Exploring the usage of Topic Modeling
for Android Malware Static Analysis

Eric Medvet*, Francesco Mercaldo®
*Department of Engineering and Architecture, University of Trieste, Trieste, Italy
emedvet@units.it
TDepartment of Engineering, University of Sannio, Benevento, Italy
fmercaldo@unisannio.it

Abstract—The rapid growth in smartphone and tablet usage
over the last years has led to the inevitable rise in targeting of
these devices by cyber-criminals. The exponential growth of An-
droid devices, and the buoyant and largely unregulated Android
app market, produced a sharp rise in malware targeting that
platform. Furthermore, malware writers have been developing
detection-evasion techniques which rapidly make anti-malware
technologies ineffective. It is hence advisable that security expert
are provided with tools which can aid them in the analysis of
existing and new Android malware.

In this paper, we explore the use of topic modeling as a tech-
nique which can assist experts to analyse malware applications in
order to discover their characteristic. We apply Latent Dirichlet
Allocation (LDA) to mobile applications represented as opcode
sequences, hence considering a topic as a discrete distribution
of opcode. Our experiments on a dataset of 900 malware appli-
cations of different families show that the information provided
by topic modeling may help in better understanding malware
characteristics and similarities.

I. INTRODUCTION

Worldwide, the 66 percent of users were using an Android
device in the fourth quarter of 2015. G DATA analysts identi-
fied 758,133 new Android malware files in the same period':
that is an increase of almost 32% compared to the third quarter
(574,706). In the second half of 2015, 1,332,839 new malware
apps were discovered in total. For 2015 as a whole, a new
record of 2,333,777 malware files for the Android operating
system alone has been set>—more than 50% than 2014.

The rapid increase underlines the significance of the profit
from mobile operating systems, especially Android: there is
a potential in mobile environment for high financial gains for
malware writers. Mobile malware professionals are maximiz-
ing their return on investment by targeting Android because
of its global market dominance and open platform. Like legit-
imate business people, malware professionals look to exploit
the largest addressable market opportunity.

There are mainly two successful monetization schemes seen
in a recent spate of Android malware: information gathering
and Premium Rate Number Billing. Relating to information
gathering, several Android applications exist that allow some-
one to track and monitor a user of a mobile phone. For

Thttps://www.gdatasoftware.com/securitylabs/news/article/android- g-data-
analyses-over-4500-new-malware-instances- per-day

Zhttps://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/
US/G_DATA_MobileMWR_Q4_2015_US.pdf

example, these applications may record and export all SMS
messages, emails, call logs, GPS locations, or turn on the
microphone. Typically, these applications require an attacker
to purchase the application from the vendor and then gain
physical access to the phone. While these applications may
not generate revenue for the attacker, they generate revenue
for the vendor of the spyware application. Examples include
Android.Tapsnake and Spyware.Flexispy. Such applications
can sell for $400 and some of them are available on the
Android Market.

Some of these applications also exhibit advanced capabili-
ties such as recording phone calls. However, to enable some of
these features, the phone must be rooted. Nevertheless, without
rooting the device, data can still be obtained by requesting
standard permissions. Android.Tapsnake is an example of
spyware that pretends to just be a game of snake, actually
including a fully functional copy of the game. However in the
background, the application is uploading the GPS coordinates
of the device every 15 minutes.

It is clear that malware applications vary in their malicious
payload, as well as in the mechanism that actually triggers the
execution of that payload and in aside damages. This wealth of
different characteristic may negatively affect the effectiveness
of fully automated malware detection techniques. Indeed, pre-
vious studies demonstrated that current anti-malware tools re-
lying on signature-based detection mechanisms are not robust
against code transformations and highlighted the need for anti-
malware tools to find out new techniques for mobile malware
detection [1, 2]. The cited works evaluate a set of well-
known antimalware software using original and transformed
Android malware samples, in order to alter the signature
without alter the payload business logic. They conclude that all
the antimalware products are susceptible to common evasion
techniques, like code reordering, junk code insertion or data
encryption.

Google, with the introduction of Bouncer?, tries to mitigate
the problem but attackers write malware which is more and
more aggressive and is able to easily evade the mechanism.
Bouncer executes the application in a sandbox for a fixed-time
window before publish it on the official market*: it is clear that

3http://googlemobile.blogspot.it/2012/02/android-and- security.html
“https://play.google.com/store

if the malware action do not happen over this interval, Bouncer
can not detect the malicious event.

In this challenging scenario, manual analysis by expert
security operators still plays a crucial role. On the other hand,
due to the nature of the artifact that have to be analyzed,
some degree of automation is advisable to allow an analysis
of higher level and, from another point of view, to refine the
raw information given by the malware application itself. For
these reasons, in this paper we propose a methodology to assist
the expert to analyze the malware app which is based on
topic modeling. In particular, we apply the Latent Dirichlet
Allocation (LDA) [3] to malware applications represented as
sequences of opcodes—i.e., we propose a flavor of static
analysis.

