
ar
X

iv
:1

30
6.

58
98

v1
 [

cs
.C

R
]

25
 J

un
 2

01
3

A Grammatical Inference Approach to Language-Based Anomaly Detection
in XML

Harald Lampesberger
Christian Doppler Laboratory for Client-Centric Cloud Computing,

Softwarepark 21, 4232 Hagenberg, Austria
Email: h.lampesberger@cdcc.faw.jku.at

Abstract—False-positives are a problem in anomaly-based
intrusion detection systems. To counter this issue, we discuss
anomaly detection for the eXtensible Markup Language
(XML) in a language-theoretic view. We argue that many
XML-based attacks target the syntactic level, i.e. the tree
structure or element content, and syntax validation of XML
documents reduces the attack surface. XML offers so-called
schemas for validation, but in real world, schemas are often
unavailable, ignored or too general. In this work-in-progress
paper we describe a grammatical inference approach to learn
an automaton from example XML documents for detecting
documents with anomalous syntax.

We discuss properties and expressiveness of XML to
understand limits of learnability. Our contributions are a n
XML Schema compatible lexical datatype system to abstract
content in XML and an algorithm to learn visibly pushdown
automata (VPA) directly from a set of examples. The pro-
posed algorithm does not require the tree representation of
XML, so it can process large documents or streams. The
resulting deterministic VPA then allows stream validation
of documents to recognize deviations in the underlying tree
structure or datatypes.

Keywords-intrusion detection; anomaly detection; XML;
grammatical inference

I. I NTRODUCTION

Detecting attacks against software is the research field
of intrusion detection systems (IDS). We distinguish IDS
techniques intomisuse-and anomaly-baseddetection for
hosts and networks: A misuse-based IDS matchessigna-
tures in a stream of events or network traffic. Contrary, an
anomaly-based IDS isolates events or network packets that
deviate fromnormal behavior. While signatures represent
known patterns of misbehavior, normality for anomaly
detection is usually approximated from observations by
machine learning or stochastic methods.

In theory, anomaly detection has the advantage of
recognizing yet unknown (zero-day) or targeted attacks
that are specifically designed to evade signatures. Bilge
and Dumitras [1] show that zero-day attacks are actually
frequent and targeted attacks like Stuxnet [2] will likely
reoccur in the future. Anomaly detection seems like a
perfect solution but suffers from severe practical problems.

False-positives and the high costs associated with them
are one major problem [3]. We don’t know beforehand
how often attacks occur, so the ratio of normal to abnormal
events can be heavily skewed: Even a system with low

This is a preprint version of the paper accepted for publication at the
First Int. Workshop on Emerging Cyberthreats and Countermeasures,
September 2-6, 2013, Regensburg, Germany.

false-positive rate could generate an unacceptable number
of false-positives. Sommer and Paxson [4] identify further
issues why anomaly detection is not adopted outside
academia: It is hard to understand semantics of a de-
tected anomaly and the notion of normality is unstable,
especially in networks. Commercial antivirus and network
IDS software still relies on signature-based techniques and
anomaly detection only plays a supporting role in products
that offer behavioral analysis.

The goal of this paper is a more promising anomaly
detection technique for theeXtensible Markup Language
(XML). XML is a platform-independent language for
semi-structured data and a pillar of today’s Web. Reducing
the attack surface therefore makes sense. For our approach
we resort to formal language theoryand grammatical
inferenceto understand language-theoretic properties and
learnability of XML. We believe, a detection technique
can only guarantee low false-positive and high detection
rates if it respects these properties.

A. Problem Definition

We consider anomaly detection similar to grammatical
inference: Learning arepresentationof a language, e.g.
a grammar or automaton, from thepresentationof a lan-
guage, e.g. from examples, counter-examples or an oracle.
Grammatical inference assumes that there is some hidden
target representation to be discovered, where language
class and type of presentation influence successfulness of
learning [5, pp. 141–172]. A learning algorithm is said to
converge if the hidden representation is uncovered.

We define our problem as follows: Given a set of
exampleXML documents, a learner returns an automaton
that allowsvalidationof syntactic structureanddatatypes
to decide normality of future documents.

While XML is exchanged as document, the underlying
logical model is atree. Processing the tree asDocument
Object Model(DOM) [6] requires all the information in
memory and this becomes harder with increasing size.
We require both automaton and learner to operate in a
streaming fashion, where memory and time for processing
is limited. The Simple API for XML(SAX) [7] is our
streaming interface to documents.

We approach the problem by first discussing expressive-
ness of XML. For that, we introduce a formal abstraction
of practical schema languages and show that language
representation throughvisibly pushdown automata(VPA)
is equivalently expressive. VPA are an executable model

http://arxiv.org/abs/1306.5898v1

capable of stream processing documents and satisfy our
requirement. We then characterize an XML language class
that can be efficiently learned from a set of example
documents. Content in XML is from an unknown language
class in general. We therefore introduce a datatype system
for abstracting content of possibly infinite nature into a
finite set of datatypes. The contributions are an XML
Schema compatible lexical datatype system and a state-
merging algorithm for learning VPA. An inferred VPA can
validate future documents to recognize anomalous syntax.

The paper is structured as follows: In the remaining
introduction we discuss vulnerabilities, XML-based at-
tacks and introduce our learning setting. In Section II
we define notations, schema languages and analyze XML
expressiveness and its limits for stream validation. VPA
are introduced in Section III. Section IV presents our
datatype system and learning algorithm. Related work is
listed in Section V and Section VI concludes this paper.

B. A Language-Theoretic View on Security

Sassaman et al. [8] analyze the software vulnerability
problem using formal language theory. Modularization and
composition is an important process in software engi-
neering but implicitly requiresinterfacesand protocols
between components. A protocol basically specifies the
syntax and semantics of a formal language for encoding
information, e.g. a file format or network message.

When two componentsR and S interact, the sender
S encodes information w.r.t. the protocol as transportable
object, e.g. a network message or file. The receiverR
decodes (parses) this object according to the protocol and
R’s internal state is updated in the process. Unfortunately,
protocols in the real world are often ambiguous, under-
specified or implementations have errors [8]. SenderS
might be able to craft a special object such thatR moves
into an unexpected or insecure state upon parsing. This
object is then calledexploit because it bends or breaks
the original intention of the protocol; We sayS abuses a
vulnerability in the protocol to attackR.

