
ANANAS – A Framework For Analyzing Android Applications

Thomas Eder, Michael Rodler, Dieter Vymazal, Markus Zeilinger
Department Secure Information Systems

University of Applied Sciences Upper Austria
{thomas.eder, michael.rodler}@students.fh-hagenberg.at
{dieter.vymazal, markus.zeilinger}@fh-hagenberg.at

Abstract—Android is an open software platform for mobile
devices with a large market share in the smartphone sector.
The openness of the system as well as its wide adoption
lead to an increasing amount of malware developed for
this platform. ANANAS is an expandable and modular
framework for analyzing Android applications. It takes care
of common needs for dynamic malware analysis and provides
an interface for the development of plugins. Adaptability
and expandability have been main design goals during the
development process. An abstraction layer for simple user
interaction and phone event simulation is also part of the
framework. It allows an analyst to script the required
user simulation or phone events on demand or adjust the
simulation to his needs. Six plugins have been developed
for ANANAS. They represent well known techniques for
malware analysis, such as system call hooking and network
traffic analysis. The focus clearly lies on dynamic analysis,
as five of the six plugins are dynamic analysis methods.

Keywords-Smartphone security, Android malware, auto-
mated malware analysis

I. INTRODUCTION

Android is an operating system and open software
platform for mobile devices based on the linux kernel.
Since its first appearance in 2008, it became a big success
story. In the third quarter of 2012, 72.4% of all mobile
devices sold to end users were powered by Android [1].
This makes it the most installed OS on recently sold
mobile devices [2]. The currently most used Android
versions are, 2.3 (Gingerbread) with a share of 39.8%,
and the versions 4.0 (Ice Cream Sandwich), 4.1 and 4.2
(Jelly Bean) with a share of 50% [3].

The increasing number of smartphones based on An-
droid and the openness of the system, led to an increase of
malware developed for the platform. In their threat report
for the fourth quarter of 2012 [4], McAfee mentions that
their “mobile malware zoo” accomodates a total of 36,669
samples by the end of 2012. 95% of these samples were
gathered in 2012. McAfee also observed that the growth
of mobile malware almost doubled in each of the last two
quarters of 2012. From all mobile malware samples that
have been gathered, 97% are targeting Android. Android
malware was even used to carry out targeted attacks, as
Kaspersky reported in a security alert [5]. This increase
of malicious applications targeting the Android platform
and its users, needs to be addressed urgently. To keep up
with this huge growth rate of malware targeting Android,
tools for automated and semi-automated malware analysis
are much needed.

In this paper, ANANAS, a framework for Analyzing
Android Applications (APKs), focused on automated
static and dynamic malware analysis, is presented. While
other projects aim at developing different methods and
tools for Android malware analysis, ANANAS is a frame-
work, which allows the implementation and integration
of several different analysis methods into one powerful
platform. It was developed with the following goals in
mind:

• To provide a core, which takes care of common
needs for dynamic analysis, such as starting a clean
environment for each analysis.

• To be useable for all Android versions.
• To provide adjustable user interaction and phone

event simulation.
• To allow the integration of plugins for static or

dynamic analysis, which can be called at different
stages of the analysis process.

• Results should be available in several formats at
different levels of detail.

• To be able to tailor the framework to specific needs
by providing high configurability.

By providing the ANANAS framework to the commu-
nity, we hope to ease and facilitate the development of new
and improved malware analysis methods. Together with
static and dynamic analysis plugins, ANANAS becomes a
comprehensive tool for analyzing Android applications.

The remainder of this paper is structured as follows:
In section II we take a look at related projects. The
architecture of ANANAS is described in section III and
section IV explains the components in greater detail. In
section V, several plugins developed for the framework
are presented. To complete this paper, in section VI results
of an experimental evaluation are shown.

II. RELATED WORK

A popular tool for dynamic analysis of Windows appli-
cations is Anubis [6]. Recently it was extended to allow
the analysis of Android applications (codename Andrubis)
[7]. It leverages several existing tools, like DroidBox
[8], TaintDroid [9], apktool [10] and androguard [11]
for static and dynamic analysis of Android applications
(APKs). Unfortunately, not much about its inner working
or architecture is public. However, a comparison between
Andrubis and ANANAS is drawn in the experimental
evaluation section.

ar
X

iv
:1

30
7.

54
10

v1
 [

cs
.C

R
]

 2
0

Ju
l 2

01
3

 Core Framework

Configuration

P
lu
g
in
In
te
rf
a
c
e

Dynamic Analysis

Emulator

Simulation

Raw Logs

Reports

Database

 Plugins

Static

Analysis

File System

Diff

VirusTotal

Network

Analysis

System Call

Logging (LKM)

APIMonitor

...

Filter

Event 1

Event 2

Event 3

Event 4

Event 5

Event 6

Figure 1. ANANAS Architecture

Another tool similar to ANANAS and Anubis is Mobile-
Sandbox [12]. It combines static and dynamic analysis
techniques for analyzing Android applications. Unfortu-
nately, there were no dynamic analysis results publicly
available at the time of writing.