LDA is a well established topic modeling technique: from
the LDA point of view, each document exhibits multiple topics
with different probabilities and each topic exhibits multiple
words, with different probabilities. As a simple example, con-
sider a LDA model applied on a small corpus with two topics:
cat-related and dog-related. The former topic is characterized
by probabilities of generating various words: words such
as “milk”, “meow”, and ‘kitten”, which could be classified
and interpreted by the viewer as cat-related, will have high
probability. The dog-related topic likewise has different word
probabilities: e.g., “puppy”, “bark”, and “bone” might have
high probability. Words without special relevance, such as
function words, will have roughly even probability between
classes (or can be placed into a separate category). In this pa-
per, we explore the usage of LDA to analyse Android malware
and experimentally show that topic modeling does provide
more information about malware characteristics with respect
to simply considering opcode occurrences or frequencies.

The remainder of the paper is organized as follows: Sec-
tion II discusses related work; Section III presents and charac-
terizes the real world dataset involved in the study; Section IV
describes our methodology and illustrates the results of our
experiments; finally, Section V draws the conclusions.

II. RELATED WORK

To the best of our knowledge, no previous studies have
been done on the usage of topic modeling for aiding the
analysis of Android malware, in particular on hundreds of
malware applications belonging to different families, as in
our work. However, LDA has been used previously as a tool
for augmenting detection or classification techniques in other
similar security-related fields. We here provide a brief survey
of those studies and of significant recent studies about Android
malware detection.

Authors of [4] propose a probabilistic model to detect
Microsoft Windows malware that jointly models sequential
data and class labels (trusted/malware) using dynamic analysis.
Applying LDA, they reveal behavior patterns and exploit them
to predict class labels of unknown sequences, obtaining an
accuracy very close to 70%.

Authors of [5] used LDA and data mining methods for
metamorphic malware detection. Using LDA, they could rank

opcode bi-gram features for classifying benign and malware
files. The accuracy obtained for NGVCK metamorphic mal-
ware family was about 99.7% using a dataset composed by
867 samples belonging to NGVCK family and 1,318 bening
executables collected from different Internet sources.

Researchers in [6] address the problem of detecting mutated
generations; they propose a method based on Opcode Graph
Similarity to detect metamorphic malware using the similarity
of opcode graphs. According to the authors, all nodes and
edges have an effect on classification, but their method benefits
of the pruning of edges using LDA. The proposed method
yielded 100% total accuracy for NGVCK and 99% accuracy
for MWOR malware family proving that the method is effi-
cient for metamorphic malware detection.

Neuhaus et al. [7] crawl the vulnerability reports in the
Common Vulnerability and Exposures database by using topic
models to find prevalent vulnerability types and new trends
semi-automatically. They analyze 39,393 unique reports until
the end of 2009, with the aim of characterizing many vulner-
ability trends: SQL injection (PHP), buffer overflows, format
strings, cross-site request forgery and so on.

Zhao et al. [8] propose a LDA-based method to analyze the
trends of network security which consist of three steps: collect
data from web sites, extract topics from the collected data, and
makes the curves of trends over time. They select 620 docu-
ments sorted by time and extract 10 topic from each document.
Six interesting topics are discovered by LDA model, according
to the autors: dns-ddos, vulnerability, mobile-malware, mac-
malware, Browser malware and Java-vulnerability.

Tsai et al. [9] apply LDA to blog data: they analyze blogs
for various categories of cyber threats related to the detection
of security threats, cyber crime and information security in
order to identify patterns of similarities in keywords and dates
distributed across blog documents. Basically the proposed
method extracts the most relevant categories and thus the
topics extracted for each category. The experiment shows that
the probabilistic model can reveal interesting pattern in the
underlying topics for the considered freely-available dataset
of security-related blogs.

Wang et al. [10] conduct a preliminary investigation of
Twitter-based criminal incident prediction. Their approach is
based on the automatic semantic analysis and understanding
of natural language Twitter posts, applying LDA to identify
salient topics within the extracted events, and then building
a predictive model upon these latent topics. They apply the
method on 3,659 tweets published during the period of Febru-
ary 22, 2011 through October 21, 2011. Evaluation results
demonstrate the ability of the model to forecast hit-and-run
crimes using only the information contained in the training
set of tweets.

Concerning Android malware detection, several different
approaches have been proposed in the recent past, due to the
rising trend in malware spreading: the reader may find in [11,
12] two extensive and recent surveys about the techniques for
securing the Android platform. We here limit our ananlysis
to some recent proposals which base on different respects:

metadata (such as permissions) analysis, static analysis, and
dynamic analysis.

Song et al. [13] propose a framework to statically detect
Android malware, consisting of four layers of filtering mecha-
nisms: the message digest values, the combination of malicious
permissions, the dangerous permissions, and the dangerous
intention. As additional contribute, they propose a novel threat
degree threshold model of dangerous permissions on malware
detection. They experiment the method on real mobile devices,
using 83 real mobile devices and achieving a 98.8% pass rate,
where the versions of Android range from 2.3 to 5.1.

Authors in [14, 15, 16] evaluate the effectiveness of the
occurrences of a subset of opcodes (i.e., move, if, jump, switch
and goto) in order to discriminate mobile malware applications
from trusted ones. They apply six classification algorithms
(J48, LADTree, NBTree, RandomForest, RandomTree and
RepTree), obtaining a precision equal to 0.949 in malware
identification.

