
Using Facebook for Image Steganography

Jason Hiney1, Tejas Dakve1, Krzysztof Szczypiorski2, Kris Gaj1
1George Mason University

Fairfax, VA, United States of America
jhiney@gmu.edu, tejasdash02@gmail.com, kgaj@gmu.edu

2Warsaw University of Technology
Warsaw, Poland

ksz@tele.pw.edu.pl

Abstract—Because Facebook is available on hundreds of
millions of desktop and mobile computing platforms around
the world and because it is available on many different kinds
of platforms (from desktops and laptops running Windows,
Unix, or OS X to hand held devices running iOS, Android, or
Windows Phone), it would seem to be the perfect place to
conduct steganography. On Facebook, information hidden in
image files will be further obscured within the millions of
pictures and other images posted and transmitted daily.
Facebook is known to alter and compress uploaded images
so they use minimum space and bandwidth when displayed
on Facebook pages. The compression process generally
disrupts attempts to use Facebook for image steganography.
This paper explores a method to minimize the disruption so
JPEG images can be used as steganography carriers on
Facebook.

Keywords-Facebook; jpeg; image; steganography; JP Hide
& Seek

I. INTRODUCTION
Steganography comes from “covered writing” in Greek

and means hiding one piece of information in another
piece of information (the carrier). Reference [1] gives
writing directly on the wooden backing of wax tablets
before the beeswax had been applied, hiding information
on the human body, using microdots, and using invisible
ink as examples of early steganography. The computer
age brings many more opportunities for steganography.
Examples of digital steganography include hiding
information in digital images, replacing the least
significant bits of voice-over-IP transmissions, and
modifying network packet structures or timing relations
(network steganography).

This paper focuses on hiding information in Joint
Photographic Experts Group (JPEG) [2] images then
uploaded and posted to Facebook as a means of
distribution. Input file formats to Facebook are
manipulated in an attempt to manage the compression
problem. Section II of the paper summarizes previous
related work. Section III details our efforts to preprocess
JPEG carrier images so that hopefully the Facebook
compression algorithm performs very little compression
that will disrupt steganography. Section IV describes our
efforts to pick the best tool to conduct success rate testing
in section V. Section VI deals with steganalysis, first in
general and then applied to the project. Section VII
provides concluding remarks and discusses possible future
work.

II. RELATED WORK

A. A Forensic Analysis of Images on Online Social
Networks

Castiglione, Cattaneo, and De Santis [3] analyzed how
several popular online social networks process uploaded
images and what changes are made to the published
images. Of particular interest to our application is which
image formats Facebook accepts for upload and how it
transforms each file type.

B. Stegobot: A Covert Social Network
Nagaraja, Houmansadr, Piyawongwisal, Singh,

Agarwal, and Borisov [4] proposed Stegobot, a bot
network utilizing Facebook image steganography to
provide covert communication channels. A database of
116 different images was used to determine the maximum
JPEG resolution not altered by Facebook image
processing. Then images were resized below the
maximum Facebook constraint, the YASS steganography
scheme was utilized to embed the bot communications,
the carrier images were uploaded to Facebook, and the
YASS detector was used to extract the communications.
In our experimentation, we also use Facebook to conduct
image steganography and manipulate JPEG carrier images
to minimize the changes made in Facebook image
processing. However, we work with higher resolution
JPEG carrier images and conduct experimentation on
multiple steganography programs. In addition, our goal is
to conceal and transmit whole text and image files rather
than to conceal and transmit bot network communications,
and our results therefore consist of success rates for
transmitting various size text and image files using
steganography on Facebook.