DroidScope [13] is a dynamic malware analysis tool
that is built on top of QEMU and relies on introspection
of an emulated system running the application in question.
It is able to reconstruct the OS-level view (e.g. system
calls) and the Java-level view (e.g. instructions in the
Dalvik VM, Android’s Java Virtual Machine). It is similar
to ANANAS in the way that it uses dynamic analysis
techniques and exports APIs, which can be used to develop
plugins.

Recently, Rastogi et al. published their work on App-
sPlayground [14], which is a framework for automated
dynamic security analysis of Android applications. Among
other things, they focus on detection evasion and auto-
mated exploration techniques for increased coverage of
the applications code and therefore to trigger the mali-
cious behaviour of an application. The detection/analysis
techniques of AppsPlayground are similar to those of
ANANAS but the approaches used for the implementa-
tion are different. ANANAS for example avoids intrusive
changes to the code of the original Android system to
be able to adopt new Android versions more quickly. In
contrast, AppsPlayground uses TaintDroid, which modifies
the original Android version heavily.

III. ANANAS ARCHITECTURE

Figure 1 shows the basic architecture of ANANAS. It is
composed of the core framework (written in Python) and
several analysis plugins, which implement different anal-
ysis methods. The configuration system is shared between
the framework and the plugins, which allows plugins to
alter the configuration of the framework. The plugins
can register to several events that are raised within the
framework to run their code. An analysis run yields raw

logfiles that are produced by the plugins and saved into
a database. To generate a readable report, the framework
uses filters defined by the plugins.

The framework provides common services that are
needed for the dynamic analysis. One requirement of
dynamic malware analysis is that a clean, emulated en-
vironment is initialized for every analysis run. To emulate
a smartphone, the emulator, which is shipped together
with the Android SDK, is used. The framework itself is
independent of the used Android version.

The analysis of Android malware differs from the anal-
ysis of Windows based malware because most Android
malware is only triggered by certain phone events or user
interaction. It is therefore crucial to simulate interaction
with the emulated smartphone during the analysis phase.
As the malicious behaviour of different malware families
is triggered by different events, the simulation has to
be adjustable. ANANAS achieves this by introducing a
scripting language for user and phone event simulation.

The modularity and extendability of ANANAS is ac-
complished through the implementation of an event-based
plugin system. Individual analysis methods are imple-
mented as plugins, which can register to several events
that are specified within the core framework. Every time a
certain event is raised, methods for all plugins registered to
this event are called by the core framework. Currently, six
plugins are implemented, which are described in greater
detail in section V.

Plugins can supply custom filtering mechanisms for
further reducing the verbosity of the report when searching
for very specific behaviour within an Android app. The
filters follow a blacklist approach (exceptions can be
defined) and are applied during report generation.

The result of every analysis is a report containing
general information about the Android application and
the results of the different plugins. The results of each
plugin pass through several different stages and formats.
Primarily, each plugin saves its results to a raw log file
(JSON formatted). This log file offers the most detailed
view on the analysis run. By saving the results into a
database in the next step, an analyst gets the chance to use
SQL queries for comparing results and generating statis-
tical data. Finally, the plugin specific filters are applied to
generate a condensed report in XML format, which can
be used for a first examination.

An overall design goal during the development of
ANANAS was to keep every part of it as configurable as
possible. This includes the core framework, the plugins,
the simulation and the filter process. Each plugin can
specify its own settings in a separate section of the main
ANANAS configuration file. The filtering mechanisms and
the simulation part are configured in separate files. This
gives the analyst the possibility to optimize the framework
depending on individual needs and thereby determine the
verbosity of the results.

IV. THE CORE FRAMEWORK

In this section, the core of ANANAS is described
by outlining the workflow of an analysis run. Figure 2

InitializationAPK Start Emulation

User/Phone Event

Simulation

Stop Emulation Fill Database

FilteringReport

Install APK

VirusTotal

Static

Analysis

APIMonitor

File System

Diff

Static

Analysis

APIMonitor

File System

Diff

System Call

Logging

System Call

Logging

Network

Analysis

Event before_emulator_start

Event before_app_installEvent before_simulation_start

Event before_emulator_stop Event before_database

Event before_report

Figure 2. ANANAS workflow

provides a high level overview of the workflow.

A. Initialization

The first thing ANANAS does at startup is to load its
default configuration, which is appropriate for most use
cases. If a custom configuration file is provided, these
settings overrule the default configuration. Applications
may behave differently on different Android versions
and also security controls can change from version to
version. Therefore, an important configuration setting for
the dynamic analysis is the Android version (ANANAS
currently supports Android versions 2.3, 4.0, 4.1 and 4.2).

Then, ANANAS creates a clean environment for em-
ulation and simulation purposes. The emulator is started
with a temporary image, which is copied from a clean
source. This approach allows an easy comparison between
the possibly infected and the clean image/filesystem.