Researchers in [17] investigate whether frequencies of
ngrams of opcodes are effective in detecting Android malware,
evaluating their method using 11,120 applications, 5,560 of
which are malware belonging to several different families.
They obtain an accuracy of 97% on the average, whereas
perfect detection rate is achieved for more than one malware
family.

Canfora et al. [18] propose a method for detecting Android
malware which is based on the analysis of system calls
sequences. Experimentation on 20,000 execution traces of
2,000 applications (1,000 of them being malware belonging
to different malware families), performed on a real device,
obtains a detection accuracy of 97%.

Martinelli et al. [19] propose a framework for classifing
Android Malware using subgraphs of system calls. They
collected more than 500 distinct runs from 13 malicious apps
and 7 good ones in order to test the effectiveness of their
solution, obtaining the best result with the K-nearest neighbors
classifier.

III. DATA

In this work, we consider a dataset composed of 900
Android malware applications which we obtained from Drebin
Dataset [20, 21]. The 900 applications differ in nature and ma-
licious intents (premium call & SMS, selling user information,
advertisement, SMS spam, stealing user credentials, ransom)
and can be partitioned in 49 malware families. Malware appli-
cations in the same family share some malware features, i.e.,
they are similar with respect to some malware characteristics.

e BaseBridge payload is able to receive premium numbers
from remote command-and-control (C&C) servers and
dial calls or send out SMS messages to them, incurring
fees for users. It is also able to kill the processes of anti-
malware application running in background. The malware
sends personal information to C&C server running several
malicious services in background.

e DroidKungFu payload is included in applications made
available through alternative app markets and forums

targeting Chinese-speaking users. The payload adds into
the infected app a new service and a new receiver.
The receiver is notified when the system finishes the
boot so that it can automatically launches the service
without user’s interaction. This malware encrypts two
root exploits: exploid and rage against the cage (see
below).

o FakeDoc malware is able to disguise itself as a common
application in order to trick the user. It blocks the user
from receiving SMS from certain numbers. It also leak
out user privacy by sending out the personal information.

e The samples of Fakelnstaller family send SMS to
premium-rate numbers, without the user’s consent: the
user is forced to click an Agree or Next button, which
sends the premium SMS, but there are variants that send
the messages before the victim clicks a button. They also
include a backdoor to receive commands from a remote
server.

o GinMaster payload launches a malicious service able to
root the infected devices in order to obtain administrator
privileges, steal confidential information and send to a
remote website. It is very close to the DroidKungFu
payload: the malware starts its malicious services as soon
as it receives a BOOT_COMPLETED or USER_PRESENT
intent. The malware make use of polymorphic techniques
to evade detection by current antimalware technologies
(e.g., hiding malicious code, obfuscating class names,
randomizing package names and self-signing certificates).

e The purpose of Iconosys malware is to block unwanted
phone calls from certain individuals by giving the owner
of the phone the ability to play any sound or pre-recorded
message to an unwanted caller. The user can configure the
application to play a pre-recorded message or sound to
make the caller believe that the phone is disconnected
or out of service, while the malware sends out personal
information like phone number, IMEI, IMSI and email
address. Additionally, the application asks the user if they
liked the app. Unfortunately, regardless of what the user
does, an international rate SMS message, which is not
free, is queued for sending to a number located in India.

e Kmin malware may pose as an application named
KMHome: the payload sends device ID, subscriber
ID and current time to a remote server named
su.5k3g.com. It is very closed to BaseBridge family,
but it does not kill antimalware processes.

e When an app infected with Plankton payload is installed,
a service is launched in the background. The service
communicates to a hard-coded HTTP server. The server
replies with a URL that is used to download a JAR file
that represents the malicious payload. The downloaded
archive launches a connection to the C&C server and
listens for commands to execute. Additionally the payload
forwards personal details and browser history to the
remote server and changes the browser homepage or add
unwanted bookmarks to it.

e Opfake is polymorphic malware that masquerades as

various apps and contents, including an installer for the
Opera Mini browser, and requires the user to pay for
them. It demands payment for the app or content through
SMS. The malware include variants that operate also on
Symbian and Windows Mobile environments. The name
of the family is because the installer claims to be the
Opera Mini browser.

Concerning the malware characteristics, we focused on 18
features, divided in 6 groups: privilege escalation techniques,
ability to allow for remote control of the device, damages
consisting in actions causing financial losses, kinds of stolen
information, malware installation techniques, and methods
which trigger the payload activation. Each feature is boolean,
that is, a family may or may not have the corresponding
characteristic. In detail, the feature are the following.

o Privilege escalation. In this category fall the techniques
used to exploit a bug in order to gain control of device
resources normally off limits to a user or an application:
an application with more permissions than those pro-
vided by the original developer or fixed by the system
administrator can, of course, implement unforeseen and
unauthorized actions.