C. Secretbook
Campbell-Moore developed the Secretbook plug-in to

hide text messages up to 140 characters in JPEG images
on Facebook using the Google Chrome browser.
Beckhusen’s article [5] does an excellent job framing the
Facebook steganography problem and explaining
Campbell-Moore’s solution. When one uploads an image
to Facebook, the image is automatically compressed. If
there is steganography in the image, Facebook garbles it.
The Secretbook algorithm automatically compresses a
JPEG image as Facebook would and then adds the hidden
steganography data. The algorithm also adds redundancy
so any remaining distortion can be corrected by

reconstruction from the copies. Our approach is very
similar to the first step of Campbell-Moore’s algorithm.
We determine which image format Facebook alters the
least and preprocess images in that format to minimize the
chances that Facebook will corrupt the loaded carrier file
to the extent that steganography is “uncovered” or secret
message recovery fails. However, we will also show that
it is possible to use JPEG carrier images to transmit
hidden text messages longer than 140 characters and
hidden images using Facebook.

III. PRELIMINARY EXPERIMENTS

A. Selection of Carrier File Type
In this first phase of experimentation, we uploaded

almost 100 JPEG, bitmap (BMP) [6], graphics interchange
format (GIF) [7], portable network graphics (PNG) [8],
and tagged image file format (TIFF) [9] files to Facebook
and then downloaded them, observing changes to file
types and sizes. Table I summarizes characteristics of
these file types.

Most of the uploads were to the Facebook main page,
but we also did some uploads to the profile picture. We
observed that Facebook accepts JPEG, PNG, GIF, and
TIFF files but does not accept BMP files. We observed
that Facebook converts uploaded PNG, GIF, and TIFF
images to JPEG File Interchange Format (JFIF) images
[10]. (JFIF is a standardized format for exchanging JPEG
files consistent with the JPEG Interchange Format [JIF].)
We observed that Facebook converts uploaded JPEG/
Exchangeable Image file Format (EXIF) images [11] to
JPEG/JFIF images. (EXIF is a standard format used by
cameras and similar devices that contains additional
metadata such as camera model, date and time, camera
settings, etc., and a thumbnail for viewing on a camera
screen.) We observed that Facebook compresses uploaded
JPEG/JFIF images.

Kessler [12] explains how JPEG uses discrete cosine
transforms in a lossy compression scheme quite different
from the pixel-by-pixel lossless compression scheme used
in other image file formats. Given that Facebook converts
all uploaded image types to JPEGs and that JPEG
compression is very different from compression in other
image types, we reasoned that JPEGs offer the best
chance of uploading an image type to Facebook that will
be unchanged or minimally changed by compression. We
observed upload to download file size ratios ranging from
(0.83 to 156) for JPEGs.

B. Finding and Applying Standard Image Download
Resolutions

In this second phase of experimentation, we first
uploaded JPEGs of different resolutions to Facebook and
then downloaded them, observing changes to resolution.
We uploaded to a Facebook album with the high quality
setting to maximize the corresponding downloaded file’s
size and capacity to hold hidden information. We
observed that JPEG images downloaded from Facebook
are generally 2048 * yyyy resolution or 960 * yyy
resolution when the upload resolutions are >=960 * yyy
(yyyy and yyy are the numbers of pixels on the shorter

TABLE I. OVERVIEW OF IMAGE FILE TYPES

BMP • Very old Microsoft uncompressed proprietary
format

GIF • Limited to 256 colors
• Used for fast-loading web graphics
• Not suitable for images with continuous color like

photographs, but well suited for simple images with
solid areas of color

JPEG • Most popular image file type
• Used to store & display images on web sites and in

cameras
• Supports a full spectrum of colors
• Compatible with the vast majority of devices &

programs
• Can be compressed to save storage space and

transmission time (lossy compression)

PNG • Small files that maintain original image quality
• Supports a full spectrum of colors and transparency
• Suitable for graphics image files like logos and

infographics
• Not compatible with all software

TIFF • Suitable for a bitmap image that may be edited
• No compression as intended to preserve quality
• Produces big files and thus not suitable for web

graphics

sides of the images). We observed that the upload JPEG
resolutions were generally not changed upon download
when the numbers of pixels on the longer sides of the
images were <= 960. Considering that high image
resolutions were needed to maximize the steganography
payload, we concluded that JPEG images with 2048 *
yyyy (hereafter 2048 resolution) and 960 * yyy (hereafter
960 resolution) resolutions were the most interesting
candidates as carriers for Facebook steganography.

