer honor the original schedule, and the ground 
handler detects that there must be a data corruption. At this 
point, the Bayesian activity estimator reports only two 
threats as possible causes: 

• unauthorized update to data due to faulty access control 
at the fuelling service (65.5%) 

• unauthorized update of data by impersonation of the 
ground handler (32.8%) 

At this point a third threat is also identified as being 
active, but this is because it has been classified as a 
secondary effect: persistent inaccuracy in one of the 
available fuelling services. It is useful to note that at this 
point, if secondary effect classification were not used, we 
would have seen a much lower P(Tj|B) for the above pair of 
possible root causes, and non-negligible increases in P(Tj|B) 

relative to P(Tj|∅) for several other threats based on adverse 
behavior in the ground handler and in the data passed to the 
A-CDM service provider, etc. However, because these can 
all be caused by persistent inaccuracy in a fuelling service, 
they are automatically accounted for, and the Bayesian 
inference procedure does not get distracted from possible 
root causes. As far as the authors know, semantic and 
Bayesian inference have never before been combined in this 
way to enable root cause analysis using monitoring data 
from a set of interdependent system components. 

Throughout this scenario, the machine reasoning tools 
were able to produce results within 1-2 minutes of the 
behavior changes being detected, despite the fact that the 
airport simulation and the simulated monitoring system plus 
semantic and Bayesian inference tools were all running in 
the same virtual machine on a single CPU. 

Clearly, as with any data-driven methodology, the 
SERSCIS tools cannot diagnose a threat correctly until they 
have enough observations of asset misbehavior. In this case 
that was not until the effect of the attack on the fuelling 
service provider had become significant. However, even 
when only some misbehavior was evident, the inference 
method produced a shortlist that included the actual cause, 
plus with other causes whose investigation would have led 
the operator in the right direction (in this case, the obvious 
first step would be to call the fuelling service provider to 
find out what is happening). We did not simulate the effect 
of operator action to mitigate the threat, but in this case it 
may have been possible to fix the errant access control 
policy before the airport became busy. In the worst case 
some of the load could have been diverted to an alternate 
fuelling service provider. 

The other scenarios show a similar pattern to Scenario 
1. In Scenario 2, the SERSCIS tools identified the jamming 
attack on the ground handler’s internal radio network as the 
primary active threat as soon as the first misbehavior was 
detected (the network became unavailable). In this case, a 
secondary effect is also identified, which accounts for the 
knock-on consequence that the ground handling service 
becomes unavailable. This ensures other possible causes of 
the service being unavailable (e.g. lack of available fuelling 
services) are not highlighted as possible active threats. In 
Scenario 2, the posterior probability of the jamming attack 
is only 15.7% due to the poor sampling strategy, but because 
it is the only threat for which P(Tj|B) is boosted above 

P(Tj|∅), the signal is clear enough to an operator. 
In Scenario 3, we get a similar effect: the correct attacks 

are identified as root causes even though P(Tj|B) remains 
well below 50%. Two different variations were used for this 
scenario, one in which the remote attacker exploited a 
software bug to tie up the service itself, and one where the 
attacker used a packet flooding attack to deny service. Both 
cases produce the same set of secondary effects accounting 
for various knock-on effects (starting with the fuelling 
service being unavailable). Including these in all Bayesian 
samples allows correct identification of the primary cause 
in each case. 

In Scenario 4, the fuelling service retains some 
availability but the loss of most of its workers to a wildcat 
strike makes it underperform. From the ground handler’s 
point of view the cause of this is internal to the fuelling 
service provider, and the Bayesian inference simply 
highlights an underperforming fuelling service threat. After 
some time the effects lead the ground handler to 
underperform, and this is tracked by the SERSCIS tools by 
an increase in the chain of misbehavior and threats classified 
as secondary effects. 

Finally in Scenario 5, the software malfunction leads the 
ground handling service to produce inaccurate TOBT 
predictions. The Bayesian inference procedure highlights 
four possible causes: 

• ground handing service software malfunction (18.3%); 

• impersonation of a back-up fuelling service to the 
ground handler (13.7%) 

• inaccuracy in the back-up fuelling service (10.1%); and 

• unauthorized update of ground handing service data 
(9%). 