— Exploid. Tt is a binary file that attempts to root a
device using the exploid exploit to break out of the
Android security container. It leaves a backdoor root
shell in the /system/bin directory of the device.
We highlight that the use of the backdoor shell is
extremely limited and not clearly malicious, however,
exploid is able to create a hole in the security layer of
the phone, leaving it vulnerable to other applications
wanting to take advantage of the device. If the device
was successfully rooted by this app, any other app on
the device could gain root access without the user’s
knowledge.

— RATC/Zimperlich. RageAgainstTheCage (RATC) ex-
ploit binary, also known as the “adb setuid exhaustion
attack”, triest to exploit the adb resource exhaustion
bug. Zimperlich is another exploit that take advange
by a known root vulnerability in zygote (main Dalvik
process) which was patched in 2.3. We grouped two
exploits in the same category because it is not un-
common for a malware to have two or more root
exploits in order to maximize its chances for success-
ful exploitations—these two, in particular, are often
present together.

— GingerBreak. A number of important programs, in-
cluding low-level system services, must run as root
even on Android in order to access hardware resources.
These programs are started by the init process, the
first process started by the kernel which has to run as
root because it needs to start other privileged system
processes. The so-called all one-click-root methods,
like GingerBreak, try to hack/trick one of these system
processes running in privileged mode to execute arbi-
trary code: in this way it is possible to obtain privileged

access to the system.

— Encrypted. In this category fall the encrypted root
exploits, i.e. the scripts of the previously techniques
are encrypted in the application and are decrypted
at runtime (in order to be less recognizable by anti-
malware). Some of these encrypted files are located
under the directory assets, and look like normal data
files. DroidKungFu was the first malware family [22]
including encrypted root exploits, i.e., the malware
uses AES to encrypt the exploits it uses. Different
variants use different encryption keys to better protect
themselves.

e Remote control. This label identify the malware families

that have the ability to receive bot commands from

C&C servers. The communication can occurs stealthy by

encrypting the URLs of remote C&C servers. Most C&C

servers are registered in domains controlled by malware

writers, while in other cases the C&C servers are hosted
in public clouds.

Financial damages. The main reasons behind malware in-

fection is represented by the financial return: as matter of

facts, malware will intentionally cause financial damages
to infected users, using as vectors phone call and short
message service.

— Call malware can make background phone calls: the
destination number can be provided from a remote
C&C server, as shown by Geinimi family (which is
not represented in our dataset).

— SMS malware can automatically subscribe to premium-
rate services, such as by sending SMS messages.

Information stealing. In addition to the financial damages
and root exploits, mobile malware are actively gathering a
lot of personal information from the infected devices. The
final aim is to use the retrieved information to generate
fraudulent transactions on behalf of infected users.

— SMS the list of sent and received SMS.

— Phone number the telephone number, the IMEI (In-
ternational Mobile Equipment Identity), and the IMSI
(International Mobile Subscriber Identity).

— User sensitive personal information, such as email
address, banking credentials, browser history.

Installation. In this group, we consider the way used by
malware writers to embed malicious payload in a trusted
applications.

— Repackaged. With repackaging, the malicious payload
is embedded into the application at installation time:
the attacker decompiles a trusted application to obtain
the source code, then adds the malicious payload and
recompiles the application.

— Update attack. An apparently innocuous application is
installed on the victim’s device, the user is asked to
update the application, which consists of downloading
the malicious payload on the victim’s device after that
the user has installed an app that does not exhibit any
harmful behavior. With this technique, the malicious

payload is not embedded into the application at instal-
lation time.

e Payload activation. The malicious payload is triggered
using a set of events available from the operating system,
like the following.

— Boot. Most of malware payloads is launched when
the boot is completed (BOOT_COMPLETED event),
activating a background service that does not require
user interaction.

— SMS. The SMS_RECEIVED event is transmitted to the
system when a new SMS messaged is received. With
this event, the malware has the ability to respond to
specific incoming SMS messages to undertake mali-
cious actions.

— Network. The CONNECTIVITY_CHANGE event is
transmitted when a change in the data connection
happens, for instance when the connection switches
from GPRS to HSDPA.

— Battery. Within this malware feature, we group
together a set of events related to battery
consumption: ACTION_POWER_CONNECTED
(.e., device connected to the power),
ACTION_POWER_DISCONNECTED (i.e., device
disconnected from the power), BATTERY_LOW
(i.e., low battery condition on the device),
BATTERY_OKAY (i.e., the battery is now okay
after being low), BATTERY_CHANGED_ACTION
(broadcast containing the charging state, level, and
other information about the battery).

— Sys. With this malware feature, we refer to many
system events: USER_PRESENT (useful to recog-
nize when the phone has been unlocked or not),
INPUT_METHOD_CHANGED (an input method has
been changed), SIG_STR (listening to signal strength
when phone sleeps) and SIM_FULL (the SIM storage
for SMS messages is full).

— Main. The malware responds to the ACTION_MAIN
event: this event is broadcast when the app is launched
by the user.

Table I shows the features for each family in our dataset.

IV. METHODOLOGY AND RESULTS

We aim at exploring the use of topic modeling techniques
to ease the analysis of Android malware. In particular, with re-
spect to the malware features described in Section III, we want
to investigate to which degree a categorization of applications
based on topic models is able to capture differences among
malware families. To this end, we consider the probabilistic
topic model technique and, in particular, the Latent Dirichlet
Allocation (LDA) which we here briefly describe.