In the second part of this phase, we began
manipulating JPEG files to see if we could produce
download resolutions and file sizes similar to the upload
resolutions and file sizes. The theory was that in this
situation, Facebook might be doing very little, if anything,
to transform the uploaded JPEGs and that they might then
serve as good steganography carriers. So in phase 2 part 2
we took JPEG/EXIF and JPEG/JFIF sample images and
used Nikon View NX2 to convert them to 2048 and 960
resolutions. We also experimented with different View
NX2 compression ratios to see which ones would produce
upload to download file size ratios closest to 1.0 when
uploading to a Facebook album with high quality setting
and then downloading from Facebook. We found that
JPEG test images resized to 2048 resolution and then
compressed using the “good compression” setting or the
“highest compression” setting in View NX2 produced
upload to download ratios closest to 1.0 (in the 1.03 to
1.45 range). This range is much closer to 1.0 than the 24
to 156 compression ratios observed in phase 1 for JPEGs
with >=2048 resolution. We found that JPEG test images
resized to 960 resolution and then compressed using the
“good compression” setting or the “highest compression”
setting in View NX2 produced upload to download ratios

in the 1.68 to 2.57 range. This range is much closer to 1.0
than the 4.67 to 37.4 compression ratios observed in phase
1 for JPEGs with resolutions <2048 but >=960.

We also observed that in some cases JPEGs uploaded
to Facebook in the 2048 resolution downloaded in the 960
resolution. This happened when downloading to laptops
using Internet Explorer but not when downloading to
laptops using Google Chrome. It did not occur when
downloading to a desktop. We concluded that an upload at
2048 resolution would likely fail to successfully transmit
steganography with a subsequent download at 960
resolution because the carrier file would be drastically
compressed. However, both the 960 and 2048 resolutions
are still valid for conducting Facebook steganography.
The larger resolution offers a compression ratio closer to
1.0 and should offer more hidden payload, but the smaller
resolution offers a consistent download resolution across
differing computer platforms and download browsers.
Because each situation offers a good characteristic for
conducting steganography, and because steganography is
possible under both conditions, we decided to continue
testing both 2048 and 960 resolution images.

C. Achieving 1.0 Upload to Download File Size Ratio
In the third phase of experimentation, our goal was to

further develop our set of JPEG test images so that when
they were uploaded to a Facebook album using the high
quality setting, the upload file size to download file size
ratio would be at 1.0 or very close to 1.0. At this point our
test images had already been resized, converted, and
compressed by NX2; uploaded to a Facebook album; and
downloaded from Facebook. We reasoned that uploading
them to Facebook again and downloading them from
Facebook again might bring them to the 1.0 target ratio.
We chose the ten 2048 resolution JPEG images with the
lowest phase 2 upload to download ratios and the ten 960
resolution JPEG images with the lowest phase 2 upload to
download ratios and uploaded them to a Facebook album
with the high quality setting again. The 2048 resolution
downloads were conducted using the desktop, so resizing
to 960 resolution would not occur. The 2048 resolution
downloads yielded ratios in the 0.99 to 1.00 range. The
960 resolution downloads yielded ratios in the 1.00 to
1.06 range. With the ratios at or very close to 1.0 for these
carrier test files, we were ready to begin steganography
testing.

IV. STEGANOGRAPHY PROGRAM TESTING

A. Procedure
In this fourth phase of experimentation, we created

short text files and used various steganography programs
to hide them in the twenty test carrier JPEG files produced
by phase 3. We then uploaded the carriers to Facebook
using the high quality setting, downloaded them from
Facebook, and attempted to recover the hidden
information. Table II shows the programs tested and
provides an overview of each program’s salient features.

