CONF—G/06/03 ——]

Table-Lookup Algorithms for
Elementary Functions and their Error Analysis*

Ping Tak Peter Tang

Mathematics and Com i Nivis
puter Science Division
Argonne National Laboratory CONF-9106103--1
9700 South Cass Ave. DE91 006047

Argonne, 1L 60439-4801

Abstract JA : !

Vo laAl R
;l;labxe:)uokup Jalgo:thms for calculating elementary functions offer
perior speed and accuracy when com i '
- ‘ . pared with more traditio
algorithms. With careful design, we show that it is feasible to im nl:l
ment table-lookup algorithms in hardware. Furthermore, we presint
)

y }lta € i i

1 Introduction

Since i : 7
> rew\t}l; sfdioli‘:fer;tof I‘r:)EEIStand:'nd 754 for floating-point arithmetic (4], there has been
o 3], and (3], for x’n 1m§> ementing eleinentary functions to near perfect accuracy (see
loo,kup, algoritflms'ezzlx;ig uezh d?hzz;ng:;nth‘zzai of the reﬁentl works in this area is table-
: : gh tl rks use rather large table i
Z};i 11;1;1(;;1:(111: ;2 Z?nft\ﬁar? we illustrate here that with caLrefulg designs, iig lt?lfllem:izlelz
can be macs 5o o 3 t.mt these .table-lookup algorithms become easily realizable in
e t&ble_l.OOkuppalaorihsxzia reduction, the speed and accuracy benefits brought about
o alo.orithmgcre ’ mb;re preserved. Furthermore, we also show that thc:ese table-
N Ict, g qun.e \ n .erlt ;mselves to a uniform error analysis that yield tight error
bounds. It s auite ypica that a thgoretmal bound of 0.57 units in the last place (ul
n I an implementation of whose maximum .)
million arguments is 0.55 ulp. error obsesved over several
F[‘he rest of the paper is organized as fo i
behind table-lookup algorithms.gSection 3 ilhlllsot‘rvast.esstelftzliodneau2 blzfr:;izzss;:ceif: o 5(11%
) examples.

*This work was sup i
supported by the Applied Mathematical Sci
Research, U. S. Department of Energy, under Contract W-31?11e(;:;§nsgu§8pmgmm of the Offce of Encrey

MASTER

'
1 q
h!@”{mwz [S TI VAN R
P H

Nt i ‘ TN) ¢
R R R Y PN AV N B e TR T LV
o (! ARAaian N E b LENHLGEN L il L

The submittec manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S Government retains a
nonexclusive, royaity-free ticense to publish
or reproduce the published form of this
contribution, or aliow others to do so, for
11 S Government purposes.

Section 4 presents a uniform approach for tight error analysis and an illustrative example.
Section 5 makes some concluding remarks on the advantages of table-lookup algorithms
over CORDIC and ordinary (without table-lookup) polynomial algorithms.

2 Table-Lookup Algorithms

Let f be the function to be implemented and I be the domain of interest. A typical table-
lookup algorithm selects a set of “breakpoints” ¢;,7 = 1,2,...,N,in I and tabulates the

N values of f(¢;). For any input argument z € I, the algorithm calculates f(z) in three
steps. C

Reduction: For this given z, the algorithm selects an appropriate breakpoint ¢,. (In
general, ¢ is the breakpoint closest to z.) It then applies a “reduction transfor-
mation” R to obtain a reduced argument

r = R(z,ck).
TR is always simple; a typical case is R(z,cx) = z — ¢.

Approximation: The algorithm now calculates f(7) using some approximation formula

p(r) = f(r).

Very often p is a polynomial.

Reconstruction: Based on the reduction formula R and the values f(cx) and f(r), the
algorithm calculates f(z) by a reconstruction formula §

f(r) = S(flex), (7))
= S{(f(ek), p(r)).

The formula § is highly dependent on the function f.

Although a traditional polynomial or rational-function based algorithm ([1], {2]) can
also be expressed in these three steps, there are two properties peculiar to a table-lookup
algorithm. First, the reduction process in a table-lookup algorithm is much more flexible
since, unlike a traditional algorithm, the choice of breakpoints is basically independent
of the function f in question. In most situations, the breakpoints are chosen so that the
reduced argument r can be computed efficiently in the particular machine in question.
Second, in a table-lookup algorithm, the magnitude of the reduced argument r can be
made as small as one wishes, limited only by the table size one can accommodate. We
now illustrate these ideas by three realistic examples.