LDA is a generative probabilistic model for a corpus of
documents and assumes the existence of a predefined set of
topics and a predefined set of words. Topic probabilities are
defined over the corpus and word probabilities are defined over
each topic. The generative model assumes that each document

in the corpus has been generated by first drawing a distribution
of the topics and then a distribution of the words for each topic.
LDA consists also of a method to compute the posterior of the
generative probabilistic model, given a corpus of documents
and (as a parameter) the number k of topics. In other words,
after the processing of the corpus, a numeric vector in [0, 1]*
is associated with each document in the corpus where the
ith element is the probability that that document has been
generated using the ith topic.

We apply LDA to Android applications rather than to texts.
In particular, we consider an application as a sequence of
opcodes: hence, topics are distributions of opcodes rather the
distributions of words. In order to obtain the opcode sequence
from an application a, we proceed as follows. First, we use
apktool® to extract from the .apk the .dex file, which
is the compiled application file of a (Dalvik Executable);
then, with the smali® tool, we disassemble the application
.dex file and obtain several files (i.e., smali classes) which
contains the machine level instructions, each consisting of an
opcode and its parameters. From these files, we obtain a set of
opcode sequences where each item is the sequence of opcodes
corresponding to the machine level instructions of a method
of a class in a. We apply LDA to the concatenation of all
the opcode sequences of a. Note that, due to the way LDA
processes its input, the actual order of opcodes is not relevant
and only the number of occurrences of each opcode within an
application matters.

The applications in our datasets use 211 different opcodes:
hence, each application can be represented as a point in the
opcode occurrences space N2'', where the ithe element is the
number of occurrences of the ith opcode in the application. Af-
ter the application of LDA, each application can be represented
as a point in the topic space [0, 1], with k being the number
of topics. In order to investigate how the (relative) positioning
in these spaces is related to the malware characteristic, we
clustered applications and measured how much information
is given by the cluster label with respect to each of the 18
malware features.

We considered 5 different clustering techniques.

o KM(k) The applications are clustered according to K-
Means [23] applied to the opcode space. K-Means re-
quires to set in advance the number £ of clusters.

o KM(k) (freq.) Similarly to KM(k), the applications are
clustered according to K-Means, but a difference space
is considered: the ithe coordinate of an application point
is the relative frequency of the ith opcode, rather than
the number of occurrences, in the application—we call
this space the opcode frequencies space. The rationale
for considering frequencies rather then occurrences is
that applications in our dataset greatly vary in size, even
within the same family, as confirmed by Figure 1, which
consists of a boxplot of the length of opcode sequences
grouped by malware family.

Shttp://ibotpeaches.github.io/Apktool/
Shttps://code.google.com/p/smali/

Privilege escalation Fin. dam. Inf. stealing Install. Payload activation
. —_— <
e % . |E N
-~ N & 2138 £ g = 4
5 O 5 5|9 E 5 8 s g
e & 2 ElElz 2|2 % 5|8 2l g2 £ 2 . %
Family d 2 & 8|2 |35 s & S| 5|2 & 2z & & =
BaseBridge v V| v v v v V|V v v v v
DroidKungFu | vV v |V v v v v v
FakeDoc v V|V v
Fakelnstaller v v v v
GinMaster v v v v v
Iconosys v v vV v
Kmin v v v
Plankton v v v
Opfake v v v v v
Table I: Android malware families and their features.
‘ clustering technique and each value of the k£ parameter in
BaseBridge | HH i {5,9,18,25}, the table shows the mutual information’ be-
DroidKuneF tween the cluster label and each malware feature; the rightmost
roidiung - I:D | column shows the average across all the 18 features. We chose
FakeDoc |- HH I those values for k—which are, essentially, (sub)multiples of
Fakelnstaller | HH | 9fbecause our 'dataset consists of applications belonging to
GinM 9 different families.
inMaster H: Different observation can be done basing on the results of
Iconosys |- W y Table II. First and foremost, topic modeling appears to de-
Kmin - @ | liver useful information about malware features. The average
Opfake |- H]H h mutual information between the label of LDA (k)+KM(k) and
P LDA(25)+KM(k) and the 18 features is largest than the one
Plankton - ; | a obtained with KM(k) and KM(k) (freq.): 0.32 and 0.32 vs.
‘ ‘ ‘ 0.23 and 0.27. This figures correspond to an increment ranging

|
0 0.5 1 1.5
Overall number of opcodes .1(5

Figure 1: Boxplot of the length of opcode sequences for
applications in our dataset, grouped by malware family.

o LDA(k) The applications are clustered according to their
prevalent topic, after the application of LDA with k
topics. That is, a cluster label c is assigned to each
application where c is the index of the topic with the
greatest probability assigned by LDA to that application.

o LDA(k)+KM(k) The applications are clustered according
to K-Means applied to the topic space: the value k is used
for both LDA and K-Means.

o LDA(25)+KM(k) As above, the applications are clustered
according to K-Means applied to the topic space. For
LDA, the number of topic is set to 25, whereas K-Means
is performed with %k clusters—we choose 25 because it
delivered good results with the LDA(k) technique.