An unambiguous and precise protocol specification is
required to resolve vulnerabilities such that the receiving
component can reject malformed entities [8]. This is
exactly themembership decision problemin formal lan-
guages and it may be intractable or undecidable depending
on the language class. Another difficulty is that protocols
are oftenlayeredsuch that several languages are embedded
within each other, e.g. TCP/IP or content in an XML
document.

Today’s IDS are typically engineered around a spe-
cific language class, where computational complexity is
tractable. Nevertheless, their goal is to detect exploits in a
possibly larger language class or across several layers of
embedded languages. False-positives and false-negatives
are a direct consequence of mismatching language classes.
For example, misuse-based IDS are often restricted to
the class ofregular word languages(REG). If the class
of the observed protocol is greater thanREG and there
is a vulnerability, there might be infinite variants of

<transaction>

<total>1000.00<total>

<cc>

1234

</cc>

</transaction>

(a) Expected format, attacker con-
trols credit card number [9].

<transaction>

<total>1000.00<total>

<cc>

1234’ or ’1’=’1

</cc>

</transaction>

(b) SQL-injection attack.

<transaction>

<total>1000.00<total>

<cc>

1234</cc><total>1.00</total><cc>1234

</cc>

</transaction>

(c) XML injection attack for DOM parsers [9].

Figure 1. XML-based attacks.

exploits thatevadesignatures overREG. Understanding
the language-theoretic problems is therefore important.

C. Why Secure XML Processing Matters

XML takes the role of the protocol in Web browsers,
mobile applications and Web services. The logical tree
structure allows high expressiveness but correct processing
becomes more complex and vulnerabilities arise. DOM
parsers are vulnerable to Denial-of-Service (DoS) attacks
that exhaust time and memory, for example byoverlong
element namesor oversized payload. A coercive parsing
attack causes DoS by nesting a vast amount of tags [9].

If an XML parser respects theDocument Type Definition
(DTD) in the preamble of a document, several DoS attacks
based onentity expansionbecome a threat. Furthermore,
the XML parser could expose confidential information if
external entity referencesenable local file import [9].

XML injection is a large class of XML attacks, where
the attacker controls parts of a document. Figure 1 de-
scribes a fictional transaction document, where a monetary
amount is given and the user provides a credit card num-
ber. In Figure 1c, the attacker manipulates the transaction
value in the DOM tree when a DOM parser is in place
[9]. XML injection affects SAX parsers too if the parser
state is not propagated correctly. Cross-Site Scripting in
the Web is also a form of injection, where a script or
Iframe is embedded. Classic attacks likeSQL-, command-
or XPATH-injectionare also a threat if the application that
utilizes the XML parser is vulnerable.

Note that all the presented example attacks change the
expected syntaxof a document. Unexpected tree structure
or wrong datatypes could lead to harmful interpretation in
the XML processing component. Falkenberg et al. [9] and
Jensen et al. [10] recommendstrict validation of XML
documents to mitigate attacks but validation requires a
language representation, i.e. aschema.

Unfortunately, validation is not common. Only8.9% of
XML documents in the Web refer validate to a schema
[11]. Also, Web paradigms likeAsynchronous JavaScript
and XML (AJAX) [12] do not enforce schemas or vali-
dation, so developers are misled to ad-hoc design. This

motivates learning a language representation from effec-
tively communicated XML for later validation.

D. Learning in the Limit

We consider Gold’slearning in the limit from posi-
tive examples[13] as our grammatical inference setting.
The target class, a language classL expressible by a
class of language describing devicesA, is identifiable in
the limit if there exists a learnerI with the following
properties: LearnerI receives as input enumerated ex-
amplesE(1), E(2), . . . of some languageL ∈ L, where
E : N → L is an enumeration ofL, and examples may
be in arbitrary order with possible repetitions. With every
input, I returns the current hypothesisAi ∈ A, e.g. a
grammar or automaton, and there is a point of convergence
N(E): For all j ≥ N(E), Aj = AN(E) and the language
of AN(E) is L. We call I a learner for target classL if
there is convergence for allL ∈ L. A sample setS+ ⊆ L
is calledcharacteristicif learning converges whenS+ is
enumerated toI [14].

Unfortunately, grammatical inference is hard and even
the classREG is not learnable in the limit from positive
examples only [13]. Learning from XML documents is
even harder because it is acontext-free word language.
Ignorance of learnability properties reflects in bad prac-
tical performance of anomaly-based IDS. We therefore
approach the problem more formally and present a learner
for a restricted class of XML in Section IV.

II. XML

The logical structure of XML is a tree, whereΣ
always denotes the alphabet of element names. We encode
attributes as elements with a leading@-character and
namespaces as part of the element name. An encoding
example is in Figure 2. We disregard identifiers and
references because they change the logical structure.

The structure without element content or attribute values
is characterized byΣ-trees [15]. The inductive definition
of TΣ, the set of allΣ-trees, is: (1) everyc ∈ Σ is aΣ-tree;
(2) if c ∈ Σ andt1, . . . , tn ∈ TΣ, n ≥ 1 thenc(t1, . . . , tn)
is aΣ-tree.Σ-trees areunrankedsuch that every node can
have an arbitrary number of children.

The set of nodes of treet ∈ TΣ is Dom(t) ⊆ N∗ and
defined as follows: Ift = c(t1 · · · tn) with c ∈ Σ, n ≥ 0
and t1, . . . , tn ∈ TΣ, then Dom(t) = {ǫ} ∪ {i.u | i ∈
{1, . . . , n}, u ∈ Dom(ti)}. Symbolǫ, the empty word, is
the root of the tree and nodev.j is thej-th child of node
v. The label ofv in t is labt(v). A tree languageL over
Σ is then a set of trees such thatL ⊆ TΣ.

A document is aΣ-tree encoded with tags. For nota-
tional convenience, we strip angled brackets such that the
set of open-tags isΣ and the set of close-tags becomes
Σ = {c | c ∈ Σ}. We use variablesc, c1, c2, . . . , ci ∈ Σ
for open-tags andc, c1, c2, . . . , ci ∈ Σ for the according
close-tags. XML documents without content are words
over (Σ∪Σ) andwell-matchedif they obey the grammar
W ::= WW | cWc | ǫ.