3 Algorithms for 2%, logz, and sinz

The functions 2%, log x, and sinz are among the most commonly used elementary func-
tions. We have purposely chosen different bases for the exponential and logarithm func-
tions (base 2 and e, respectively) to illustrate the flexibility of table-lookup algorithms.

The algorithms here calculate the functions on “primary” domains. Transformations
of arguments to such domains are standard and well known (see [1] and [2]).

3.1 2% on [-1,1]

Reduction: If |2| < 1/16, calculate 2% by a simple polynomial approximation. Other-
wise, find the breakpoint ¢, = k/32,k = 0,1,...,31 such that

|z — (m 4+ ¢)| < 1/64,
where m = —1 or 0. Calculate r by r = [z — (m + ¢;)] - (log 2).
Approximation: Approximate e” — 1 by a polynomial p(r),
p(T) =7+ p1T2 + PnTn'l-
Reconstruction: Reconstruct 2% by the relationships
2.1: = 2m+ck . er
= 2M{2% 4 2%(¢" — 1)}
~ 2M{2% 4+ 2% . p(r)}.
3.2 logz on [1,2]

Reduction: If & < e!/1® compute log(z) by a simple polynomial approximation. Oth-
erwise, find the breakpoint ¢, = 1 4 k/64,k = 0,1,...,64 such that

|z — ci| < 1/128.
Calculate by r = 2(z — cx)/(z + ¢)-

Approximation: Approximate log(2/ck) by an odd polynomial p(r)

p(r)y=r+ pre +p27‘5 44 pnr2"+1.

T
log | —
o8 (Ck>

Note that

1

o
oQ
TN
o
|1+
ol [rort
N—

Table 1: A Realistic Set of Algorithms for IEEE Double Precision

Funcuon LNo. of Table Entries | No. of Coefficients

2% 32 n=>5
log z 64 n=2
sina 64 n=3m=3

Reconstruction: Reconstruct loga by the relationships

log(z) = log(cx)+ log(z/ck)
log(er) + p(7).

X

3.3 sinz on [0,7/4]

Reduction: If |2| < 1/16, calculate sin2 by a simple polynomial approximation. Oth-
~ erwise, find the breakpoint cj; of the form

cr=27(1+k/8) j=1,23,4 k=0,1,...,7
that is closest to 2. Calculate r by r =z — 7.

Approximation: Approximate sin? — 7 and cos7 — 1 by polynomials p and ¢, respec-
tively:
P('I‘) = P17‘3 + p2,’.5 4ot pn,,,2n+1’
g(r) = aridgrt4 oo+ qm.rfem.

Reconstruction: Reconstruct sin(z) by the relationships

sin(z) = sin(cjx +7)
= sin(c;x) cosr + cos(cjk)sin T

~ sin(eje) + 1+ (sin(c;k)g(r) + cos(cjr)p(r)).

To conclude this section, we tabulate in Table 1 the table size and coefficient require-
ments for a realistic set of algorithms tailored to IEEE double precision.

4 Error Analysis
Recall the three steps of calculating f at z:

Reduction: 7 = R(z) (We omit the “c,” for simplicity’s sake.)

Approximation: p(r) = f(7)
Reconstruction: f(z) = S(f(r)) = S(p(r))

Because of inexact computations, we obtain 7 instead of 7, p instead of p, and S
instead of S. Hence, the computed result is

S(3(#)).
The goal of the error analysis is to estimate accurately the difference
S(f(r)) = S(B())!.
We apply the triangular inequality. Thus,
IS(f(r)) = SBEN < IS(Sf(r)) = S(F(M)] +
IS(/(#)) = S(p(7))] +
7

IS(p(#)) = S(H(F))]
E, + E, + Es.

IN

In most situations,

constant - | f(r) = f(F)]

constant - | f'(r)} - |7 = 7|

Q IN

and
E; < constant - max [f(t) - p(t)].