As the last initialization step, the framework creates
a unique directory for the analysis, where all data (e.g.
configurations, results, screenshots, ...) generated during
the analysis is stored. All plugins should save their results
to this directory.

B. Load Plugins

The next step for the framework is to load the plugins.
To ensure that an error in one plugin does not affect the
overall analysis, plugins are being disabled for the current
analysis run if any kind of error occurs.

Plugins can register on predefined events on which their
methods get called by the framework. Each plugin can
register methods to any event with a certain priority. Plu-
gins with higher priorities get called first. The framework
currently specifies the following events:

• before emulator start,
• before app install,
• before simulation start,
• before emulator stop,

• before database and
• before report.

These events occur at different steps during the dynamic
analysis and therefore offer different perspectives on the
analysis process and the analyzed app (have a look at
section V for further details).

C. Call Plugins: Part 1

After the loading procedure, the plugins registered to
the first event before emulator start are called. Then, the
emulator is started with a temporary image for the config-
ured Android version. By raising the before app install
event, plugins that need to do work before the app is
installed, are invoked. Then, the app that should be an-
alyzed is installed on the emulator. After another event
named before simulation start and subsequent calling of
registered plugins, the simulation phase is starting.

D. User & Phone Event Simulation

User and phone event simulation is one of the most im-
portant components of the ANANAS framework, because
malicious behaviour of most Android malware is triggerd
by certain user or phone events (as shown in section III
and [15]).

To allow a configurable simulation, a scripting language,
consisting of consecutive command and no control struc-
tures, is parsed by the framework. It makes heavy use
of the Android Debug Bridge (ADB) Tool and the telnet
interface of the Android emulator for executing its tasks.
The following simulation actions are currently available:

• Starting and stopping installed Android applications,
• simulation of incoming and outgoing calls and text

messages and changes to GSM state,
• changes to the smartphone’s battery state,
• simulation of the emulator’s location,
• user input using the monkey program shipped with

the Android SDK,
• unlocking and locking of the screen and
• execution of ADB commands and shell commands

on the emulated system.
Commands within this script are for example callfrom

’+431234567’ to simulate an incoming call from the
specified number or changeLocation ’x-coordinate’ ’y-
coordinate’ to change the geo location of the emulated
smartphone. An example for these commands can be
found in figure 3.

With the help of the command screenshot, a screenshot
of the current emulator’s screen can be saved at any time.
ANANAS ships with some predefined simulation scripts
that should reveal most of the application’s behaviour and
are adjustable to specific needs.

E. Call Plugins: Part 2

After the simulation script reaches its end, the event
before emulator stop is invoked. This is the last chance
for plugins to interact with the emulator, as after calling
all plugins that are registered for this event, the emulator is

unlockscreen
sleep 3
startservices
startapp
screenshot
monkey 500
smsfrom "+49123456789" "Hi there."
callfrom "+49123456789"
setBatteryCapacity 5
setBatteryPowerState CHARGING
changeLocation "65.966667" "-18.533333"

Figure 3. An example simulation script.

stopped. For example, plugins can pull files needed from
the emulator’s filesystem for later processing.

If a plugin needs to process its results in any way before
they are finally saved to the database, it can register for
the next event named before database. It is called directly
before the final results of the plugins are written to the
database.

Finally, the event named before report is called, giving
the plugins a last chance to do any processing or cleanup
work. The report is solely generated from the results that
are saved in the database, so any processing of results that
don’t occur on database level won’t have any effect on the
report.

F. Filtering & Report Generation

Before the report is generated, each plugin has the
possibility to apply filters. Filters are used to determine
which of the results that are saved in the database are
worked into the report. As some plugins might generate
a lot of log data, the accuracy of the filters is crucial for
the quality of the report and its usefulness to the analyst.

Filtering follows a blacklist approach, whereas certain
values can be excluded from the blacklist using a separate
whitelist, that is only applied on blacklisted entries. For
example, in the case of a system call log, this allows
blacklisting each open system call on paths starting with
/data/ but excluding anything in the /data/data/ directory
from blacklisting and thereby including it in the report.
Everything that doesn’t show up in the blacklist is consid-
ered valuable and will be passed to the report generation.

Filters can be based on regular expressions or substring
matches. For fine grained filtering, filters can also be
written in Python.

As the last step of the analysis process, the ANANAS
framework generates the XML report based on the filtered
results of the plugins. The report also contains additional
information such as the APK’s filenames, hashes, times-
tamps and information about plugins used. A shortened
example of such a report can be seen in figure 4.