A tree is translated into a document by pre-order
traversal (document order) and we denote the functiondoc
as the bijection between trees and documents.

A. Schemas and Types

A schema is a tree grammar that restricts expressible
XML over elementsΣ and implicitly gives meaning to
structure. DTDs are the simplest form of schemas:

Definition 1 (DTD [16]): A DTD is a triple (Σ, d, sd),
where production rulesd : Σ → REG(Σ) map element
names toregular expressionsoverΣ andsd is the distin-
guished start element. The right-hand side of production
rules is calledcontent modelandL(d) is the set of trees
that satisfyd.

The expressible language classDT D is rather limited
and practical schema languages like XML Schema (XSD)
[17] or Relax NG [18] offertypesto increase expressive-
ness. Types are from a finite set, each type is associated
with a unique element name and the start element has
exactly one type [16]. Variablesm,m0, n in this paper
always denote types. As a formal abstraction of practical
schema languages we recall the definition ofextended
DTD (EDTD):

Definition 2 (EDTD [16]): An EDTD D is a tuple
D = (Σ,M, d,m0, µ), where M is a set of types,
µ : M → Σ is a surjection from types onto element names
and(M,d,m0) is a DTD over types. A treet satisfiesD
if t = µ(t′) for some t′ ∈ L(d), whereµ ranges over
trees. Treet′ is calledwitnessfor t, L(D) denotes the set
of trees andLw(D) denotes the documents that satisfy
D. The language classEDT D expressible by EDTDs is
equivalent to theregular tree languages[15].

B. Stream Validation and Expressiveness

The stream validation or type-checking problem is to
decide whether a document is in the language of a given
schema within a single pass. Typing a documentw is to
assign every positioni (every tag) some type. A document
is valid w.r.t. a schema if such an assignment is possible
for all positions. Note that functionµ is surjective and a
position can have multiple types in general.

Martens et al. [16] and Murata et al. [19] discussambi-
guityanddeterminismof schemas: A schema is ambiguous
if there is a document in the language with multiple types
at some position. A schema isdeterministic if for all
described documents at all positions the choice is limited
to a single type. In other words, a schema is deterministic
if every type assignment is clear when an open-tag is
read. Note that ambiguity always implies nondeterminism.
Martens et al. [16] introduce the1-pass pre-order typed
(1PPT) property for EDTDs that are deterministic and
therefore allow efficient stream validation.

Note that determinism is also important for efficient
processing. This is one factor why content models in
practical schema languages like DTD and XSD have
restrictions to enforce determinism [17]. We direct the
reader to Martens et al. [16] for a thorough analysis of
expressiveness of schemas.

<movie year="1968">

<title>2001: A Space Odyssey</title>

<director nid="nm0040">S. Kubrick</director>

<review>A good movie.</review>

</movie>

(a) XML document with attributes, data and mixed content.

movie

review

movie.em

good

A

director

S. Kubrick@nid

nm0040

title

2001: A Space Odyssey

@year

1968

(b) Tree with data nodes.

movie

review

stringem

string

string

director

string@nid

string

title

string

@year

integer

(c) Datatyped tree.

Figure 2. Example XML document and it’s tree representation.

We haveDT D (EDT Dst (EDT Drc (EDT D,
whereEDT Dst is the class of schemas that satisfy the
restrictions of XSD andEDT Drc is the class of deter-
ministic schemas, where the 1PPT property holds [16].

C. Datatypes and Mixed Content

XML documents carry data as element contents or
attribute values and the tag encoding of documents guar-
antees that tags and data are not confused. We denote data
in a document as words over alphabetU , i.e. Unicode, and
variablesr, s ∈ U∗ always represent data. But data could
be from any language class, for example natural language
or program code. As an abstraction of data, we introduce
datatypes:

Definition 3: A so-called lexicaldatatype systemis a
tuple (∆, U, φ), where∆ is a finite set of datatypes and
φ : ∆ → P(U∗) is a surjection that assigns every datatype
its lexical spaceas some language overU . Because it is
surjective, a datumr may have several matching datatypes.
Variablesa, b ∈ ∆ always denote datatypes in this paper.

A datatype system has functionstypes : U∗ → P(∆)
and firstT ype : U∗ → ∆. While types(r) returns all
matching datatypes for somer, firstT ype(r) chooses one
matching datatype to reduce arbitrary data to datatypes.

With respect to the tree structure, contentr between tags
crc is encoded into a single child nodev.j representing the
datatype, wherelabt(v) = c and labt(v.j) = r. We call
such a nodedata nodefor short. Data nodes are always
tree leafs and we now refine EDTDs with datatypes:

Definition 4: A datatype extended DTD(∆-EDTD)
is a tuple D = (Σ,M, d,m0, µ,∆, U, φ), where ele-
ments(Σ,M, d,m0, µ) form an EDTD and(∆, U, φ) is
a datatype system. As an extension to EDTDs, production

rulesd : M → REG(M ∪∆) assign every type a content
model as regular expression over both types and datatypes.
Production rules only allow expressions, where a datatype
is followed by either a type orǫ, but never a subsequent
datatype. Lexical spacesφ : ∆ → REG(U) are restricted
to regular expressions overU .

A datatyped treet′ over(Σ∪∆) satisfiesD if t′ = µ(t′′)
for somet′′ ∈ L(d), whereµ applies only to elements. We
denoteL∆(D) as the set of datatyped trees that satisfyD.
A tree with data nodest satisfiesD if there is a datatyped
tree t′ ∈ L∆(D) such thatlabt(u) ∈ φ(labt

′

(u)) holds
for all data nodesu and labt(v) = labt

′

(v) holds for all
nodesv with labt

′

(v) ∈ Σ. LanguageL(D) denotes the
set of trees with data nodes that satisfyD.

Accordingly, we define the word languages generated by
∆-EDTD D. Suppose that bijectiondoc transforms trees
with data nodes and datatyped trees into documents like
in Figure 2. ThenLw

∆(D) = {doc(t) | t ∈ L∆(D)} is the
datatyped word languageand thedocument (word) lan-
guagegenerated byD is Lw(D) = {doc(t) | t ∈ L(D)}.
∆-EDTDs allow so-calledmixed content, where be-

tween two tags both data and other nested tags are allowed.
Mixed content typically appears in markup languages,
e.g. the XML Hypertext Markup Language (XHTML).
Regarding structural expressiveness, the language classes
of EDTDs also translate to our definition of∆-EDTDs. We
now have an abstraction of schema languages that captures
attributes, datatypes and mixed-content on a syntactic
level.