TABLE II. STEGANOGRAPHY PROGRAMS
TESTED AND SALIENT FEATURES

Program Operating

System(s)
Interface Additional

Features
Open
Puff

Windows GUI multiple
passwords,

hiding across
multiple carriers,
encryption, decoy

Outguess
Rebirth

Windows GUI encryption

F5 Java
capable

command
line

JP Hide
& Seek

Windows,
Linux

GUI for
Windows

Steghide Windows,
Linux

command
line

Steg Windows,
Linux, OS

X

GUI encryption

Our
Secret

Windows GUI

Incognito Android GUI
Stegan-
ography

Android GUI

B. Results
In each experiment, we tested the ability of the

program to recover the hidden text prior to upload to
Facebook and then proceeded with Facebook testing.

Open Puff did not work with our test carriers. Any
JPEG images previously compressed by Facebook cause
an “unsupported carrier format” error. We were surprised
to see Open Puff, the best steganography software
according to many users, failing to work with images
already compressed by Facebook. We tested and found
that it does work with JPEG images not processed by
Facebook.

Outguess Rebirth did not work with our test carriers.
The program has an insert/extract button that changes
from “insert file” to “extract file” when it detects that a
carrier is hiding information. Facebook compression alters
the carrier in such a way that it does not detect data
hidden before upload to Facebook. In all 20 test cases the
program offered the “insert file” button and not the
“extract file” button when the carrier downloaded from
Facebook was loaded into the program.

F5 did not work with our test carriers. In all 20 test
cases the program halted when the extraction was
requested.

We achieved a 50% success rate with JP Hide & Seek.
Ten of the 20 experiments were successful. We received
“passphrase wrong” errors in 8 of the 10 failed
experiments. In one case, the text was recovered, but
some characters were changed.

We achieved a 15% success rate with Steghide. Three
of the 20 experiments were successful. We received
“could not extract with that passphrase” errors in 13 of the

17 failed experiments. We also had 2 cases where the text
was recovered, but some characters were changed.

We achieved a 20% success rate with Steg. Four of the
twenty experiments were successful. The program crashed
in 11 of the failed experiments. There were also 5
“extraction failed” errors.

Our Secret did not work with our test carriers. In all 20
experiments we received a “The file hides no data!” error.

Incognito did not work with any JPEG files (even prior
to Facebook compression). It supposedly has the
capability to hide files and text, but it crashed every time
we tried to hide information (files and text).

Steganography (Android) did not work with any of the
8 test carrier files that we tested. In the process of hiding
information in a JPEG image, the program actually
converts the cover image to a rather large PNG image.
Since Facebook was then doing an upload to download
file size ratio compression in the range (7 to 43) and
converting a PNG image to a JPEG image, it was obvious
that additional tests would not succeed.

 In all cases where we were able to download the
loaded JPEG carrier images from Facebook (even if we
could not recover the hidden information), we observed
that the downloaded carriers were not garbled so that
steganography could be visually detected. Also, we were
correct in our prediction that few steganography programs
would produce loaded carrier images that could survive
Facebook compression.

V. JP HIDE & SEEK CAPACITY TESTING
In phase 4 of the experimentation, we achieved some

amount of success only with JP Hide & Seek (JPHS),
Steg, and Steghide. Since we achieved a 50% success rate
with JPHS, it appeared to be the best available tool for
conducting Facebook steganography.

In this fifth phase of experimentation, we tested the
capacity of 100 JPEG carrier files to hide text and images
using JPHS for steganography and Facebook for
transmission. Fifty of the images were in the 960
resolution, and the other 50 were in the 2048 resolution.
We used only carrier images that successfully passed the
initial 1 byte payload test. The steps conducted in each
experiment were:

• Create a text file of selected size or choose an image

file of selected size
• Hide the text or image in the selected preprocessed

carrier image using JPHS
• Test recovery using JPHS
• Upload the test carrier to a Facebook album with high

quality setting
• Download the carrier image from Facebook
• Attempt to recover the hidden image or text

JPHS was able to recover all hidden texts and images

prior to the carrier test files being uploaded to Facebook.
Thus, all failures encountered can be attributed to
Facebook compression. The success rates after using
Facebook to transmit the carrier files decreased as the

hidden payload increased. Fig. 1 shows the success rates
for hiding text files of various sizes in the fifty 960
resolution test carriers. Fig. 2 shows the success rates for
hiding text files of various sizes in the fifty 2048
resolution test carriers. Fig. 3 shows the success rates for
hiding image files of various sizes in the fifty 2048
resolution test carriers. We counted only files and images
recovered 100% intact as successes. There were a few
recoveries we did not count because characters were
changed in the recovered text or the recovered images
were grainy or partially corrupted. Fig. 4 shows a sample
corrupted hidden image along with its original copy. We
had no successes for hiding images in the fifty 960
resolution test carriers.