V. PLUGINS

In order to turn ANANAS into a useful analysis tool,
plugins for various analysis methods were developed. They
represent well-known techniques for static and dynamic
malware analysis. Some of them were solely developed by
the ANANAS development team. In order not to reinvent

<analysis>
<filename>test.apk</filename>
<hashes><hash

type="md5">d331c96...</hash></hashes>
<package>ananas.analysis</package>
<starttime>...</starttime>
<endtime>...</endtime>
<plugins>

<plugin enabled="True" name="lkm"
state="loaded" />

...
</plugins>
<errors>...</errors>
<results>

<!-- plugin results -->
<screenshots>...</screenshots>
<virustotal>...</virustotal>
<static>...</static>
<apimonitor>...</apimonitor>
<filesystemdiff>...</filesystemdiff>
<syscalltrace>...</syscalltrace>

</results>
</analysis>

Figure 4. Shortened example report.

the wheel, several plugins were created that leverage
existing tools and act as a wrapper. The following plugins
were developed for ANANAS:

• Filesystemdiff
• Network analysis
• Systemcall logging

The following plugins wrap existing tools:
• APKIL/APIMonitor
• Static analysis
• VirusTotal query
In the following sections, each plugin is described

shortly.

A. File System Diff

The goal of File System Diff is to show changes in
the emulator’s filesystem which might be caused by the
analyzed Android application. It does so by comparing
the emulator’s filesystem before the emulator boots and
after it has been powered off. The plugin registers to the
hooks before emulator start and before database, where
it mounts the emulator image into the analysis host’s
filesystem and creates a list of directories and files in-
cluding their hash values. These lists are then compared
to detect created, modified and deleted files. Files that only
existed temporarily or were changed during the execution
of the emulator cannot be found by using this method.

In ANANAS, we try to avoid the usage of tools that
require root privileges. Thus, the ext4 filesystem is used
for emulator images so, that they can be mounted with a
slightly modified version of ext4fuse in userspace as an
unprivileged user.

B. Network Analysis

Network traffic that occurs during the analysis is saved
in a pcap file. Connections are extracted from the stored
network traffic and provided in a readable format for later

use in the report. For simplicity, in case of TCP and
UDP traffic a connection is identified as a tuple of two
IP address and port combinations. Traffic caused by other
protocols is identified by the two IP addresses and the
protocol used. In addition, IP packets for each connection
are counted to give an overview of the total amount of
network traffic.

To get a high-level view, two application level protocols
are further examined: DNS and HTTP. Therefore, queries
made to DNS servers are extracted and the type and
content of the query is shown. Furthermore, HTTP traffic
is identified and relevant details such as URLs, header
fields and parameters in GET and POST requests are
extracted.

C. Systemcall Logging/LKM

To provide a low-level view of the interaction be-
tween the analyzed application and the Android system, a
loadable kernel module is used to hook several system
calls and log their usage. It allows ANANAS to trace
all system calls that have been executed on the emulated
system during the analysis. This is important to detect
inter process communication (IPC), which is heavily used
in Android. One example of IPC is the handling of the
Short Message Service (SMS). SMS messages received by
the system are broadcasted to applications (including the
built-in SMS application), which requested to receive this
type of IPC message. A trick that is used by malicious
applications is to instrument a web browser via IPC to
open a certain URL and exfiltrate data. This is why the
logged system calls cannot be restricted to the analyzed
application. Instead, all system calls on the whole system
must be considered.

For each system call, the name and the parameters of the
system call and its return value are logged. If an argument
to a system call is a pointer to a string, the string is
recorded. The plugin includes hooks for mostly filesystem
related system calls, such as system calls needed to create,
read, write, remove files and change permissions and
ownership of files. System calls used for changing user
and group IDs are also logged.

Since the logging of system calls for all applications
leads to very big log files, a good filtering mechanism must
be put in place. The filters were written and improved by
comparing the analysis results of several malicious and
non-malicious applications. System calls that represent
normal behaviour on an Android system are filtered be-
cause they do not provide valuable insight for the analyst.
Some popular root exploits for the Android system were
whitelisted in order to make sure they show up in the
report. ANANAS’s LKM plugin doesn’t try to detect these
exploits actively, but by whitelisting the exploits it is
ensured that they are not accidentally blacklisted.

D. APKIL/APIMonitor

APIMonitor/APKIL [16] was developed by Kun Yang at
the Honeynet Project during the Google Summer of Code
2012 as an improvement for DroidBox [8]. By interposing

APIs in the APK file and inserting monitoring code into
the APK, API call logs can be retrieved.

The plugin registers to the event before emulator start
and uses APKIL to modify the APK before it is installed
to the emulator. It is important to notice that all other
plugins, such as the static analysis plugin, which are in
some way dependent on the APK file, still use the unmod-
ified version. The modified APK then logs its API calls
to logcat, Android’s logging system. As the framework
redirects the logcat files to the local result directory on
the analysis host, the plugin doesn’t have to retrieve the
logcat files manually. However, it registers to the hook
before database to process the logcat files and search for
relevant APKIL entries.

E. Static Analysis

When analyzing applications, static analysis can be
a very useful tool to gather information about the ap-
plication. Especially the file AndroidManifest.xml, which
is part of every APK, is a precious source containing
the application’s permissions, activities, services, content
providers, broadcast receivers as well as other useful
information like the package name.