III. V ISIBLY PUSHDOWN AUTOMATA FOR XML

The well-matched tags in documents induce a visible
nesting relation. In fact, XML is avisibly pushdown
language(VPL) [20] and Kumar et al. [21] show that
every EDTD-definable document language is a VPL. This
property holds for our definition of∆-EDTDs because
tags are still well-matched and we encode attributes as
nested elements. VPLs are accepted byvisibly pushdown
automata(VPA), a restricted form of pushdown automata,
where the input symbol determines the stack action.

Definition 5 (VPA [20]): A = (Σ̃, Q, q0, Q
F ,Γ, δ) is

a VPA, whereΣ̃ = (Σcall,Σint,Σret) is the pushdown
alphabet made of three distinct alphabets,Q is the set of
states,q0 ∈ Q is the start state,QF ⊆ Q are the final
states,Γ is the stack alphabet and the transition relation is
δ = δcall∪δint∪δret, whereδcall ⊆ (Q×Σcall×Q×Γ),
δint ⊆ (Q × Σint ×Q) andδret ⊆ (Q× Γ× Σret ×Q).

A transition (q, c, q′, γ) ∈ δcall, denoted asq
c/γ
−−→ q′,

is a call-transition from stateq to q′ that pushesγ on
the stack when symbolc ∈ Σcall is read. A transition

(q, γ, c, q′) ∈ δret, written as q
c/γ
−−→ q′, is a return-

transition from stateq to q′ that popsγ from the stack
when symbolc ∈ Σret is read. An internal transition
(q, a, q′) ∈ δint, denoted asq

a
−→ q′, moves from state

q to q′ at inputa ∈ Σint without changing the stack. We
direct the reader to Alur and Madhusudan [20] for the
semantics of VPA.

Contrary to traditional pushdown automata, VPA can be
determinized and are closed under complement, intersec-
tion, union, concatenation and Kleene-star. Also language
equivalence, emptiness, universality and inclusion are de-
cidable.

Next we will show the equivalence of∆-EDTDs and
XML VPA (XVPA) [21]. XVPA are a special form of
modular VPA that go back to program modeling. In a
modular VPA, states are partitioned intomodulesand the
stack alphabet is exactly the set of states. When a module
calls another one, the current state is saved on the stack
and popped for returning. With respect to XML, modules
are exactly the types. Call, return and internal transitions
of the VPA are the open-tag, close-tag and character events
of the SAX interface to documents.

We assume the following about SAX: There exists
a global datatype system(∆, U, φ) and every datumr
between two tags or attribute value is reduced to one
character event. For stream validation, the SAX interface
reports only the first matching datatypefirstT ype(r)
to the XVPA instead ofr for efficiency. So, the XVPA
processesdatatyped documentsand the internal alphabet
over datatypes is guaranteed to be finite.

Definition 6 (XVPA [21]): An XVPA A is a tu-
ple A = (Σ,∆,M, µ, {(Qm, em, Xm, δm)}m∈M ,m0, F),
whereΣ, ∆, M andµ have the same meaning as in∆-
EDTDs,m0 is the distinguished start type andF = Xm0

are final exit states. Every typem ∈ M characterizes a
module, where

• Qm is the finite set of module states,
• em ∈ Qm is a single entry state of the module,
• Xm ⊆ Qm is the exit of modulem (exit states),
• Transitionsδm = δcallm ∪ δretm ∪ δintm , where

– δcallm ⊆ {qm
c/qm
−−−→ en | n ∈ µ−1(c)},

– δretm ⊆ {qm
c/pn
−−−→ qn | qm ∈ Xm ∧ n ∈ µ−1(c)}

and is deterministic, i.e.qn = q′n whenever

qm
c/pn

−−−→ qn andqm
c/pn

−−−→ q′n, and
– δintm ⊆ {q

a
−→ q′ | q, q′ ∈ Qm ∧ a ∈ ∆}.

Return transitions are always deterministic by definition.
The XVPA is deterministicif also the call transitions are
deterministic. The semantics of an XVPA are given by
its corresponding VPAA′ = (Σ̃, Q, q0, {qf}, Q, δ), where
Σ̃ = (Σ,∆,Σ), q0 and qf are start and accepting state,
Q = {q0, qf} ∪

⋃
m∈M Qm and transition functionδ is

defined as

δ=
⋃

m∈M

δm∪{q0
µ(m0)/q0
−−−−−−→em0

}∪{q
µ(m0)/q0
−−−−−−→qf | q∈F}.

The languageLA(m) of modulem is adatatyped word
languageand accepted words are of formµ(m)wµ(m).
The accepted languageL(A) = LA(m0) of XVPA A is
the datatyped word languageL(A′) of its corresponding
VPA.

The setXm are exit states, where at least one return
transition originates from. In a valid XVPA, the single-exit
property [21] must hold: If there is some return transition

qm
c/pn
−−−→ qn from modulem to n, then there must be

booleanNum

boolean unsignedByte byte

language

NCName

duration

dateTimeDuration

yearMonthDuration

QName

Name

NMTOKEN

token
normalizedString

string
base64BinaryLF

base64Binary

gMonth gDay

gMonthDay gYearMonth

double

decimal

integer

unsignedShort

unsignedInt

unsignedLong

nonNegativeInteger

short

int

long

gYear

nonPositiveInteger

negativeInteger

evenLenInteger

hexBinary

anyURIdateTime

dateTimeStamp time date

boolean0boolean1

positiveInteger

Figure 3. Poset of lexical datatypes∆ in lexical inclusion order.

return transitionsq′m
c/pn
−−−→ qn for all exit statesq′m ∈ Xm.

The single-exit property guarantees thatLA(m) is always
the same, independent from the calling state or module.

Theorem 1:Given a datatype system(∆, U, φ), every
∆-EDTD D has a corresponding XVPAA such that their
datatyped word languages are equalL(A) = Lw

∆(D).
Also, for every XVPAA there is an equivalent∆-EDTD
D such thatLw

∆(D) = L(A).
The proof is skipped, it refines Kumar et al. [21] with

datatypes. Intuitively, every typem has an intermediate
DFA Dm in the translation between XVPA modules and
regular expressionsd(m) in ∆-EDTD production rules.
The time complexity of the automaton for processing a
document is linear in the length of the document and the
required space is bounded by the nesting depth.

