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Abstract

Table-lookup algorithms for calculating elementary functions offer
superior speed and accuracy when compared with more traditional

algorithms. \Vith careful design, we show that it is feasible to imple-
ment table-lookup algorithms in hardware. Furthermore, we present

a uniform approach to carry out tight error analysis for such imple-
mentations.

1 Introduction

Since the adoption of IEEE Standard 754 for floating-point arithmetic [4], there has been
a revival of interest in implementing elementary functions to near perfect accuracy (see
[6], [3], and [5], for example). A common thread of the recent works in this area is table-
lookup algorithms. Although these recent works use rather large tables and implement
the functions in software, we illustrate here that with careful design, the table sizes
can be made so smMl that these table-lookup algorithms become easily realizable in
hardware. Despite the size reduction, the speed and accuracy benefits brought about
by table-lookup algorithms are preserved. Furthermore, we also show that these table-

lookup algorithms render themselves to a uniform error analysis that yield tight error
bounds. It is quite typical that a theoretical bound of 0.57 units in the last place (ulp)
can be obtained for an implementation of whose maximum error observed over several
million arguments is 0.55 ulp.

The rest of the paper is organized as follows. Section 2 presents the general idea
behind table-lookup algorithms. Section 3 illustrates the idea by three specific examples.
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Section 4 presents a uniform approach for tight error analysis and an illustrative example.
Section 5 m_kes some concluding remarks on the advantages of table-lookup algorithms

over CORDIC and ordinary (without table-lookup) polynomial algorithms.

2 Table-Lookup Algorithms

Let f be the function to be implemented and I be the domain of interest. A typical table-

lookup algorithm selects a set of "breakpoints" cj,j = 1, 2,..., N, in I and tabulates the

N values of f(cj). For any input argument x e I, the algorithm calculates f(x) in three

steps.

Reduction: For this given _, the algorithm selects an appropriate breakpoint ck. (In

general, ck is the breakpoint closest to x.) It then applies a "reduction transfor-
mation" 7_ to obtain a reduced argument

= n(z,ck).

7_ is always simple; a typical case is 7_(z, Ck) = z - ck.

Approximation: The algorithm now calculates f(r) using some approximation formula

p(r) _ f(r).

Very often p is a polynomial.

Reconstruction: Based on the reduction formula 7,?.and the values f(ck) and f(r), the

algorithm calculates f(z)by a reconstruction formula S

f(r) = S(f(ck),f(r))

S(f(ck),p(r)).

The formula S is highly dependent on the function f.

Although a traditional polynomial or rational-function based algorithm ([1], [2]) can

also be expressed in these three steps, there are two properties peculiar to a table-lookup

algorithm. First, the reduction process in a table-lookup algorithm is much more flexible

since, uiflike a traditional algorithm, the choice of breakpoints is basically independent

of the function f in question. In most situations, the breakpoints are chosen so that the

reduced argument r can be computed efficiently in the particular machine in question.

Second, in a table-lookup algorithm, the magnitude of the reduced argument r can be
made as small as one wishes, limited only by the table size one can accommodate. We

now illustrate these ideas by three realistic examples.
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3 Algorithms for 2x, logx, and sinx

The functions 2_, log x, and sin x are among the most commonly used elementary func-

tions. We have purposely chosen different bases for the exponential and logarithm funk-

tions (base 2 and e, respectively) lo illustrate the flexibility of table-lookup algorithms.
The algorithms here calculate the functions on "primary" domains. Transformations

of arguments to such domains are standard and weU known (see [1] and [2]).

3.1 2_ on [-1,1]

R.eduction: If Ix] < 1/16, calculate 2_ by a. simple polynomial approximation. Other-

' wise, find the breakpoint ck.= k/32, k = 0,1,...,31 such that

Ix- (,_+_k)l< 1/64,

where m - -l or 0. Calculaterbyr-[x-(m+ck)] (log2).

Approximation: Approximate e_ - 1 by a polynomial p(r),

p(r) = r + iolr2+ "" + p_r_-1.

Reconstruction: Reconstruct 2_ by the relationships

2x -- 2rn+ck .e r

= 2"_{2_ +2_(,__- 1)}

3.2 logx on [1,2]

Reduction: If x < e 1/16, compute log(x) by a simple polynomial approximation. Oth-

erwise, find the breakpoint ck - 1 -t- k/64, k = 0, 1,..., 64 such that

x-ckl_< 1/128.

c_l_ul_t_,.by,.= 2(_- ck)/(_+ck).

Approximation: Appro.'dmate log(z/ck) by an odd polynomial p(r)

_(r) = r +plt _ +p27 ,5 + ...+prtr 2_+z.

Note that

m



Table 1: A Realistic Set of Algorithms for IEEE Double Precision
1

Function No. of Table Entries No. of Coefficients

2x 32 n = 5

log x 64 n = 2

sinz 64 n = 3, m = 3

Reconstruction: Reconstruct log x by the relationships

log(z) - log(ck)-t- log(x/ck)

_ log(_k)+p(_.).

a.a sin x on [0,7r/41

R.eduction: If z[ < 1/16, calculate sin x by a simple polynomial appro,,dmation. Oth-

erwise, find the breaki, oint cjk of the form

cjk=2-J(l+k/8) j=1,2,3,4; k=0,1,...,7

that is closest to x. Calculate r by r = z - r.