ANANAS’ static analysis plugin’s capabilities are to
analyze the AndroidManifest.xml and extract the appli-
cation’s permissions, services, receivers and the package
name. As the application’s manifest is compressed, apktool
is used to convert the manifest to a readable format before
extracting the information wanted. Apktool is a tool, which
can decode resources within an APK and disassemble the
compiled dex files to smali [10].

The static analysis plugin extracts strings from the
disassembled dex files. These strings are then scanned
for URLs. The knowledge, which URLs an Android
application contains and probably connects to, can be a
valuable information, since a lot of malicious Android
applications try to send personal information from the
users’ smartphones to external servers or try to contact
their C&C servers.

The next step of the static analysis plugin is to check
each resource within the APK for its filetype. The purpose
of this is to identify binaries or native libraries that ship
with the APK to be executed later and might contain
exploits. For malware analysts, it might be suspicious if
an application contains a file called image.png, which is
detected as an executable.

To do its work, this plugin registers to the event
before emulator start and starts the static analysis in a
background thread in order not to delay the dynamic
analysis. The plugin waits for the background thread to
finish on the before database event.

Although obfuscation and similar techniques can limit
the benefit of static analysis for malware detection, it is
still a valuable source of information, especially when it
comes to analyzing Android applications. As long as the
specification of Android applications doesn’t change, the
AndroidManifest.xml will always contain easily extractable
and valuable information about the APK.

F. VirusTotal Query

VirusTotal is a platform that allows the user to submit a
file or the hash of a file and receive the results of several
antivirus scan engines.

This plugin provides the possibility to automatically
include the results of VirusTotal into the final report. It
does so by searching for the APK’s hash on VirusTotal
using the hook before emulator start. If VirusTotal isn’t
aware of the APK’s hash, the plugin also provides the
possibility to upload the APK and fetches the results of
the analysis later.

VI. EXPERIMENTAL EVALUATION

The evaluation of ANANAS was done based on samples
within the Android Malware Genome Project (AMGP)
[17]. The whole set of 1,260 samples was analyzed using
the framework to evaluate the robustness of the system.
ANANAS proved to be capable of analyzing this amount
of samples without showing any fatal errors that would
lead to a crash of the framework or a stop of an analysis
run.

For the first experimental evaluation of the framework’s
detection capabilities, we analyzed a small subset of six
randomly chosen samples from within the AMGP supple-
mented by two more recent samples. The resulting reports
were manually evaluated. A more extensive evaluation on
a larger amount of samples has to be conducted in the
future.

In this section, we first present the results of this
experimental evaluation. Problems and challenges faced
during the evaluation are discussed subsequently. Finally,
we draw a comparison between ANANAS and Andrubis
[7] regarding the tested subset of samples within the
AMGP.

A. Observation of Malicious Behaviour

The AMGP categorizes the samples by their payload
functionality. The categories are privilege escalation, re-
mote control, financial charges, and personal information
stealing [15]. Apart from remote control, two samples of
each category were analyzed with ANANAS. The remote
control category was excluded due to the absence of
reachable command & control servers for the samples
within the AMGP at the time of doing the evaluation.
Additionally, two more recent samples were analyzed (An-
droid/SystemSecurity.A and Trojan:Android/Maistealer.A).

Each sample was analyzed with ANANAS using an
Android 4.1 based emulation environment. All plugins
were enabled and an extensive user and phone event
simulation script was used. The results of the experimental
evaluation are shown in table I. The detection of malicious
behaviour results in a Yes for the respective category. If
parts of the malicious behaviour or at least an indicator
for such can be found in the report, this is described with
Partly. A detection failure results in a No. A hyphen (-)
symbolizes that the sample contains no malicious payload
for the respective category.

As an example for the evaluation process, we discuss
the analysis and results of two samples (DogWars and
GGTracker) in greater detail below.

1) Android.Dogowar: Android.Dogowar (DogWars) is
a trojan horse, which sends text messages to all contacts
saved on the device. It also sends text messages to a
hardcoded number. This malware is a repackaged version
of a legit game called Dog Wars. [18]

The AMGP categorizes this sample’s malicious payload
into the category Financial Charges (subcategory SMS).
This means, that the sample charges the user financially by
sending text messages. ANANAS can detect this malicious
behaviour. More precisely, the APKIL plugin reveals the
actions of this trojan. The first action of DogWars is to
query the contacts application that ships with Android for
contacts stored on the device. Each contact for which a
phone number exists will be forwarded a text message
with the content I take pleasure in hurting small animals,
just thought you should know that. Also, a text message
to the number 73822 with the content text is sent. All this
action occurs without the user’s knowledge, leaving the
user with the bill for the sent SMS.

The network analysis plugin shows that POST
and CONNECT HTTP requests to the URL http:
//kagegames.com/dw/process_cmds3.php are
sent. The network analysis plugin also shows that no
personal data left the phone through these connections.
As this malware is a repackaged version of a legit game,
these connections might be part of the original game’s
behaviour.