IV. I NFERENCE FROMSTREAMING XML

The goal is to learn an XVPA from a set of example
documentsS+. Inference boils down to (1) defining a
datatype system, (2) characterizing types and states and
(3) learning the language over types and datatypes from
examples inS+.

A. XML Schema Compatible Lexical Datatype System

XVPA in our definition use datatypes as finite alphabet
for internal transitions. In Section II we introduce the
notion of datatype system but for inference we need a
concrete instance. XSD defines a rich set of 47 atomic
datatypes together with a hierarchy [22], where every
datatype has a semantical value space and a lexical space

that is characterized by a regular expression. Unfortu-
nately, the lexical spaces of XSD datatypes heavily over-
lap, for example the word ’0’ is in the lexical space of
datatypesboolean, Integer, or string to name a few. A
learner only experiences the lexical space and this leads
to the problem of choosing the correct datatype for a set
of words.

Let (∆, U, φ) be our datatype system, whereU is the
Unicode alphabet. Based on XSD datatypes we define∆
as aposetof 44 datatypes and it is shown in Figure 3.
The partial order is the subset relation⊆ over individual
lexical spaces, i.e.

a, b ∈ ∆: a ≤ b ⇐⇒ φ(a) ⊆ φ(b) , where

surjectionφ maps datatypes to the lexical space definitions
of XSD [22] respectively. The following adoptions to
datatypes and lexical spaces are made:

• DatatypeanyURI has an unrestricted lexical space
in the XSD standard. In our definition, a datum
has datatypeanyURI iff it is a RFC 2396Unified
Resource Identifierwith a defined scheme and path.

• The exponents of datatypedoubleare unrestricted.
• Datatypesfloat, IDREF, IDREFS, ENTITY, ENTI-

TIES, ID, NOTATIONandNMTOKENSare dropped
because their lexical spaces are indistinguishable
from others.

• We addboolean0, boolean1, booleanNum, evenLen-
Integer and base64BinaryLFto resolve some severe
ambiguities.

If some contentr matches datatypea then it also
matches datatypesb1, b2, . . . , bn iff a ≤ bi for 1 ≤ i ≤ n.
So, the best characterization ofr is its minimal datatype.
We refine functionstypes and firstT ype to reflect the
partial order: Functiontypes(r) returns all matching min-
imal datatypes andfirstT ype(r) chooses one matching
minimal datatype. For inference, we define the inverse
closurecl−1 : P(∆) → P(∆) that returns all datatypes
that are smaller or equivalent than a given set of datatypes.

B. Characterizing Types and States

Martens et al. [16] characterize types in XSD based
on ancestors. Given documentw and position i, then
the ancestor stringanc-str(w, i) = c1c2 · · · cj is the
string of unmatched open-tags in the document prefix
w1,i = c1w1c2w2 . . . cjwj . A schema hasancestor-based
typesif there exists a hypothetical functionf : Σ∗ → M
that assigns every open-tag at positioni in documentw a
single typef(anc-str(w1,i, i)). This restriction is exactly
the Element Declarations Consistent (EDC) rule of XSD
[17]. Identifying types is then defining relation∼M that
partitionsΣ∗ into equivalence classes of ancestor strings.
Note that we restrict our learning algorithm automatically
to a subset of language class∆-EDT Dst by assuming
that types are ancestor-based.

Regarding content models we know that the full class of
regular languages is not learnable from positive examples
[13]. Bex et al. [23] show that the majority of regular
expressions in real world schemas are in fact simple such

1: function DTVPPAst(S+)
2: global (∆, U, φ) ⊲ datatype system
3: Σ← QF ← δcall ← δret ← δint ← ∅ ⊲ initialization
4: t : Q×Q→ P(∆) ⊲ empty dictionary
5: q0 ← (ǫ, ǫ)
6: Q← {q0}
7: for all w ∈ S+ do ⊲ iterate over documents
8: stack ← [⊥]
9: q ← q0

10: for all (event, data) ∈ SAXEvents(w) do
11: if startElement(event) then ⊲ open-tag
12: Σ← Σ ∪ {data}
13: push(stack, q)
14: q′ ← (π1(q) · data, ǫ)

15: δcall ← δcall ∪ {q
data/q
−−−−→ q′}

16: else if endElement(event) then ⊲ close-tag
17: assert(data = π−1(π1(q))) ⊲ matching?
18: p← pop(stack)
19: q′ ← (π1(p), π2(p) · data)

20: δret ← δret ∪ {q
data/p
−−−−→ q′}

21: else if characters(event) then ⊲ content
22: q′ ← (π1(q), π2(q) · $)
23: t(q, q′)← t(q, q′) ∪ types(data)
24: end if
25: Q← Q ∪ {q′}
26: q ← q′

27: end for
28: QF ← QF ∪ {q}
29: end for
30: δint = {q

a
−→ q′ | a ∈ cl−1(t(q, q′))} ⊲ int. transitions

31: return ((Σ,∆,Σ), Q, q0, QF , Q, δcall ∪ δint ∪ δret)
32: end function

Figure 4. Visibly Pushdown Prefix Acceptor for class∆-EDT Dst.

that every type occurs at mostk times in an expression
(k-ORE). The language of ak-ORE is a(k + 1)-testable
regular language, where grammatical inference from pos-
itive examples is feasible [24].

Our learning strategy isstate-merging: We first con-
struct a specific VPA that represents exactlyS+ and then
generalize by merging similar states. We denote pairs
(x, y) ⊆ (Σ∗ × (Σ ∪ {$})∗) as VPA states, wherex is an
ancestor string andy is a left sibling stringlsib-str(w, i).
Symbol $ /∈ Σ denotes a placeholder for XML content
andlsib-str(w, i) = d1c1d2c2 · · · dn−1cn−1dn, wherec is
the rightmost unmatched open-tag in the document prefix
w1,i = ucd1c1v1c1d2c2v2c2 · · · dn−1vn−1cn−1cn−1dn,
d1, d2, . . . , dn ∈ {$, ǫ} are optional placeholders and the
well-matched substringscjvjcj for 1 ≤ j < n represent
sibling nodes in the tree w.r.t. to positioni. As an example,
supposew is the document in Figure 2a and positioni is
just before tag〈/review〉 then lsib-str(w, i) = $ · em · $.