E; can be easily estimated because the reduction process R is usually so simple that
|r — 7| can be estimated tightly. E3 can also be easily estimated since the numerical
value

mtaxlf(t) - p(t)]

is obtained when the polynomial is sought, usually by the use of the Remez algorithm.
(The maximum is taken over the domain of approximation.) The rounding error

B3 = |S(p(7)) ~ S(5(7))]

in calculating the polynomial and reconstruction is usually the most difficult to estimate
tightly. With the use of table-lookup algorithms, however, the analysis is greatly simpli-
fied. The reason is that the magnitude of the reduced argument r (or #) is typically so
small that rounding errors associated with ¥, k > 2, are practically zero. The simplicity
of the analysis in [6] and [7] illustrates the situation.

To illustrate the ideas here, we carry out the analysis of 2% for a typical IEEE double-
precision implementation. Let ¢ denote 1 ulp of 1, i.e., € = 2752, Clearly, the subtraction

x — (m 4+ c;) is exact. Hence the errors in the reduction step are the caused by the
multiplication by log2 and that the “log2” used is only a 53-bit approximation.

r = slog2, and
3(10g2+51)+52,

7

where |6;] € 27%¢ and |6;] € 278¢. Thus,
) |7‘ - 7:| ‘_<_ |S(51| + |62| S 2_7(.-.

Hence,

<1.02x 277

1
Bl < | el - ¢
Next, the best approximating polynomial p obtained by a Remez algorithm gives
(e = 1) - p(t)] £ 27% =27"¢, |t| <log2/64.

Thus,
|Ey| < 27 M,

Finally, we estimate the errors in computing p(#) and the final reconstruction. Since 2°
is not representable in 53 bits, we use 2 variables T7 and T, where T} is 2°¢ rounded to
53 bits and T, is a correction term that makes T} + T3 = 2° for all practical purposes.
(Note that a T having 6 significant bits will be sufficient.) The reconstruction is

Qm(Tl + (Tl *p+ TQ))

Scaling by 2™ is exact. The last add contribute no more than £ ulp of error. The error
in T} * p + Ty is simple: Since |#?| < 2712, the only significant error in calculating p is
the last add. Thus the computed result is

(2% + 61)(p+ 62) + T2 + 63
= 2%p+ Ty + b61p+ 622 + 83,

where |p| <276, 18;] < 271, |82 < 277¢, and |83] < 27C%.
Thus the rounding error is bounded by

1
|Es| < sulp + (2774276 4 276)c. 2m

!/\\

~;—ulp + (2774 2 %ulp
0.54ulp.

VAN

Consequently,
|Ey| + | E2| + | E3| < 0.556ulp.

5 Concluding Remarks

Tabl.e—lookup algorithms offer several advantages over traditional polynomial/rational-
funtion algorithms and CORDIC algorithms. In comparison, a table-lodkup algorithm
is generally

1. faster because it requires less work in the approximation steps,
2. more accurate because rounding error made in the approximation step is tiny, and
3. amenable to tight error analysis.

Since the table size required can be made moderate and that basic operations such as
primjtive floating-point adds and multiplys (that is, without exception handlings) can
be easily realized in the order of a few clocks on modern hardware, hardware implemen-
tations of table-lookup algorithms is extremely feasible.

References

(1] W. Cody and W. Waite, Software Manual for the Elementary Functions, Prentice-
Hall, Englewood Cliffs, N.J., 1980.

[2] J. F. Hart et al., Computer App}'o:cimations, John Wiley and Sons, New York, 1968.

[3] D. Hough, Elementary functions based upon IEEE arithmetic, Mini/Micro West
Conference Record, Electronic Conventions Inc., Los Angeles, Calif., 1983.

[4] IEEE standard for binary floating-point arithmetic, ANSI/IEEE Standard 754-
1985, Institute of Electrical and Electronic Engineers, New York, N.Y., 1985.

(5) P. W. Markstein, Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor, IBM Journal of Research and Development, 34, no. 1, January
1990, pp. 111-119. ,

(6] P. T: P. Tang, Table-driven implementation of the exponential function in IEEE
floating-point arithmetic, ACM Transactions on Mathematical Software, 16, no. 2
June 1989, pp. 144-157. N

[7] P. T. P Tang, Table-driven implementation of the logarithm function in IEEE
floating-point arithmetic, Preprint MCS-P55-0289, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, Argonne, Ill., February 1989 (to ap-
pear in ACM Transactions on Mathematical Software).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein 10 any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinwns of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