2) GGTracker: The analyzed version of GGTracker
hides inside a battery management application and its
main functionality is to sign-up the phone to premium
SMS subscription services [19]. The AMGP classifies the
malicious payload of GGTracker into Financial Charges
(subcategory SMS) and Personal Information Stealing
(subcategories SMS and Phone Number).

ANANAS is able to detect the information stealing
part of the payload. It is not possible for ANANAS to
detect the financial charges that occur via premium SMS
subscription services, as the server used for subscribing
to these services wasn’t reachable anymore at the time of
writing this paper.

A first analysis of the sample showed that DNS
queries for ggtrack.org and www.amaz0n-cloud.
com failed. For the purpose of generating better results,
the emulator’s hosts file was modified to redirect these
domains to a local server, where netcat was used as a
sink for incoming connections to port 80. This enabled
us to record the HTTP requests sent by GGTracker and
therefore get better analysis results.

The static analysis plugin showed the two URLs,
http://ggtrack.org/SM1c?device_id= and
http://www.amaz0n-cloud.com/droid/
droid.php, the sample connected to. The APKIL
plugin revealed that the sample requested access to
the SMS database several times but couldn’t show
that the SMS would leave the phone. The File

http://kagegames.com/dw/process_cmds3.php
http://kagegames.com/dw/process_cmds3.php
ggtrack.org
www.amaz0n-cloud.com
www.amaz0n-cloud.com
http://ggtrack.org/SM1c?device_id=
http://www.amaz0n-cloud.com/droid/droid.php
http://www.amaz0n-cloud.com/droid/droid.php

Application Privilege Escalation Financial Charges Personal Information Stealing

Phone Call SMS Block SMS SMS Phone Number User Account

GGTracker - - No/No No/No Yes/No Yes/Yes -
DogWars - - Yes/Yes - - - -
Gingermaster Partly/Partly - - - - Yes/No -
AnserverBot - - - - No/No - -
SndApps - - - - - - No/No
DroidKungFu Partly/No - - - - Yes/No -
Pjapps - - No/No No/No - Yes/Yes -
Trojan:Android/SystemSecurity.A* - - No/No No/No - Yes/Yes -
Trojan:Android/Maistealer.A* - - - - No/No Partly/Partly -

Table I
OBSERVATION OF MALICIOUS BEHAVIOUR POSSIBLE IN ANANAS / IN ANDRUBIS. SAMPLES MARKED WITH * ARE NOT PART OF THE MALWARE

GENOME PROJECT.

System Diff plugin showed that the following three
files were added by the sample in its directory in
/data/data/t4t.power.management/:

• shared_prefs/carrier.xml,
• shared_prefs/t4t.power.management
_preferences.xml and

• shared_prefs/phone.xml.
The names of the files carrier.xml and phone.xml
alone might raise concerns about sensitive data, which
could be stored in these files.

The most beneficial plugin for the analysis of this
sample is the network analysis. It clearly shows that the
emulator’s phone number is sent to ggtrack.org/
SM1c via a GET request multiple times. It also shows
that the simulated incoming SMS that have been received
are forwarded to www.amaz0n-cloud.com/droid/
droid.php. This is done via a POST request, which
contains the phone number of the receiving as well as
the phone number of the sending device, the carrier, the
content of the message, and the version of Android that
is currently running on the receiving device.

B. Challenges During the Evaluation
The biggest challenge during the evaluation was that

most command & control servers for older malware sam-
ples were not reachable anymore. This was especially
problematic with personal information stealing samples.
We can often see that the data is accessed by the analyzed
sample, but because the command & control server is not
reachable the data is never sent. By using DNS redirection
and a netcat listener as a sink for HTTP requests from
GGTracker, we were at least able to receive the requests
of this malware sample.

The unreachability of C&C servers is also a problem
with malware that fetches and loads code at runtime and
carries no malicious payload itself. Some malware acts
only as an installer for other Android applications. The ac-
tual malicious payload is contained in the application to be
installed. While an application can dynamically load code,
it cannot install other applications without prompting the
user for permission. ANANAS currently does not simulate
a user approving an application installation and therefore
the actual malicious payload may never be installed and
executed.

Another challenge for the dynamic analysis is to trig-
ger every malicious behaviour of an application. While
ANANAS ships with some predefined simulation scripts
which reveal most of the malicious activity, there is still
behaviour that is not triggered (e.g. blocking of an incom-
ing text message from a phone number that is specified in
the application’s code).

The usage of APIMonitor can also be a problem during
the analysis. The AnserverBot malware family for example
checks itself for integrity before the malicious payload
is executed, as described by Zhou and Jiang in [20].
The sample is not activated at all if APIMonitor is used.
With a disabled APIMonitor plugin some activity can be
observed, although the described malicious behaviour is
still not triggered.