C. The Learning Algorithm

Intuitively, the inference algorithm (1) constructs a so-
calledvisibly pushdown prefix acceptor(VPPA) from the
sample set, (2) merges similar states, (3) partitions states
into modules, (4) adds missing return transitions to satisfy
the single-exit property of XVPA and (5) minimizes the
XVPA by merging equivalent modules. Figure 5 gives the
full algorithm.

1: function INFERDTXVPAst
k,l(k, l, S+)

2: global (∆, U, φ) ⊲ datatype system
3: ((Σ, _, _), Q, q0, QF , Q

F , δ)← DTVPPAst(S+)
4: while ∃q1, q2 ∈ Q : q1 ∼k,l q2 do ⊲ state merging
5: mergeStates(fk,l, q1, q2)
6: end while
7: M ← {π1(q) | for all q ∈ Q ∧ π1(q) 6= ǫ}
8: m0 ← π1(δ(q0, c, q0)) ⊲ module called byq0
9: for all m ∈M do ⊲ XVPA conversion

10: em ← (m, ǫ)
11: Qm ← {q ∈ Q | π1(q) = m}
12: δm ← {rel ∈ δ | π1(rel) ∈ Qm}

13: Xm ← {qm | ∃c, pn, qn : (qm
c/pn
−−−→ qn) ∈ δm}

14: δm ← δm ∪ {qm
c/pn
−−−→ qn | for all qm ∈ Xm

if ∃q′m : (q′m
c/pn
−−−→ qn) ∈ δm}

15: end for
16: while ∃m,n ∈M : m ∼M n do ⊲ minimization
17: mergeModules(m,n)
18: end while
19: µ← {m 7→ c | m ∈M ∧ ∃q : (q

c/q
−−→ em) ∈ δcall}

20: return (Σ,∆,M, µ, {(Qm, em, Xm, δm)}m∈M ,
m0, Xm0

)
21: end function

Figure 5. The learning algorithm returns an XVPA with datatypes.

With π1, π2, . . . , πn we denote projections of the first,
second andn-th element andπ−1 is the last element of
a tuple or word A VPPA is a deterministic VPA that
represents exactly the examples fromS+ and construction
requires only a single pass. The idea of a VPPA is that
every prefix of every document inS+ leads to a unique
state in the automaton, similar to a prefix tree acceptor
[5, p. 238]. Algorithm DTVPPAst is listed in Figure
4. While iterating over documents inS+, the algorithm
remembers all datatypes that occur between two states
in a dictionary-like data structure. After iteration, internal
transitions are added for all datatypes in the inverse closure
of remembered datatypes. This guarantees that during
stream validation the automaton allows a transition if the
first matching minimal datatype returned by SAX is valid.

Merging states in the second step generalizes the VPPA.
Functionfk,l : (Σ∗× (Σ∪{$})∗) → (Σ≤l× (Σ∪{$})≤k)
is a so-calleddistinguishing function[25] that restricts a
stateq to its local neighborhood by stripping downπ1(q)
to its l-length suffix andπ2(q) to its k-length suffix. With
respect tofk,l, two states are similarq1 ∼k,l q2 if they
map to the same statefk,l(q1) = fk,l(q2). The single state
fk,l(qi) represents equivalence class[qi]∼k,l

, all states in
the equivalence class and their transitions are merged into
the representative and the VPA stays deterministic.

In the third step, the VPA is turned into an XVPA by
partitioning all statesq ∈ Q based on their ancestor-string
componentπ1(q). Types then areM ⊆ Σ≤l and algorithm
DTVPPAst guarantees that(m, ǫ) is the single entry state
of every modulem. Start typem0 is the one called from
state(ǫ, ǫ) and the module of typeǫ is ignored. The XVPA
does not satisfy the single-exit property yet. LetXm be
all module states, where some return transition originates
from. We add missing returns such that every modulen

calling m experiences the same languageLA(m).
In the last step, the XVPA is minimized by merging

equivalent modules. We define equivalence relation∼M

such that typesm andn are the same if their modules are
called by the same open-tag and their corresponding DFA
Dm andDn as constructed in the proof of Theorem 1 are
equivalent. Ifm ∼M n we redirect all calls and returns
fromn tom and removen. Finally,µ maps all types to the
elements they are called by. Note that learning the VPPA
and state merging can be combined into one efficient step.

D. Example and Discussion

Figure 6 gives a toy example, where the sample set
holds a single document. The SAX interface abstracts
the contents10.0 and TEXT into simplified datatypes
decimal∆ and string∆ respectively. Note that the state
(ab, ǫ) is visited twice during the VPPA construction
because both open-tagsb in context of elementa have
the same ancestor-stringab. During state merging, the
states(a, ab) and (a, abb) are collapsed into the single
state(a, b). In the example, the parameterl = 2 leads to
two different typesa and aa in the final XVPA. While
both corresponding modules are called by the same taga,
they have completely different content models.

The parametersk andl constrain locality of a state. The
language class∆-EDT Dst

k,l (∆-EDT Dst is learnable if
k andl are bound andS+ is characteristicsuch that every
valid transition in the XVPA appears at least once in the
set. Unfortunately, we do not know whether a sample set
is characteristic. But we can guarantee that the quality of
the learned automaton stays the same or improves with
every example in the sample set if the hidden target is in
language class∆-EDT Dst

k,l.
If l = 1 then types are exactly element names and the

algorithm learns a proper subset of∆-DT D. A parameter
k = 1 limits the left-sibling string of a state to element
names or the$ symbol, so inferred XVPA modules become
equivalent to Single Occurrence Automata [26] in terms
of expressiveness. In the case thatk and l are chosen
too small, the resulting automaton over-generalizes the
language. Contrary, increasing the parameters requires
much larger characteristic sets for convergence.

V. RELATED WORK

XML stream validation is first discussed by Segoufin
and Vianu [27]. Kumar et al. [21] introduce VPA as
executable model for XML that captures the entire class
of regular tree languages. Schewe et al. [28] extend VPA
for approximate XML validation and Picalausa et al. [29]
present an XML Schema framework using VPA.