The first two clustering techniques do not use the information
deriving from topic modeling, whereas the other 3 do: in
other words, KM(k) and KM(k) (freq.) can be considered
as baselines to validate our thesis that topic modeling may
provide useful information for Android malware analysis.
Table II shows the main results of our analysis. For each

from 20% to 40%. It is also worth to note that LDA alone does
not look effective: it indeed obtains the same average mutual
information of KM, for lowest and greatest values of k. We
think that clustering only on the base of the most likely topic
is an estimation which is too strong, and hence much of the
information is loss. On the other hand, a clustering performed
on the topic space does work.

Second, as expected, due to the nature of mutual informa-
tion, the greater k, the larger the mutual information. Yet,
we observed by further experimentation that £ = 25 can be
considered, on the average, as a knee of the curve k vs. average
mutual information. Moreover, the former finding, i.e., that
topic modeling is useful, is confirmed for all values of k.

Third, there are some differences among malware fea-
tures: mutual information for the best clustering technique
(LDA(k)+KM(k)) ranges from 0.16 to 0.50. We think that
this difference reflects the way those features are represented in
the application code, and are hence more or less discoverable
by looking at the occurrences (or frequencies) of opcodes.
In the privilege escalation feature group, we obtain a mutual
information which is in general rather low (0.24). For instance,
0.20 figure for the Encrypted feature, might be explained by
the fact that the Android enviroment provided several ways

7We used the entropy estimator based on the empirical probability distri-
bution.

to make encrypting: the Cipher class for istance, provided
by Android API, is the most used way but in many cases
malware writers make use of third-party libraries to cipher the
malicious code. Additionally, using a different key, we will
obtain a different resulting code and the mutual information
value is low. Furthermore we highlight that privilege scripting
functions are usually C-like scripts that are loaded at runtime
(typically from the asset folder) and then they are not
comprised in opcode extration.

On the other hand, relating to financial damages features,
the SMS mutual information value shows rather larger value
of 0.49: as matter of facts, premium SMS messages are sent
(without notice to the user and, usually, to numbers which are
hard-coded in the application or retrieved through an HTTP
call) according to a behavior which is implemented in a similar
way in the families that has this feature.

We further explored the use of 2D plots based on topic
modeling data for aiding the analysis of Android malware.
To this end, we performed a Principal Component Analysis
(PCA) on the applications of our dataset represented in the
topics space (with & = 25): then, we plotted each application
in the space of the first two principal components—the result
is shown in Figure 2c. In order to provide a baseline, we
applied the same procedure to the applications represented
in the opcode frequencies space—the result is shown in
Figure 2b. Moreover and finally, we applied PCA on the
families in the feature space, i.e., a space {0,1}18 where
each coordinate represent a malware features—the result is
shown in Figure 2a. The cumulative percent of variance
explained is 57.9%, 21.2%, and 21.4% respectively for the
features, opcode frequencies, and topics spaces. Note that
in the two latter cases, no information about families nor
malware features was available to “place” the application
within the corresponding spaces—i.e., these results come from
fully unsupervised methods. Beyond the cumulative percent of
variance explained, the potential usefulness of topic modeling
can be sensed graphically in Figure 2: the figure suggests
that analyzing application similarities could be easier, for an
operator, on the topics space than on the frequencies space.

V. CONCLUSIONS AND FUTURE WORK

We explored the usage of topic modeling, performed by
means of LDA, for the purpose of analyzing Android malware
applications. In particular, we considered a dataset of 900
real world malware application and applied LDA to their
representation as sequencies of opcodes, hence proposing a
novel static analysis technique. We then clustered applications
based on their coordinates in the topics space, that is, a low-
dimension space where each coordinate represents a topic. In
order to provide a baseline, we applied a similar procedure to
the opcode occurrences and opcode frequencies spaces, i.e.,
two spaces where each coordinate represents the number of
occurrences (or relative frequency) of an opcode. We found
that clustering applications in the topics space gives more
information about malware features that clustering in the
opcode frequencies/occurrences space.

This result suggests that topic modeling could be part of
a more complex framework for analyzing Android malware,
both “manually” (possibly by means of visual analysis of
graphical representations of the malware) or automatically.
Concerning the latter scenario, we argue that higher level
features deriving from the topic space may help in improving
the effectiveness of fully-automatic detection techniques based
on opcodes, such as the one presented in [17].

As a further extension of our work, we plan to explore the
usage of the approach here proposed on data coming from
dynamic analysis, such as system calls [24, 16, 14].

REFERENCES

[1] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon:
evaluating android anti-malware against transformation
attacks,” in Proceedings of the 8th ACM SIGSAC sym-
posium on Information, computer and communications
security. ACM, 2013, pp. 329-334.

[2] G. Canfora, A. Di Sorbo, F. Mercaldo, and C. A. Vis-
aggio, “Obfuscation techniques against signature-based
detection: a case study,” in 2015 Mobile Systems Tech-
nologies Workshop (MST). 1EEE, 2015, pp. 21-26.