C. Comparison of ANANAS to Andrubis

To compare the quality of the reports generated by
ANANAS to the reports that have been generated by An-
drubis, the test samples have been uploaded to Andrubis.
It is worth noting, that each sample has already been ana-
lyzed by Andrubis prior to this evaluation. If C&C servers
were still reachable at that time, results may be different.
The reports of Andrubis and ANANAS were compared
manually. As ANANAS focuses on dynamic analysis, only
the dynamic parts of the reports are compared against
each other. However, it is obvious that the static analysis
of Andrubis is superior to the static analysis plugin of
ANANAS.

Unfortunately, no detailed description of the inner work-
ings of the Andrubis system could be found. Therefore,
it is not always clear why and how some behaviour can
or can not be detected with Andrubis. We suppose that
the differences in the detection of malicious behaviour
between ANANAS and Andrubis mostly result from the
use of different analysis techniques. Also, differences in
the implemented detection evasion techniques or user
and phone event simulation may be responsible for the
different results.

Table I shows the results of the comparative tests with
Andrubis. It is clear that both ANANAS and Andrubis
are not able to detect every malicious behaviour with their
dynamic analysis modules. The challenges for the dynamic

ggtrack.org/SM1c
ggtrack.org/SM1c
www.amaz0n-cloud.com/droid/droid.php
www.amaz0n-cloud.com/droid/droid.php

analysis that lead to detection failures might be similar for
both frameworks.

VII. CONCLUSION & FUTURE WORK

In this paper, ANANAS, an extendable framework for
the analysis of Android applications, as well as its plugins
have been introduced. The main contributions of this paper
are:

• ANANAS, which is a ready to use framework for
dynamic and static analysis of Android applications.
It is highly configurable and independent of the
emulated Android version.

• An abstraction layer for simple user interaction and
phone event simulation, which is easy to adjust.

• A clean and defined interface for plugin developers to
facilitate the development of new plugins, regardless
of whether they are intended for static or dynamic
analysis.

• Six plugins for static and dynamic analysis of An-
droid applications, whereby three of them were de-
veloped solely for ANANAS and three are wrappers
around existing tools.

The evaluation showed that it is important to simulate
different phone events and user input during the dynamic
analysis, since otherwise certain behaviour of the applica-
tion cannot be triggered.

It also showed that none of the implemented analy-
sis methods was capable of detecting every malicious
behaviour. Therefore, it is not sufficient to build a tool
providing a single analysis method. It is important to
have an expandable framework in which new or improved
analysis methods can be integrated as plugins. ANANAS
aims to be such a framework.

By analyzing all samples within the Android Malware
Genome Project, ANANAS proved to be a robust frame-
work. The developed plugins also proved to be effective by
recognizing most of the application’s malicious behaviour.

Possible improvements of the ANANAS framework,
which are left for future work, are to evade detection of the
analysis environment by malware or the improvement of
plugins. To evade the detection of the Android emulator,
the IMSI and IMEI of the emulator could be altered, but
effective detection evasion still needs more research. It is
also a possibility to create new plugins for ANANAS or
adopt existing tools for the analysis of Android applica-
tions as they are released.

Another topic, which needs more attention, is the de-
velopment of effective filters for the plugins. The problem
that has to be solved is to make sure that all relevant output
of a plugin that can be mapped to malicious behaviour
is shown in the report, while also making sure that non-
relevant output does not show up. As some plugins, e.g. the
LKM plugin, are very verbose, it is tempting to blacklist
most of the output to make the final report smaller. The
possibility to accidently blacklist relevant output is thereby
tremendous.

One problem that occurs during the analysis, especially
of older malware samples, is that the C&C servers are

not reachable anymore. A simple simulation of such C&C
servers could improve the generated results a lot.

Since the Android system is still quite young compared
to other popular operating systems, a lot of work has
to be done to address security concerns. The analysis of
potentially harmful applications is one important aspect in
this field to which this paper contributes.

ACKNOWLEDGEMENTS

We would like to thank Christian Nösterer and Thomas
Traunmüller for contributing to ANANAS during their
time in Hagenberg.

We would also like to thank Martin Brunner for his
guidance in the early stages of this project and Daniel
Bäumges, whose TaintDroid Runner project served as
initial base for ANANAS.

REFERENCES

[1] Gartner, Inc. Gartner says worldwide sales of mobile
phones declined 3 percent in third quarter of 2012;
smartphone sales increased 47 percent. [Online]. Available:
http://www.gartner.com/newsroom/id/2237315

[2] IDC Corporate. Android marks fourth anniversary since
launch with 75.0market share in third quarter, according to
idc. [Online]. Available: https://www.idc.com/getdoc.jsp?
containerId=prUS23771812#.UWAPDZNkOSo

[3] Dashboards — Android Developers. [Online]. Available:
http://developer.android.com/about/dashboards/index.html

[4] McAfee Labs, “McAfee Threats Report: Fourth Quarter
2012,” Tech. Rep. [Online]. Available: http://www.mcafee.
com/sg/resources/reports/rp-quarterly-threat-q4-2012.pdf