 So with the 960 resolution test carriers, we had a 90%
text payload recovery success rate at 65 bytes of hidden
text, and then the success rate dipped to 56% at 400 bytes
of hidden text. Then the success rate climbed to 76% at
1024 bytes and gradually decreased with increased hidden
text payloads. With the 2048 resolution test carriers, we
had a high text recovery success rate up to 400 bytes.

Figure 1. Success rates for hiding text in low resolution

(960 pixel * yyy pixel) JPEG carriers.

Figure 2. Success rates for hiding text in high resolution

 (2048 pixel * yyyy pixel) JPEG carriers.

0	

20	

40	

60	

80	

100	

120	

Su
cc

es
s R

at
e

(p
er

ce
nt

)

Stego Payload (bytes)

0	

20	

40	

60	

80	

100	

120	

Su
cc

es
s R

at
e

(p
er

ce
nt

)

Stego Payload (bytes)

Figure 3. Success rates for hiding images in high resolution

(2048 pixel * yyyy pixel) JPEG carriers.

Figure 4. (a) example of original image and (b) example

of corresponding corrupted hidden image after hiding
with JPHS, uploading to Facebook, downloading

from Facebook, and extracting using JPHS.

Then the rate dropped off to around 60% at 700 and 1024
bytes and to about 20% at 3, 5, and 12 kilobytes. In both
the high resolution and low resolution test cases, recovery
failures and data corruption increased as we pushed more
and more information relative to the carrier size through
Facebook. Surprisingly, at many payload sizes the low
resolution test carriers were better than the high resolution
test carriers at successfully transmitting the hidden text.
However, only the high resolution carriers were able to
successfully transmit image payloads.

VI. STEGANALYSIS

A. Overview
Steganography can be detected by comparing the

original file to the loaded cover file. However, in most
real world scenarios the examiner will not have the
original file. Steganography can also be detected with
steganography program signatures. A steganography
program’s signature is found by observing repetitive
changes to different original files when the program is
used. Then, even when an examiner does not have the
original file, the signature can be used to identify the
program [13]. Most steganalysis programs use signature
detection. Steganography can also be detected by
examining the suspect file for statistical abnormalities.
Means, variances, chi-square tests, linear analysis,
Markov Fields, and wavelet statistics are examples of
statistical examinations that can be done to measure the
amount of departure from the expected norm and thereby
detect distortion [12]. This is why steganalysis programs

also typically employ statistical checks. In the specific
case of JPEG steganography, Tech-faq.com [14] and
Andriotis, Oikonomou, and Tryfonas [15] indicate that
abnormal statistical distributions of JPEG coefficients can
indicate hidden data.

B. Applied to the Project
We used a program called Steg Secret to check our loaded
test carrier files before upload to Facebook and after
upload to Facebook. Steg Secret comes in Spanish, so it
may take a little work with a Spanish-English dictionary
to get started. Of the steganography programs listed in
section 4, Steg Secret was only able to detect
steganography conducted with Our Secret. Steg Secret
was able to detect Our Secret steganography before
upload to Facebook, but it was not able to detect Our
Secret steganography after download from Facebook. This
is interesting because in this case the Facebook algorithm
helps to further obscure the hidden information.