[3] D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent dirichlet
allocation,” the Journal of machine Learning research,
vol. 3, pp. 993-1022, 2003.

[4] H. Xiao and T. Stibor, “A supervised topic transition
model for detecting malicious system call sequences,’
in Proceedings of the 2011 workshop on Knowledge
discovery, modeling and simulation. ACM, 2011, pp.
23-30.

[5] J. Kuriakose and P. Vinod, “Ranked linear discriminant
analysis features for metamorphic malware detection,”
in Advance Computing Conference (IACC), 2014 IEEE
International. 1EEE, 2014, pp. 112-117.

[6] R. Mirzazadeh, M. H. Moattar, and M. V. Jahan, “Meta-
morphic malware detection using linear discriminant
analysis and graph similarity,” in Computer and Knowl-
edge Engineering (ICCKE), 2015 5th International Con-
ference on. 1EEE, 2015, pp. 61-66.

[7] S. Neuhaus and T. Zimmermann, “Security trend analysis
with cve topic models,” in Software reliability engineer-
ing (ISSRE), 2010 IEEE 2lst international symposium
on. 1IEEE, 2010, pp. 111-120.

[8] Y.-B. Zhao, S.-M. Liu, and S.-Q. Guo, “Extraction and
prediction of hot topics in network security,” in Com-
puter Science and Network Security, 2014 International
Conference on, 2014, pp. 347-353.

[9] F. S. Tsai and K. L. Chan, “Blog data mining for

cyber security threats,” in Data Mining for Business

Applications. Springer, 2009, pp. 169—-182.

X. Wang, M. S. Gerber, and D. E. Brown, “Automatic

crime prediction using events extracted from twitter

posts,” in Social Computing, Behavioral-Cultural Mod-

eling and Prediction. Springer, 2012, pp. 231-238.

P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S.

Gaur, M. Conti, and M. Rajarajan, “Android security:

[10]

[11]

Privilege escalation Fin. dam. Inf. stealing Install. Payload activation
=
.2 —
= S
Q B -~
- B £ g 3 g
2 N QE £ ; E —Dé) s e = %
i g 2 5| E|=z glg Z sl 2|z g £ £ ., 5|3
k F}j =4 (G Lﬁ &) 8 (%) %) = 5 &’ S' cg %) £ C:a a = %
. 5001 001 0.06 0.01]0.05/ 003 030/ 008 0.07 0.05] 023 0.12 | 0.04 0.03 003 0.01 0.01 0.04 | 0.06
= 9| 008 016 0.09 0.10 | 009 | 0.13 043 | 0.08 0.12 0.08 | 026 0.23 | 0.31 0.13 0.13 0.17 0.11 0.28 | 0.16
E 18 | 0.10 0.20 0.12 0.12 | 0.17 | 0.13 0.43 | 0.12 0.24 0.10 | 0.27 0.25 | 0.33 0.13 0.15 0.19 0.17 0.32 | 0.20
25 | 0.14 0.18 0.14 0.14 | 0.27 | 0.14 045 | 0.11 0.27 0.19 | 0.28 0.25 | 0.44 0.13 0.11 022 0.29 048 | 0.23
—_ 5005 009 0.04 004|014 | 004 019 | 015 0.04 0.23 | 0.06 0.03 | 0.09 0.05 002 0.04 0.04 0.03 | 0.08
= g 9 | 006 0.06 0.07 0.07 | 018 | 009 0.16 | 021 0.14 0.19 | 0.20 0.12 | 0.11 0.07 0.07r 0.05 0.12 0.12 | 0.11
E & 18]013 024 013 0.13 | 024 | 0.09 030 | 0.24 033 0.23 | 028 023 | 036 0.20 0.09 0.16 0.23 046 | 0.23
25| 012 026 015 0.19 | 0.34 | 0.14 040 | 0.29 036 042 | 029 035 | 045 0.19 0.10 0.27 019 038 | 0.27
— 5] 004 006 005 0.04|003]0.02 005]0.01 0.08 003]|010 0.04 017 0.02 0.02 0.06 006 0.17 | 0.06
= 9 | 003 006 005 0.03] 016 | 004 0.18 | 006 021 0.16 | 0.20 0.12 | 0.15 0.04 0.04 0.06 0.06 0.15 | 0.10
a': 18 | 0.05 0.06 0.11 0.05 | 0.17 | 0.07 0.39 | 0.13 0.26 0.17 | 0.28 0.20 | 0.22 0.07 0.07 0.06 0.06 0.22 | 0.15
~ 25| 011 021 019 0.11 | 0.30 | 0.15 0.36 | 0.14 0.29 0.30 | 0.28 0.28 | 0.39 0.15 0.15 0.21 0.21 0.39 | 0.23
—~2 5] 007 008 0.07 012 | 0.14 | 0.06 0.01 | 0.04 0.12 023 | 0.15 0.07 | 0.18 0.056 0.04 0.13 0.08 0.25 | 0.11
3\2-’ 9 | 007 0.13 0.06 0.11 | 030 | 0.13 0.24 | 0.13 0.22 031 | 029 028 | 0.34 0.14 0.13 0.12 0.19 0.36 | 0.20
g‘ M 18 | 0.15 0.24 0.18 0.14 | 041 | 0.14 044 | 0.26 038 041 | 0.28 0.31 | 052 021 021 0.25 0.27 045 | 0.29
=+ 25 | 022 034 022 020 | 042 | 0.17 049 | 0.27 045 046 | 031 032 | 048 0.16 0.17 034 031 0.50 | 0.32
Y 5] 005 013 0.06 0.09 | 029|014 026 | 016 0.07 034|030 0.12 | 039 0.14 0.11 0.15 0.10 0.35 | 0.18
@E’ 9| 014 016 0.11 0.11 | 035 | 019 044 | 0.18 024 036 | 0.30 0.29 | 0.37 0.07 0.07r 0.23 0.16 044 | 0.23
g ¢ 181019 025 021 010 | 042 | 0.16 049 | 024 039 043 | 030 0.29 | 044 0.14 0.17 030 020 047 | 0.29
- + 25019 028 021 019 | 045 | 0.18 049 | 029 042 042 | 031 038 | 043 0.17 0.17 0.29 030 052 | 0.32
Table II: Mutual information between cluster and feature with different clustering methods.
T T 4 T T
n A
2 [— A 2 — -
o}
20 + A =
0 |
a O
= |
—2 |
2 ‘ 0
_92 L N L A, |
4| |
N |
A A A
| | | | | | | | | | |
-6 -4 -2 0 2 —20 0 —2 0 2 4