[5] Android trojan found in targeted attack. [Online].
Available: https://www.securelist.com/en/blog/208194186/
Android Trojan Found in Targeted Attack

[6] Anubis: Analyzing unknown binaries. [Online]. Available:
http://anubis.iseclab.org/

[7] M. Lindorfer. Andrubis: A tool for
analyzing unknown android applications.
[Online]. Available: http://blog.iseclab.org/2012/06/04/
andrubis-a-tool-for-analyzing-unknown-android-applications-2/

[8] Droidbox. [Online]. Available: http://code.google.com/p/
droidbox/

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones,” in Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[10] Apktool. [Online]. Available: http://code.google.com/p/
android-apktool/

[11] Androguard. [Online]. Available: http://code.google.com/
p/androguard/

http://www.gartner.com/newsroom/id/2237315
https://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UWAPDZNkOSo
https://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UWAPDZNkOSo
http://developer.android.com/about/dashboards/index.html
http://www.mcafee.com/sg/resources/reports/rp-quarterly-threat-q4-2012.pdf
http://www.mcafee.com/sg/resources/reports/rp-quarterly-threat-q4-2012.pdf
https://www.securelist.com/en/blog/208194186/Android_Trojan_Found_in_Targeted_Attack
https://www.securelist.com/en/blog/208194186/Android_Trojan_Found_in_Targeted_Attack
http://anubis.iseclab.org/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://code.google.com/p/droidbox/
http://code.google.com/p/droidbox/
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://code.google.com/p/androguard/
http://code.google.com/p/androguard/

[12] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck,
and J. Hoffmann, “Mobile-sandbox: having a deeper look
into android applications,” in Proceedings of the 28th
Annual ACM Symposium on Applied Computing, ser. SAC
’13. New York, NY, USA: ACM, 2013, pp. 1808–1815.
[Online]. Available: http://doi.acm.org/10.1145/2480362.
2480701

[13] L. K. Yan and H. Yin, “Droidscope: seamlessly
reconstructing the os and dalvik semantic views for
dynamic android malware analysis,” in Proceedings of
the 21st USENIX conference on Security symposium,
ser. Security’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 29–29. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362822

[14] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground:
automatic security analysis of smartphone applications,”
in Proceedings of the third ACM conference on Data
and application security and privacy, ser. CODASPY ’13.
New York, NY, USA: ACM, 2013, pp. 209–220. [Online].
Available: http://doi.acm.org/10.1145/2435349.2435379

[15] Y. Zhou and X. Jiang, “Dissecting android malware: Char-
acterization and evolution,” in Security and Privacy (SP),
2012 IEEE Symposium on, 2012, pp. 95–109.

[16] Apkil/apimonitor. [Online]. Available: http://code.google.
com/p/droidbox/wiki/APIMonitor

[17] Android malware genome project. [Online]. Available:
http://www.malgenomeproject.org/

[18] B. Cai. Android.dogowar technical details. [Online]. Avail-
able: http://www.symantec.com/security response/writeup.
jsp?docid=2011-081510-4323-99&tabid=2

[19] T. Strazzere, “GGTracker Technical Tear
Down,” Tech. Rep. [Online]. Avail-
able: https://blog.lookout.com/wp-content/uploads/2011/
06/GGTracker-Teardown Lookout-Mobile-Security.pdf

[20] X. J. Yajin Zhou, “An analysis of the anserverbot trojan,”
Tech. Rep., 9 2011. [Online]. Available: http://www.csc.
ncsu.edu/faculty/jiang/pubs/AnserverBot Analysis.pdf

http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2480362.2480701
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://doi.acm.org/10.1145/2435349.2435379
http://code.google.com/p/droidbox/wiki/APIMonitor
http://code.google.com/p/droidbox/wiki/APIMonitor
http://www.malgenomeproject.org/
http://www.symantec.com/security_response/writeup.jsp?docid=2011-081510-4323-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-081510-4323-99&tabid=2
https://blog.lookout.com/wp-content/uploads/2011/06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
https://blog.lookout.com/wp-content/uploads/2011/06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf

	I Introduction
	II Related Work
	III ANANAS Architecture
	IV The Core Framework
	IV-A Initialization
	IV-B Load Plugins
	IV-C Call Plugins: Part 1
	IV-D User & Phone Event Simulation
	IV-E Call Plugins: Part 2
	IV-F Filtering & Report Generation

	V Plugins
	V-A File System Diff
	V-B Network Analysis
	V-C Systemcall Logging/LKM
	V-D APKIL/APIMonitor
	V-E Static Analysis
	V-F VirusTotal Query

	VI Experimental Evaluation
	VI-A Observation of Malicious Behaviour
	VI-A1 Android.Dogowar
	VI-A2 GGTracker

	VI-B Challenges During the Evaluation
	VI-C Comparison of ANANAS to Andrubis

	VII Conclusion & Future Work
	References