Approximation: Appro,,dmate sin r - 7"and cos r - 1 by polynomials p and q, respec-

tively'
p(r) =plt 3+p2r 5 +...+pnr 2n+l,.

q(r) = qlr 2 + q2r4 + ... + qmr 2m.

Reconstruction: Reconstruct sin(z) by the relationships

sin(x) = sin(cjk + r)

= _in(_jk)_osr + ¢os(_jk)_in
sin(cjk) + r + (sin(cjk)q(r) -t- cos(cjk)p(r)).

To conclude this section, we tabulate in Table 1 the table size and coefficient require-
ments fox"a realistic set of algorithms tailored to IEEE double precision.

4 Error Analysis

Recall the three steps of calculating f at x:

Reduction: 7"= "f4(z) (We omit the "ck" for simplicity's sake.)
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Approximation: p(r) _ f(r)

lZeconstruction: f(x) = $(f(r)) ,._ S(;(r))

Because of inexact computations, we obtain . instead of r,/3 instead of p, and

instead of $. Hence, the computed result is

The goal of the error analysis is to estimate accurately the difference

$(f(r)) - 3(/)(.))1.

We apply the triangular inequality. Thus,

]&'(f(r))-S(i5(.))] < [S(f(r))-S(f(.))+

{$(f(_)) - 8(p(_)) +

Is(p(.))-
< EI+E2+Ea.

In most situations,

E1 _< constant'If(r)- f(.)[

constant. If'(r)l. r- .l

alld

E2 <_constant.maxIf(_)"- p(t).
t

E1 can be e_sily estimated because the reduction process _ is usually so simple that

[r - _] can be estimated tightly. E2 can also be easily estimated since the numerical
Va]Re

max If(t) - p(t)]t

is obtained when the polynomiM is sought, usually by the use of the Remez algorithm.

(The ma:dmum is taken over the domain of approximation.) The rounding error

E_ = S(p(.))- S(P(.))I

in calculating the polynomial and reconstruction is usually the most difficult to estimate

tightly. With the use of table-lookup algorithms, however, the analysis is greatly simpli-

fied. The reason is that the magnitude of the reduced argument r (or .) is typically so

small that rounding errors associated with rk, k >_2, are practically zero. The simplicity

of the analysis in [6] and [7] illustrates the situation.

To illustrate the ideas here, we carry out the analysis of 2_ for a typical IEEE double-

precision inlplementation. Let e denote 1 ulp of 1, i.e., e = 2-52. Clearly, the subtraction
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x - (m + ck) is ex_tct. Hence the errors in the reduction step are the caused by the
multiplication by log 2 and th,_t the "log 2" used is only a 53-bit approximation.

r = slog2, and

. = s(log2 + 51) + 52,

where [51] _<2-2e and [52[ <_2-se. Thus,

lr- .1< Is_ll+ I521< 2-rC.

ltence,
_l

lE1< I_e*ll_- .I _<.1.02× 2-7_.
Next, the best approximating polynomial p obtained by a Remez algorithm gives

I(e_- 1)- p(t)[ < 2-63 - 2-11e, tI < log2/64.

Thus,

lE2 5 2-11e.

Finally, we estima, te the errors in computing p(.) and the final reconstruction. Since 2_k

is not representable in 53 bits, we use 2 variables T1 and T2 where T1 is 2ck rounded to
53 bits and T2 is a correction term that makes T1 + T2 = 2_k for all practical purposes.

(Note that a T2 having 6 significant bits will be sufficient.) The reconstruction is

2m(T_+ (T_, p + T2)).

Scaling by 2"_ is exact. The last add contribute no more than } ulp of error. The error
in T, , p + T2 is simple: Since [.2[ < 2-12, the only significant error in calculating p is
the last add. Thus the computed result is

(2c_+ 5_)(p+ 52)+ T_+ 5a
= 2Ckp+ T2 + 5lp + 522ck + _3,

where p _<2-6, ali _<2-_E, 1_i2[_<2-7e, and aal <_2;6e.

Thus the rounding error is bounded by

1 2-6 2mlE3 < _.lp + (2-_ + +2-6)_.
1

_< _ulp + (2 -r + 2-S)ulp

< 0.54ulp.

Consequently,

Ex + lE21+ IZ31< 0.556ulp.
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5 Concluding Remarks

Table-lookup algorithms offer several advantages over traditional polynomial/rational-

funtion algorithms and COI_DIC algorithms. In comparison, a table-lookup algorithm

is generally

1. faster because it requires less work in the appro_mation steps,

2. more accurate because rounding error made in the approximation step is tiny, and

3. amenable to tight error analysis.

Since the table size required can be made moderate and that basic operations such as

primitive floating-point adds and multiplys (that is, without exception handlings) can

be ea.sily realized in the order of a few clocks Oll modern hardware, hardware implemen-
tations of table-lookup algorithms is extremely feasible.
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