For a survey of grammatical inference we direct the
reader to the book of de la Higuera [5]. Fernau [25] intro-
duces function distinguishable languages and we apply this
concept in Section IV for state merging. Kumar et al. [30]
mention that query learning VPA with counterexamples is
possible but our setting is different.

Several results on DTD inference from XML have been
published [26], [31]–[33], but we aim for the strictly larger

ǫ, ǫ

a, ǫ

aa, ǫ

aa, $

a, a

ab, ǫ

ab, $

a, abb

a, ab

ǫ, a

a

a

decimal∆

a

b

string∆

b

b

b

a

ǫ, ǫ

a, ǫ

aa, ǫ

aa, $

a, a

ab, ǫ

ab, $

a, b

ǫ, a

a

a

decimal∆

a
b

string∆

bb

b

a

Merged StatesVPPA XVPA

ǫ

a

b

ǫ

$ ǫ

q0

qf $

aaa

ab

a/ǫa

dec.∆
a/ǫa

b/aa

str.∆

a/q0

a/q0

b/aa

b/ba

b/ba

Figure 6. INFERDTXVPAst
k,l example forS+ = {aa10.0abTEXTbbba} and parametersk = 1, l = 2.

class of XSDs. Mlýnková [34] presents a survey of XSD
inference. The general idea is to start with an extended
context-free grammar as schema abstraction, inferred from
examples, and merge non-terminals [35]. Hegewald et al.
[36] and Chidlovskii [37] also handle datatypes in their
presented methods. Our approach is similar to Bex et al.
[38]. Their algorithms use tree automata for learningl-
local Single Occurrence XSDs in a probabilistic setting
but without datatypes.

In the field of information retrieval, Kosala et al. [39]
and Raeymaekers et al. [40] give algorithms to infer
HTML wrappers as tree automata. Regarding intrusion
detection, Rieck et al. [41] introduce approximate tree
kernels as a similarity measure for trees and use them
for anomaly detection in HTML.

To our knowledge the presented approach is the first
that directly learns an automaton model with both stream-
ing and datatypes in mind. A hard problem in learning
schemas is to find nice regular expressions for content
models. We focus on learning an automaton representation
and intentionally leave conversion to regular expressions
open, as many of the noted references propose heuristics
or solutions.

VI. CONCLUSION AND FUTURE WORK

We approached the problem of anomaly detection in
XML more formally and introduced∆-EDTDs as ab-
straction of practical schema languages with datatypes.
We showed that XVPA are an equivalent model capable
of stream validation and contributed a lexical datatype
system and an algorithm for learning an XVPA from
a set of documents. The algorithm converges for target
class∆-EDT Dst

k,l given the sample set is characteristic.
A learned automaton could theoretically be converted into
an XSD schema.

The presented work is still in an early stage. We already
have a working prototype which is our baseline for further
research and the next step is a thorough evaluation with
XML-based attacks. First experiments with the prototype
indicate that abstraction by the lexical datatype system
using XSD datatypes is too coarse in some cases. We will
therefore look into approximations of specific datatypes
during learning. Other improvements are to extend the

learnable language class and redefine the algorithms for
incremental learning. Also, we do not know if some
sample set is characteristic and leads to convergence. A
refinement to a probabilistic learning setting could enhance
applicability when sample sets are incomplete or noisy.

Finally, it is of great interest how our approach to
XML inference and stream validation translates to other
prominent semi-structured languages like JSON or HTML.
An application in mind is a client-side component that
learns how Web applications and services communicate
with a Web client and detects syntactical deviations, for
example caused by Cross-Site Scripting attacks.

ACKNOWLEDGMENT

We thank Philipp Winter for the helpful feedback and
suggestions. This research has been supported by the
Christian Doppler Society.

REFERENCES

[1] L. Bilge and T. Dumitras, “Before we knew it: an empirical
study of zero-day attacks in the real world,” inProc. of the
2012 ACM conference on Computer and communications
security - CCS ’12. ACM Press, 2012, pp. 833–844.

[2] Symantec, “W32.Stuxnet,”
http://www.symantec.com/security_response/writeup.jsp?docid=2010-071400-3123-99
[Online. Last accessed: 2013-3-19].

[3] S. Axelsson, “The base-rate fallacy and its implications
for the difficulty of intrusion detection,” inProc. of the
6th ACM conference on Computer and communications
security - CCS ’99. ACM Press, 1999, pp. 1–7.

[4] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,” in
Proc. IEEE Symposium on Security and Privacy. IEEE,
2010, pp. 305–316.

[5] C. de la Higuera,Grammatical Inference: Learning Au-
tomata and Grammars. Cambridge University Press, 2010.

[6] W3C, “Document object model (dom),”
http://www.w3.org/DOM/ [Online. Last accessed: 2013-1-
24].

[7] The SAX Project, “Simple api for xml (sax),”
http://www.saxproject.org/ [Online. Last accessed:
2013-1-24].

http://www.symantec.com/security_response/writeup.jsp?docid=2010-071400-3123-99
http://www.w3.org/DOM/
http://www.saxproject.org/

[8] L. Sassaman, M. L. Patterson, S. Bratus, M. E. Locasto,
and A. Shubina, “Security applications of formal language
theory,” Dartmouth College Computer Science Department,
Tech. Rep. TR2011-709, 2011.

[9] A. Falkenberg, M. Jensen, and J. Schwenk, “Ws-
attacks.org,” http://www.ws-attacks.org [Online. Last ac-
cessed: 2013-2-5].

[10] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey
of attacks on web services,”Computer Science - Research
and Development, vol. 24, no. 4, pp. 185–197, 2009.

[11] S. Grijzenhout and M. Marx, “The quality of the xml web,”
in Proc. of the 20th ACM int. conference on Information
and knowledge management - CIKM ’11. ACM Press,
2011, pp. 1719–1724.

[12] J. J. Garrett, “Ajax: A new approach to web applications,”
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
[Online. Last accessed: 2013-3-27].

[13] E. M. Gold, “Language identification in the limit,”Infor-
mation and Control, vol. 10, no. 5, pp. 447–474, 1967.

[14] H. Fernau, “Algorithms for learning regular expressions
from positive data,”Information and Computation, vol.
207, no. 4, pp. 521–541, Apr. 2009.

[15] F. Neven, “Automata, logic, and xml,” inComputer Science
Logic, ser. LNCS. Springer, 2002, vol. 2471, pp. 671–711.