VII. CONCLUSIONS & FUTURE WORK
Facebook can be used to conduct JPEG steganography.

Campbell-Moore developed the Secretbook Google
Chrome plug-in to hide short text messages in JPEG
carrier images and transmit them via Facebook. Although
our model requires preprocessing work, multiple attempts,
and testing to ensure success, we have shown that it is
possible to hide longer text messages and small image
files in JPEG cover files and transmit them using
Facebook. Future work may include conducting more
experiments to firm up the success rates, conducting more
preprocessing to get better success rates, testing additional
steganography tools, determining exactly what Facebook
is doing to JPEG files during compression by detailed
comparison of the uploaded and downloaded images, and
developing a tool similar to Secretbook that can hide
longer texts and files including images.

ACKNOWLEDGMENT
Krzysztof Szczypiorski was supported by the

European Union in the framework of European Social
Fund through the Warsaw University of Technology
Development Programme.

REFERENCES
[1] Steganography. Retrieved February 11, 2015, from Wikipedia.org.

http://en.wikipedia.org/wiki/Steganography.
[2] JPEG. Retrieved February 11, 2015, from Wikipedia.org.

http://en.wikipedia.org/wiki/JPEG.
[3] A. Castiglione, G. Cattaneo, and A. De Santis, “A forensic analysis

of images on online social networks,” Proc. Third International
Conference on Intelligent Networking and Collaborative Systems,
2011, pp. 679-684.
Retrieved February 11, 2015, from IEEE Xplore.
http://ieeexplore.ieee.org.

[4] S. Nagaraja, A. Houmansad, P. Piyawongwisal, V. Singh, P.
Agarwal, and N. Borisov, “Stegobot: A covert social network
botnet,” Proc. 13th International Conference on Information
Hiding, 2011, pp. 299-313.
Retrieved February 12, 2015, from University of Massachusetts.
https://people.cs.umass.edu/~amir/papers/IH11-Stegobot.pdf.

0	
5	
10	
15	
20	
25	
30	

2.1	 KB	 3.75	 KB	 8.37	 KB	 15.3	 KB	

Su
cc

es
s R

at
e

(p
er

ce
nt

)

Payload Image Size (kilobytes)

[5] R. Beckhusen, “Secretbook lets you encode hidden messages in
your Facebook pics,” Wired, April 10, 2013. Retrieved February
11, 2015, from wired.com. http://wired.com/2013/04/secretbook.

[6] BMP File Format. Retrieved February 11, 2015, from
Wikipedia.org. http://en.wikipedia.org/wiki/BMP_file_format.

[7] Graphics Interchange Format. Retrieved February 11, 2015, from
Wikipedia.org. http://en.wikipedia.org/wiki/GIF.

[8] Portable Network Graphics. Retrieved February 11, 2015, from
Wikipedia.org.
http://en.wikipedia.org/wiki/Portable_Network_Graphics.

[9] Tagged Image File Format. Retrieved February 11, 2015, from
Wikipedia.org.
http://en.wikipedia.org/wiki/Tagged_Image_File_Format.

[10] JPEG File Interchange Format. Retrieved February 11, 2015, from
Wikipedia.org. http://en.wikipedia.org/wiki/JFIF.

[11] Exchangeable Image File Format. Retrieved February 11, 2015,
from Wikipedia.org. http://en.wikipedia.org/wiki/Exif.

[12] G. Kessler, An overview of steganography for the computer
forensics examiner. Retrieved February 11, 2015, from
garykessler.net. http://www.garykessler.net/library/fsc_stego.html.

[13] P. Richer, “Steganalysis: Detecting hidden information with
computer forensic analysis.” Retrieved February 11, 2015, from
SANS.org. http://www.sans.org/reading-room/whitepapers
/stenganography/steganalysis-detecting-hidden-information-
computer-forensic-analysis-1014.

[14] Steganography. Tech-faq.com, May 8, 2014. Retrieved December
4, 2014, from tech-faq.com. http://www.tech-faq.com/
steganography.html.

[15] P. Andriotis, G. Oikonomou, and T. Tryfonas, “JPEG
steganography detection with Benford’s law,” Digital
Investigation, vol. 9, 2013, pp. 246-257. Retrieved February 11,
2015, from fortoo.eu. http://fortoo.eu/m/page-media/4/jpeg-
steganography.pdf.