The first threat is the correct root cause diagnosis, and it 
is also the one found to be the most likely. The other three 



appear because they too could account for the inaccurate 
predictions, and in this case we have no evidence ruling 
them out. The two threats involving a back-up fuelling 
service appear because in this scenario, there is no problem 
with the first-choice fuelling service and the back-up is 
never used. As a result, even though monitoring probes are 
in place to detect authentication failures and inaccuracy, 
they are never triggered so no observations can be included 
in the set B used by the Bayesian inference system. The last 
threat highlighted represents the possibility that input data 
is being corrupted by an unauthorized party, and this arises 
because our simulation did not include any reporting from 
customers (i.e. airlines) on the number of updates they had 
made. Consequently it was not possible to monitor whether 
any excess update requests were received and processed by 
the ground handling service. 

This last scenario shows that in some situations one 
should make assumptions about at least some types of 
adverse behavior when no observations are available. Our 
approach has been to assume an observation remains valid 
until we get a new observation (i.e. we take the last received 
system monitoring event). This fails when a new component 
is introduced for which there are no prior events, or where 
the system cannot provide the necessary monitoring data. 
This is one area we plan to investigate in future. 

Finally, Scenario 6 was tested just to check whether our 
system was likely to cause false alarms. In fact, no threats 
were ever highlighted in any test using the sunny day 
scenario, even though some flight delays were seen. This is 
due to the fact that some level of random misbehavior 

detection is built into the model through P(Bi|∅). 

D. Comparision with SESAR 

It is worth considering how the overall SERSCIS 
procedure differs from a conventional ISO 27000 compliant 
methodology. The comparison was made between our 
approach and SESAR for two reasons: SESAR is ISO 
27001/27005 compliant and it is applied in the same context 
as ours i.e. Air Traffic research and development [8]. The 
comparison includes the design-time modeling processes 
summarized in Section 3 as well as the run-time elements 
described in Sections 4 and 5. The results are summarized 
in Table 5 

TABLE V.  COMPARISION WITH SESAR METHODOLOGY 

 
Step Original SESAR 

procedure 
SERSCIS 

variation 

Threat 
identification 

Design-time 
analysis by a security 
expert. 

Design-time auto-
mated threat class 
generation based on 
expertise encoded in a 
generic threat model. 

Threat 
impact severity 
assessment 

Original SESAR procedure adopted in 
SERSCIS. Design-time analysis based on a 
consideration of impact on primary and secondary 
assets. 

Threat prior 
likelihood 

Design-time 
expert analysis of 
attacker 
motives/abilities in the 
presence of security 
controls. 

Rough estimates 
are sufficient, may be 
based on historic attack 
frequency data if 
available. 

Threat 
current 
likelihood 

Not available: 
static design-time 
analysis only. 

Dynamically 
inferred at run-time 
based on observed 
system behaviour. 

Step Original SESAR 
procedure 

SERSCIS 
variation 

System 
vulnerability 
detection. 

Design-time 
expert analysis based 
on the planned security 
controls. 

Run-time analysis 
based on actual security 
controls used by 
dynamically composed 
system assets. 

 
The key differences are in threat identification stage and 

the current threat activity likelihood. In the conventional 
methodology, a security expert is involved in analyzing the 
specific system under consideration. In the SERSCIS 
approach, this is not necessary. Instead, the security expert 
creates a generic model that can be used by a system 
designer in an automated threat identification process. The 
conventional methodology then uses the design-time expert 
analysis as a basis for assessing run-time threat activity and 
system vulnerabilities. In SERSCIS these are updated at 
run-time using information from run-time monitoring of the 
system configuration and behavior. Dynamic changes can 
only be addressed in the conventional methodology by 
updating the original design-time analysis for each change. 
Since this involves humans it cannot be done ‘in the loop’ 
which is why SERSCIS makes such extensive use of 
machine reasoning so the process can be fully automated. 
The results of this run-time analysis are then presented to 
the user via a decision support GUI described in [30]. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a run-time dynamic 
approach to risk management for use in dynamic, multi-
stakeholder ICT systems as part of the SERSCIS project. A 
semantic threat modelling approach was used to support 
design time threat identification and mitigation strategies. 
Semantically driven Bayesian inference enables the run-
time analysis of threats and allows us to perform root cause 
analysis for threats. We have provided the results of our 
approach when applied to various scenarios simulating 
threats within an airport ICT system. We have also 
compared and contrasted the improvements of our approach 
over existing risk management procedures like SERSAR. In 
the future, we plan to extend the modelling work as a basis 
for relating socioeconomic trust in ICT systems as part of 
the OPTET project. 
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