[16] W. Martens, F. Neven, T. Schwentick, and G. J. Bex,
“Expressiveness and complexity of xml schema,”ACM
Trans. on Database Systems, vol. 31, no. 3, pp. 770–813,
2006.

[17] W3C, “Xml schema,” http://www.w3.org/XML/Schema.html
[Online. Last accessed: 2013-2-1].

[18] M. Murata, “Relax ng,” http://relaxng.org/ [Online. Last
accessed: 2013-2-1].

[19] M. Murata, D. Lee, M. Mani, and K. Kawaguchi, “Tax-
onomy of xml schema languages using formal language
theory,” ACM Trans. on Internet Technology, vol. 5, no. 4,
pp. 660–704, 2005.

[20] R. Alur and P. Madhusudan, “Visibly pushdown languages,”
in Proc. of the thirty-sixth annual ACM Symposium on
Theory of Computing - STOC ’04. ACM Press, 2004,
pp. 202–211.

[21] V. Kumar, P. Madhusudan, and M. Viswanathan, “Visibly
pushdown automata for streaming xml,” inProc. of the 16th
Int. Conf. on World Wide Web - WWW ’07. ACM Press,
2007, p. 1053.

[22] W3C, “Xml schema part 2: Datatypes second edition,”
http://www.w3.org/TR/xmlschema11-2/ [Online. Last ac-
cessed: 2013-3-22].

[23] G. J. Bex, F. Neven, and J. Van den Bussche, “Dtds versus
xml schema: A practical study,” inProc. of the 7th Int.
Workshop on the Web and Databases - WebDB ’04. ACM
Press, 2004, p. 79.

[24] P. García and E. Vidal, “Inference of k-testable languages
in the strict sense and application to syntactic pattern
recognition,”IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 12, no. 9, pp. 920–925, 1990.

[25] H. Fernau, “Identification of function distinguishable lan-
guages,”Theoretical Computer Science, vol. 290, no. 3, pp.
1679–1711, 2003.

[26] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren,
“Inference of concise regular expressions and dtds,”ACM
Trans. on Database Systems, vol. 35, no. 2, pp. 1–47, 2010.

[27] L. Segoufin and V. Vianu, “Validating streaming xml doc-
uments,” inProc. of the twenty-first ACM Symposium on
Principles of Database Systems - PODS ’02. ACM Press,
2002, p. 53.

[28] K.-D. Schewe, B. Thalheim, and Q. Wang, “Updates,
schema updates and validation of xml documents - us-
ing abstract state machines with automata-defined states,”
J.UCS, vol. 15, no. 10, pp. 2028–2057, 2009.

[29] F. Picalausa, F. Servais, and E. Zimányi, “Xevolve: an xml
schema evolution framework,” inProc. of the 2011 ACM
Symposium on Applied Computing - SAC ’11. ACM Press,
2011, p. 1645.

[30] V. Kumar, P. Madhusudan, and M. Viswanathan, “Min-
imization, learning, and conformance testing of boolean
programs,” inCONCUR 2006 – Concurrency Theory, ser.
LNCS. Springer, 2006, vol. 4137, pp. 203–217.

[31] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren,
“Learning deterministic regular expressions for the infer-
ence of schemas from xml data,”ACM Trans. on the Web,
vol. 4, no. 4, pp. 1–32, 2010.

[32] H. Fernau, “Learning xml grammars,” inMachine Learn-
ing and Data Mining in Pattern Recognition, ser. LNCS.
Springer, 2001, vol. 2123, pp. 73–87.

[33] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim, “Xtract: Learning document type descriptors from
xml document collections,”Data Mining and Knowledge
Discovery, vol. 7, no. 1, pp. 23–56, 2003.

[34] I. Mlýnková, “An analysis of approaches to xml schema
inference,” in 2008 IEEE Int. Conf. on Signal Image
Technology and Internet Based Systems. IEEE, 2008, pp.
16–23.

[35] I. Mlýnková and M. Něcaský, “Towards inference of more
realistic xsds,” inProc. of the 2009 ACM Symposium on
Applied Computing - SAC ’09. ACM Press, 2009, p. 639.

[36] J. Hegewald, F. Naumann, and M. Weis, “Xstruct: Efficient
schema extraction from multiple and large xml docu-
ments,” in22nd Int. Conf. on Data Engineering Workshops
(ICDEW’06). IEEE, 2006, pp. 81–81.

[37] B. Chidlovskii, “Schema extraction from xml: A grammat-
ical inference approach,” inProc. of the 8th Int. Workshop
on Knowledge Representation meets Databases (KRDB
2001), 2001.

[38] G. J. Bex, F. Neven, and S. Vansummeren, “Inferring xml
schema definitions from xml data,” inVLDB ’07 Proc. of
the 33rd Int. Conf. on Very Large Data Bases. VLDB
Endowment, 2007, pp. 998–1009.

[39] R. Kosala, H. Blockeel, M. Bruynooghe, and J. Van den
Bussche, “Information extraction from structured docu-
ments using k-testable tree automaton inference,”Data &
Knowledge Engineering, vol. 58, no. 2, pp. 129–158, 2006.

http://www.ws-attacks.org
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.w3.org/XML/Schema.html
http://relaxng.org/
http://www.w3.org/TR/xmlschema11-2/

[40] S. Raeymaekers, M. Bruynooghe, and J. den Bussche,
“Learning (k, l)-contextual tree languages for information
extraction from web pages,”Machine Learning, vol. 71,
no. 2, pp. 155–183, 2008.

[41] K. Rieck, “Machine learning for application-layer intrusion
detection,” Ph.D. dissertation, Berlin Institute of Technol-
ogy, TU Berlin, Germany, 2009.

	I Introduction
	I-A Problem Definition
	I-B A Language-Theoretic View on Security
	I-C Why Secure XML Processing Matters
	I-D Learning in the Limit

	II XML
	II-A Schemas and Types
	II-B Stream Validation and Expressiveness
	II-C Datatypes and Mixed Content

	III Visibly Pushdown Automata for XML
	IV Inference from Streaming XML
	IV-A XML Schema Compatible Lexical Datatype System
	IV-B Characterizing Types and States
	IV-C The Learning Algorithm
	IV-D Example and Discussion

	V Related Work
	VI Conclusion and Future Work
	References