(a) Malware features space.

(b) Opcode frequencies space.

(c) Topics space.

m BaseBridge 4 DroidKungFu o FakeDoc m Fakelnstaller 4 GinMaster o Iconosys m Kmin 4 Plankton o Opfake

Figure 2: Applications (Figures 2b and 2c) and families (Figure 2a) plotted in the space of the first two principal components
after PCA in the feature (Figure 2a), opcode frequencies (Figure 2b), and topics (Figure 2c) spaces.

[12]

[13]

[14]

a survey of issues, malware penetration, and defenses,”
Communications Surveys & Tutorials, IEEE, vol. 17,
no. 2, pp. 998-1022, 2015.

D. J. Tan, T.-W. Chua, V. L. Thing et al, “Securing
android: a survey, taxonomy, and challenges,” ACM Com-
puting Surveys (CSUR), vol. 47, no. 4, p. 58, 2015.

J. Song, C. Han, K. Wang, J. Zhao, R. Ranjan, and
L. Wang, “An integrated static detection and analysis
framework for android,” Pervasive and Mobile Comput-
ing, 2016.

F. Mercaldo, C. A. Visaggio, G. Canfora, and A. Cim-
itile, “Mobile malware detection in the real world,” in
Proceedings of the 38th International Conference on
Software Engineering Companion. ACM, 2016, pp.

[15]

[16]

[17]

[18]

744-746.

G. Canfora, F. Mercaldo, and C. A. Visaggio, “Mobile
malware detection using op-code frequency histograms,”
in Proceedings of International Conference on Security
and Cryptography (SECRYPT), 2015.

——, “Evaluating op-code frequency histograms in mal-
ware and third-party mobile applications,” in E-Business
and Telecommunications. Springer, 2015, pp. 201-222.
G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo, and
C. A. Visaggio, “Effectiveness of opcode ngrams for de-
tection of multi family android malware,” in Availability,
Reliability and Security (ARES), 2015 10th International
Conference on. 1EEE, 2015, pp. 333-340.

G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio,

[19]

[20]

[21]

“Detecting android malware using sequences of system
calls,” in Proceedings of the 3rd International Workshop
on Software Development Lifecycle for Mobile. ACM,
2015, pp. 13-20.

F. Martinelli, A. Saracino, and D. Sgandurra, “Classify-
ing android malware through subgraph mining,” in Data
Privacy Management and Autonomous Spontaneous Se-
curity. Springer, 2014, pp. 268-283.

D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon, and
K. Rieck, “Drebin: Efficient and explainable detection
of android malware in your pocket,” in Proceedings of
21th Annual Network and Distributed System Security
Symposium (NDSS), 2014.

M. Spreitzenbarth, F. Echtler, T. Schreck, F. C. Freling,
and J. Hoffmann, “Mobilesandbox: Looking deeper into
android applications,” in 28th International ACM Sym-

[22]

[23]

[24]

posium on Applied Computing (SAC), 2013.

Y. Zhou and X. Jiang, “Dissecting android malware:
Characterization and evolution,” in Proceedings of the
2012 IEEE Symposium on Security and Privacy, ser.
SP ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 95-109. [Online]. Available: http:
//dx.doi.org/10.1109/SP.2012.16

J. A. Hartigan and M. A. Wong, “Algorithm as 136:
A k-means clustering algorithm,” Journal of the Royal
Statistical Society. Series C (Applied Statistics), vol. 28,
no. 1, pp. 100-108, 1979.

G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visag-
gio, “Acquiring and analyzing app metrics for effective
mobile malware detection,” in Proceedings of the 2016
ACM International Workshop on International Workshop
on Security and Privacy Analytics. ACM, 2016.

